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Abstract. Inelastic interaction and wave optics seem to be incompatible in that inelastic processes destroy
coherence, which is the fundamental requirement for holography. In special experiments it is shown that
energy transfer larger than some 10−15 eV undoubtedly destroys coherence of the inelastic electron with
the elastic remainder. Consequently, the usual inelastic processes, such as phonon-, plasmon- or inner shell-
excitations with energy transfer of several meV out to several 10 eV, certainly produce incoherence with
the elastic ones. However, it turned out that within the inelastic wave, “newborn” by the inelastic process,
there is a sufficiently wide area of coherence for generating “inelastic holograms”. This is exploited to create
holograms with electrons scattered at surface-plasmons, which opens up quantum mechanical investigation
of these inelastic processes.

1 Introduction: inelastic interaction, EELS
and holography

For decades, Christian Colliex and his coworkers very suc-
cessfully explored the basics of inelastic interaction and
developed methods exploiting them for powerful materials
analysis in the (S)TEM. As a new fascinating contribution
to the fields, recently, they published energy-filtered im-
ages of triangularly shaped Ag-nanoparticles recorded in
the light of the surface plasmons energy losses, which show
striking eigenmode-like features (Fig. 1) [1]. These images
clearly indicate the structure of probability for excitation
of such plasmons. The question is whether an exciting
beam electron just experiences the excitation probabil-
ity locally given by the nanoparticle, or “sees” the whole
shape of the nanoparticle; in the latter case, the pattern
would be a property also of the exciting beam electron. If
it sees the whole particle, just as it “sees” both slits in a
double-slit experiment, then there should be some inter-
ference possible between different areas of the excitation
probability distribution in the nanoparticle. This is what
we are striving for. As a prerequisite for this goal, we re-
port about first holograms recorded with surface plasmon
scattered electrons.

2 Electron interference

At least in the realm of elastic interaction, TEM is wave
optics where the image wave is built up by interference of
the waves diffracted at the object. This is a highly com-
plicate situation of multi-beam interference. Much easier
to understand is two-beam interference.

a e-mail: hannes.lichte@triebenberg.de

Assume a point source emitting an electron. A well-
defined spherical wave is propagating in space (Fig. 2). By
means of a wave front splitter, one can select two partial
waves. At some distance to the source, these are nearly
plane waves described by

ψ1/2(x, z; t) = a1,2 exp(±iπkβx) exp(i2πkz) exp(i2πνt).
(1)

They overlap under a small angle β; they oscillate at a fre-
quency ν = E/h given by the total energy E and Planck’s
constant h.

In the area of superposition, they give rise to the sum
wave

ψ(x, z; t) = ψ1(x, z; t) + ψ2(x, z; t) (2)

with the intensity distribution

Ihol(x) = ψ(x, z; t)ψ∗(x, z; t)

= a2
1 + a2

2 + 2a1a2 cos(2πqcx). (3)

It is a cosinoidal two-beam interference pattern with a
“carrier spatial frequency”qc = kβ. This pattern is sta-
tionary in time, because both waves oscillate at the same
frequency ν. Please note that the pattern is also inde-
pendent from z, since for simplicity we assumed infinitely
extended plane waves.

Experimentally, two beam interferences can most fa-
vorably be produced by means of the Möllenstedt elec-
tron biprism as a beam splitter (Fig. 3) [2]. The biprism
is a wavefront-splitter, splitting the incoming wave in two
partial waves and superimposing them downstream by
virtue of the attractive electrical field around the posi-
tively charged filament.

The interference pattern represents the wave of a sin-
gle electron; it is the probability of finding the electron

Article published by EDP Sciences

https://doi.org/10.1051/epjap/2010100378 Published online by Cambridge University Press

http://www.epjap.org
http://dx.doi.org/10.1051/epjap/2010100378
http://www.edpsciences.org
https://doi.org/10.1051/epjap/2010100378


The European Physical Journal Applied Physics

Correlation ? Interference ?
Fig. 1. (Color online) Surface plasmons at a triangular Ag-nanoprism. The EFTEM-maps recorded for different energies
show eigenmode structures in the distribution of excitation of surface-plasmons. These structures are a property of the object.
Do the exciting electrons see the whole object and correlation between the excitation peaks? Would they show coherence over
the whole particle hence interference phenomena? Example taken from [1].

point source

partial 

waves

β

Fig. 2. (Color online) Scheme of electron interference. The
wave of an electron propagates in space. By some optical ar-
rangement employing beam-splitters and lenses, two partial
waves are selected and superimposed in the far field of the
source. Since the two partial waves have been part of the
same wave, they are mutually coherent hence form an inter-
ference pattern. Strictly speaking, this scheme represents only
one electron.

at the point (x) in the detector plane. In fact, the elec-
tron hits the detector somewhere in a very sharp impact
(Fig. 4): the electron is not smeared out over the whole
wave area; instead it behaves like a particle, detectable
in an a posteriori well defined but unpredictable position.
The unpredictability makes the difference to a classical
particle.

Consequently, performing the experiment with a sin-
gle electron, one cannot see the interference pattern. To
see the pattern, one would have to repeat the experiment

detector

biprism

β

1/q

e ec ron source

+

shear d

Fig. 3. (Color online) Setup for two-beam interference using
the Möllenstedt electron biprism. By means of the positively
charged filament (∅ ≈ 1 μm, filament voltage several volt), the
incoming wave is split in two partial waves, which are deflected
hence superimposed downstream. At biprism voltage Uf = 0,
they would be separated in the detector plane by the shear d
given by the angular separation α of the two partial waves.

over and over again with exactly the same electron in the
very same experimental setup, in order to fill the proba-
bility distribution Ihol(x) with the frequency distribution
of many events.

3 Electron coherence

Since, in reality, it is impossible to repeat the experiment
with the same electron, we perform the experiment with
many different electrons emitted from the source during
exposure time (Fig. 4).

Different electrons have no fixed phase relation hence
must be considered mutually incoherent. However, the
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Fig. 4. Built-up of the interference pattern with increasing
exposure time. The electrons drop in one by one at well lo-
calizable but unpredictable spots. They are not smeared out
over the whole interference pattern. Collecting many electrons
at coherent illumination (“ensemble coherence”), the pattern
is filled with events and becomes gradually visible. These elec-
trons are mutually incoherent and independent: the time of
flight through the microscope is much shorter than 1 μs, the
time distance between two events is about 1 ms; consequently,
each electron is virtually all alone in the column (“single elec-
tron interference”). If ensemble coherence is sufficient, their
individual interference patterns are so similar that by integra-
tion an average interference contrast is visible.

phase differences between the respective partial waves of
the different electrons in the detector may be very sim-
ilar. The electrons emitted from different points of the
extended source i(�rs) contribute with a slightly shifted in-
terference pattern; electrons with different wave number
k will contribute with one of a slightly different spatial
frequency qc = kβ. All these specific single-electron in-
terference patterns have to be summed up by intensity,
i.e. incoherently. Then the intensity distribution resulting
from the whole ensemble of recorded electrons is found as

Ihol(x) = a2
1 + a2

2 + 2a1a2 |μ| cos(2πqcx+ ρ). (4)

This averaged pattern differs from the single-electron pat-
tern in the degree of coherence μ = |μ| exp(iρ), which is
a statistical property of the ensemble of all electrons col-
lected on the detector (Fig. 5).

Therefore we call it “ensemble coherence”. It does not
say anything about the single-electron wave, which, by
definition, is everywhere perfectly coherent with itself, as
long as we do not consider inelastic processes.

Under the reasonable assumption that all source points
emit the same spectrum of wave numbers, the degree of
coherence can be written as

μ = μscμtc (5)

Fig. 5. Experimental superposition of two electron waves by
means of the electron biprism for demonstration of coherence.
In the left, the two beams are mutually coherent hence form the
fine cosinoidal interference fringes. In the right, the interference
fringes are missing because of lack of ensemble coherence be-
tween the electrons of the two beams; the Fresnel fringes from
diffraction of each beam at the respective biprism edge show,
however, that there is a certain degree of coherence within each
beam. Coherence always describes a bilateral relation: “a” is
coherent with “b”.

i.e. as the product of spatial coherence μsc and temporal
coherence μtc. Spatial coherence is given as

μsc(�α) =
∫

source

i(�rs) exp(i2π�q �rs)d�rs (6)

with �q = (kx, ky) and �α = �q/k the angular distance at
the source of the two partial waves superimposed. (“Van
Cittert-Zernike theorem”). The phase ρ in μ = |μ| exp(iρ)
stems from a possible asymmetry of the source i(rs).

Temporal coherence may be described by

μtc(n) =
∫

source

s(κ) exp(i2πκn/k0)dκ (7)

as a function of the order n of interference. It results from
the spectrum s(κ) with κ = k−k0 the spectrum coordinate
relative to the nominal wave number k0 =

√
2em0U∗

a/h,
with the assumption κ� k0 usually met by far.

Of course, this description of coherence is an approxi-
mation. In a more complex situation including dispersion
with respect to the incident angle and the energy, e.g.
at interaction with the specimen or with aberrations of
lenses, one has to determine all the single intensities of
the respective wave functions and sum them up incoher-
ently in the final image plane. More details can be found,
for example in [3].

4 Elastic interaction: phase shift of the wave

Elastic interaction means that each electron before and be-
hind the object has – on the scale of 10−15 eV – the same
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total energy E in the Schrödinger equation. This means
that only the direction of the wave vector �k changes un-
der interaction with the object, but not its modulus |�k|.
The coherence properties of the wave are preserved. In
the semi-classical WKB-approximation, the wave propa-
gating through an object represented by an electric po-
tential distribution V and a magnetic vector potential �A
is modulated in phase by the so-called eikonal

ϕ = 2π
∫

path

�kd�s (8)

which – with respect to a wave propagating in field-free
space – results in

ϕ = 2π
e

hv

∫
V ds− 2π

e

h

∮
�Ad�s, (9)

where v means the electron velocity; again, details are
found in [3].

5 Consequences of energy transfer

Assume that, for example in the setup described in the fol-
lowing, one of the two coherent partial waves experiences
an energy transfer δE. Then we superimpose

ψ2(x, z; t) = a2 exp(−iπkβx) exp(i2πkz)
× exp(i2π(ν + δν)t) (10)

and the unchanged partial wave

ψ1(x, z; t) = a1 exp(+iπkβx) exp(i2πkz) exp(i2πνt).
(11)

We assume that in this case entanglement with the ob-
ject can be neglected; this is justified for the experimental
setup used for verification in the following, because any
influence from the beam electron on the macroscopic ap-
paratus, such as changing its potential by electrostatic in-
duction, can safely be neglected. Consequently, assuming
full ensemble coherence, we find for the resulting interfer-
ence pattern

Ihol(x, y; t) = a2
1 + a2

2 + 2a1a2 cos(2πqcx+ 2πδν t), (12)

which is no more stationary in time. Instead, the time de-
pendent phase shift ϕ(t) = 2πδν t provokes a lateral mo-
tion (“beat”) of the interference fringes. With ω = ∂ϕ/∂t,
the time dependent phase shift ϕ(t) is associated with an
energy transfer δE = �ω, according to the Einstein rela-
tion. The fringes move by 1 fringe/s, i.e. δν = 1 Hz, for
δE = 4.135 × 10−15 eV. The effects of the corresponding
change of the wave number k with δE, and hence of the
spatial frequency qc, are negligibly small.

5.1 Experimental verification

The time dependent phase shift ϕ(t) was experimentally
proven by means of the setup shown in Figure 6 [4].

Fig. 6. (Color online) Beats of electron waves by energy trans-
fer δE to one wave. The wave ψ2 is shifted in energy δE with
respect to the wave ψ1. The energy shift comes about under
time of flight tflight through the tube with a ramped voltage
V (t). Since the fringes move at a frequency δν, time resolution
of the detector decides whether fringe contrast appears (“ψ1

and ψ2 are found coherent”) or not (“incoherent”). From [4].

One wave is propagating through field-free space. The
other one is passing through a metallic tube, which is
connected to a voltage supply providing a voltage linearly
increasing in time at a constant rate V̇ . After time of flight
tflight through the tube, each electron has picked up virtu-
ally the same energy δE = eV̇ tflight, which gives rise to the
“beat” frequency δν = e

h V̇ tflight of the whole interference
pattern.

5.2 Interpretation: loss of coherence between the
partial waves

It depends on the time resolution τ of the detector,
whether one can still detect interference fringes in the
recorded intensity

Ihol(x, y) = 2

⎛
⎝1 +

1
τ

τ∫
0

cos(2πqcx+ 2πδνt)dt

⎞
⎠ (13)

which can be written as

Ihol(x, y) = 2
(
1 +

∣∣μδE(τ)
∣∣ cos (2πqcx+ 2πδντ/2)

)
(14)

with

μδE(τ) =
∣∣μδE(τ)

∣∣ exp(i2πδντ/2) =
1
τ

τ∫
0

exp(i2πδνt)dt.

(15)
For δν = const. one obtains

∣∣μδE(τ)
∣∣ =

sin(πδντ)
πδντ

(16)

with the first zero given at τ = 1/δν. Consequently, it de-
pends strongly on exposure time τ , whether interference
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contrast, i.e. coherence, is found or not. The detector is
an essential part of the whole experiment. For the usual
exposure times of about 1 s, the energy threshold for “de-
coherence” is ≈ 4.135 ×10−15 eV.

This coherence μδE is in principle different from “en-
semble coherence”: the disappearance of the interference
contrast would show up also at perfect ensemble coher-
ence. Instead, here we deal with the coherence between
the partial waves of the same state, because we encroach
on the very state of the single electron by energy transfer
with the consequence of destroying coherence with other
parts of the previous wave; without energy transfer we
would simply produce a phase shift under conservation of
coherence. Therefore, we call this kind of coherence “state
coherence” μstate, which equals 1 for elastic interaction.
The difference between ensemble coherence and state co-
herence is the reason, why the comparably large energy
spread of the electron source of ΔE ≈ 1 eV entering tem-
poral ensemble coherence may be many orders of magni-
tude larger than 4.135 × 10−15 eV. Altogether, we have
now the total degree of coherence

μ = μscμtcμstate. (17)

In the above example, μstate = μδE holds. In the following
case, μstate will describe the distribution of coherence in a
wave created by inelastic scattering.

6 Inelastic coherence

Compared to 4.135 × 10−15 eV, the energy transfer to
a wave usually occurring at inelastic interaction is huge.
Therefore, excitation of phonons with several meV, of
plasmons at several eV, or of inner shell excitations at
several 10 eV necessarily destroys the degree of state co-
herence with respect to an elastically scattered wave, or
to an unscattered one: the beat frequency would be about
1012 ÷ 1017 Hz, and, after usual exposure times in the
order of seconds, interference contrast in an image-plane
hologram would be completely wiped out.

Of course, considering the object simply as a source of
inelastic electrons, the issued inelastic waves can be used
for producing interference in the far-field of the object
according to the scheme in Figure 2; then the respective
ensemble coherence – now given by the energy distribution
delivered by the electron gun convolved with the energy
spread from the inelastic events, and the size of the ob-
ject – determines the interference contrast.

The much more interesting question is, whether there
is extended coherence μstate within the arisen inelastic
wave in the inelastically scattering volume, i.e. in the ob-
ject or image, which would reveal wave-like phenomena,
when adjacent areas are superimposed. In the following,
we analyze this in more detail. We start with an illumi-
nating wave with infinite region of coherence per defini-
tion, i.e. state coherence |μstate| ≡ 1. In the scattered
wave field of a single electron, the coherence distribu-
tion is determined by the nature of the scattering process.
For example, purely elastic scattering is modulating the

electron source

back focal plane

imaging filter

energy-loss

hologram

object

image plane

hologram

energy 

spectrum

biprism

EFTEM-image

Fig. 7. (Color online) Setup for recording holograms with in-
elastically scattered electrons in an EFTEM. Both beams sub-
sequently superimposed go through the object to make sure
that both may suffer the same energy transfer at e.g. plasmon
scattering. From the hologram built up by all electrons, elastic
and inelastic, we select a certain window in the energy spec-
trum to reveal the corresponding energy-loss hologram. Please
keep in mind that this is EFTEM-imaging, meaning that we
have an image-plane hologram of the inelastic process.

wave field in amplitude and phase without affecting co-
herence. But in case of an inelastic scattering event, such
as a K-shell ionization in one oxygen atom, the electron
is exciting the object locally. Thereby, the illuminating,
extended wave collapses and a new one is “born” locally.
For understanding, we have to investigate, whether or not
we find extended coherence μstate indicating the extension
of the newborn inelastic wave. This is a non-trivial situa-
tion, because for coherence we need a fixed phase relation,
which is not automatically guaranteed over a larger area.
The equality of energy better than 4.135 × 10−15 eV is a
necessary condition, but, presumably, not a sufficient one.

For investigation of the coherence properties of the in-
elastic electrons, we record holographic EFTEM-images
by means of the setup shown in Figure 7. Interferograms
are recorded in the image plane of the object such that
two closely adjacent areas of the inelastic field overlap.
First findings with Al-plasmons revealed coherence [5],
and, with improved instrumentation, the extension of co-
herence was estimated >10 nm [6]. Finally, the systematic
investigation increasing the shear d (Fig. 8) resulted in the
coherence distribution shown in Figures 9, 10 [7]. Please
note that these measurements were performed in the im-
age plane of the object; this means that we measure the
coherent extension of the scattered wave at the scatterer.

The interpretation is that there is an outgoing in-
elastic wave, which, contrary to elastic scattering, is now
spatially restricted to a so-called interaction sphere of a
certain inelastic scattering event (Fig. 11). This sphere is
the dominating factor contributing to the region of co-
herence in the inelastically scattered wave field, as shown
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biprism

interference pattern

in image plane of plasmon

shear d

object with 

plasmon

ψill

ψinel

interaction sphere

Fig. 8. (Color online) Scheme for measuring the extension of
coherence in inelastic scattering. The plasmon is the source of
the inelastic wave. We measure the extension of this source
by measuring the coherent extension of the issued inelastic
wave in the plasmon plane as follows: by means of the biprism
voltage, the shear d is increased. The contrasts of the respective
hologram-fringes give the distribution of degree of coherence
μstate with d. The optics for imaging the plasmon into the
interference plane is not drawn.

Zero 

loss

Plasmon

loss

shear d 13.2 nm 19.6 nm 24.7 nm

Fig. 9. Electron holograms recorded with plasmon-scattered
electrons at increasing shear. With increasing shear, fringe
spacing decreases and overlapping width increases. For sub-
sequent normalization with the “ensemble coherence” of illu-
mination, also the zero-loss holograms are recorded. The result
is μstate in the plasmon-scattered wave. Expectedly, the fringe
contrasts in the plasmon-loss holograms are much lower than
in the respective zero-loss holograms. For details see [7].

in [8,9]. Furthermore it was shown that the shape of the
coherence region is given by the delocalized Coulomb field
of the scattered electron and also determined by the phys-
ical properties of the object such as correlations in quasi-
particle excitations, like plasmons, polaritons or phonons.
The radius of the interaction sphere is determined by the
amount of transferred energy and beam energy of the in-
cident electron [10].

Degree of coherence vs. shear d (nm)

Fig. 10. (Color online) Extension of coherence within in the
inelastically scattered wave field. The curve plasmon/zeroLoss
gives μstate of the plasmon scattered electrons. Surprisingly, in
spite of the generally poor coherence, coherent contributions
have to be considered in areas up to 30 nm wide at plasmon
scattering. This is interpreted as the diameter of the newborn
inelastic wave at the scatterer. From data of Figure 8.

7 Density matrix description

As a useful construction for further discussion, we use
the more general density matrix approach, which is fully
equivalent to the above wave function description. In case
of pure states, the density matrix of a fast electron can be
set up by multiplying the wave with its complex conjugate
for all pairs of independent variables (x, x′) [11]:

ρ(x, x′) = ψ(x)ψ∗(x′) (18)

x− x′ is the shear d introduced above.
In case of real electron sources we have to regard an

ensemble of beam electrons, which are mutually incoher-
ent, generally described by a density matrix of a mixed
state.

ρ(x, x′) =
∫

Source

f(�k)ψ�k(x)ψ∗
�k
(x′)d3k. (19)

The integration runs over the energy and angular distri-
bution in the electron beam. The distribution function has
to be normalized

∫
Source

f(�k)d3k = 1. (20)

The emitted electron waves, which differ in energy and
incident direction, can be written with respect to object
plane as

ψ�k(x) = ψ0(x) exp(2πik⊥x). (21)
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ψill

ψel

object

ψinel

ctsaenctsael

interaction 

sphere

Fig. 11. (Color online) Elastic and inelastic interaction of the electron wave with an object. Left: at elastic interaction, the
object exit wave ψel is phase-modulated according to the electric and magnetic object potential under preservation of coherence
properties. Right: at inelastic interaction, the illuminating wave ψill collapses and gives rise to a “newborn” inelastic wave ψinel

in the interaction sphere shown; the extension of the inelastic wave is determined by the coherence measurements. At the edge
of an object, it may also reach out laterally into vacuum [7].

This ansatz leads to simplification of the mixed state den-
sity matrix of the beam electrons:

ρ(x, x′) = ψ0(x)ψ∗
0(x′)

∫
Source

f(�k) exp(2πi(x− x′)k⊥)d3k

= ψ0(x)ψ∗
0(x′)μ(x − x′)

= ρin(x, x′)μ(x − x′). (22)

It collapses to a product of the incoming density matrix
ρin(x, x′) and the complex degree of coherence μ(x−x′). It
shows directly that the off-diagonal elements are weighted
by a factor, which is decreasing with increasing relative
distance x− x′ for standard electron sources.

For simplicity we assume to have an ideal, non-
dispersing lens for the further imaging process. This is
justified if we investigate waves, which are slowly varying
over a length scale of 10 nm. This assumption allows that
we only need to alter the incoming density matrix by the
scattering process by the object, but do not need to aver-
age over the coherent wave transfer function of the optics
for different incident beams.

The scattering by the object leads generally to an en-
tanglement with (orthogonal) object states. The measure-
ment of beam electrons is described by integration over
all degrees of freedom of the object ending up in reduced
density matrix ρout(x, x′) [11].

ρin(x, x′) → ρout(x, x′) =
∑
i=1

ψi(x)ψ∗
i (x′). (23)

We will see that the coherence of the whole beam ensemble
is represented by non-diagonal elements of the reduced
density matrix of the inelastically scattered fast electron.
However, the diagonal elements are the only measurable

parts of the density matrix. They represent the intensity
distribution in a hologram and in a conventional TEM
image [8]

I(x) = ρout(x, x′)|x=x′ =
∑
i=1

|ψi(x)|2. (24)

This corresponds to an incoherent superposition of dif-
ferent inelastically scattered electrons as usually treated
in scattering theory. Fortunately, by means of a biprism
it is possible to shift off-diagonal elements into the diag-
onal, which makes them measurable by means of off-axis
electron holography [9]. In terms of the density matrix ap-
proach, the hologram intensity for a certain shear d may
be written as follows [8]:

Ihol(x) = ρhol(x, x) = ρout(x+ d/2, x+ d/2)

+ ρout(x− d/2, x− d/2)

+ 2� [μ(d)ρout(x− d/2, x+ d/2)]︸ ︷︷ ︸
off−diagonal element

. (25)

This expression compared to equation (4) shows that
the off-diagonal elements determine the interference term
hence also the coherence. This coherence corresponds to
ensemble coherence of the beam electrons μ(d) and to the
coherence due to all possible inelastic scattering processes
ρout(x − d/2, x + d/2) for certain shear d. The ensemble
coherence of the incident fast electrons can be determined
directly in a reference measurement without object under
the same illumination parameters for the imaging condi-
tions as assumed above.
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Fig. 12. (Color online) Aluminium plasmon energy-loss image (15 eV energy loss, 1 eV slit-width) of aluminium bar with
averaged spectra at three different positions: red: below, green: in the middle of, blue: above the bar. The filtered image shows
a dark area in the upper part of the bar due to platinum remaining from FIB preparation (platinum plasmon loss: 35 eV [17]).
The bright band shows the more or less pure aluminium part. The spectra reveal a surface plasmon resonance at about 7 eV
below the edge (red), whereas a broader tail without resonance is indicated by the spectrum above the bar (blue).

The reduced density matrix for the fast electron after
an inelastic scattering event with energy transfer δE can
be written as [12]

ρout(x, x′) =
(

2πme2

ε0�2k

)2

K0(qE |x|)

×K0(qE |x′|) ⊗ S(x, x′, δE) (26)

with ⊗ meaning convolution.
This expression combines the influence of the Coulomb

delocalization of the inelastic interaction with the corre-
lations in the excited quasi-particle field. The interaction
sphere is described by the Bessel functions K0 of second
kind and zeroth order, parameterized by the characteristic
scattering vector qE = δE/(2E) k0. The correlation in the
quasi-particle excitation is denoted by the density-density
correlation function [12]

S(x, x′, δE) =

+∞∫
−∞

0∫
−δE

ρi(�r, �r ′, ε)ρf (�r ′, �r, ε+ δE)dε

× exp(−iqE(z − z′))dzdz′ (27)

with �r = (x, z), ρi and ρf the density matrices of ini-
tial and final state of the object with energy difference
δE, and ε the integration variable in energy, respectively;
it is the 2D-Fourier transform of the mixed dynamic
form factor (MDFF). In case of dipole transitions, some
reasonable approximations confirm the experimental re-
sults for bulk plasmons satisfactorily [8,13,14]. In these
cases, S(x, x′, δE) is strongly attenuated for length scales
larger than 1 nm, whereas the whole interaction sphere
extends to about 10 nm for excitations with 15 eV energy
transfer. This means that the holographically measured
coherence in the outgoing wave field is here determined
rather by the Coulomb delocalization than by the cor-
relation within the collective excitation [8]. Since, at the
end, we are interested in correlations within quasi-particle
excitations, we need to either reduce the Coulomb delocal-
ization by decreasing beam energy or look for excitations,

which provide a correlation length comparable to the in-
teraction sphere extension. We will exhibit that surface
plasmons might be promising candidates for those inves-
tigations.

8 Experiments with surface plasmons

During the last years, astonishing works were presented
concerning the modulation of coherence of light due to
surface plasmon scattering [15–17]. They also motivated
us for the study of coherence properties of inelastically
scattered electrons on plane metal surfaces.

For this purpose, holes with rectangular shape were
etched in a thin aluminium foil by means of Focused Ion
Beam (FIB). A platinum bar was deposited before etching,
to mask a freestanding aluminium bar, which provides ge-
ometrically well-defined plane surfaces in beam direction.
Since the etching process was not homogeneous over the
whole area, the upper half of the Al bar is still covered
with platinum, whereas the lower half seems to be pure
aluminium with the exception of a thin platinum line at
the lower edge (Fig. 12, left). Also the bright edges cor-
respond to the pure Al bar, which is located underneath
the partially with Pt contaminated surface. By means of
the Gatan Imaging Filter (GIF 200) at a CM200 FEG
Transmission Electron Microscope, Energy Spectroscopic
Imaging (ESI) was performed in order to verify the exis-
tence of surface plasmons at the edges to the vacuum by
means of averaged local spectra (Fig. 12, right). For all
measurements, the width of the energy-selecting slit was
set to 1 eV and the offset to the high tension was increased
in 1 eV steps from −2 eV to 18 eV. In order to increase
the inelastic cross section, the high tension was reduced to
80 kV. Resonances at about 7 eV and 15 eV were found at
the lower edge, whereas at the upper edge only the bulk
resonance of the aluminium plasmon at 15 eV [18] ap-
peared (Fig. 12, right). We associate the 7 eV resonance to
surface plasmons of the aluminium bar in presence of plat-
inum as created by FIB; the values of 6.7 eV for aluminium
spheres [19] and 10.5 eV for plane aluminium surfaces [20]
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Fig. 13. (Color online)(a) Energy-loss filtered electron hologram (7 eV) of vacuum region and corresponding contrast profile
25 nm above the edge of the bar. The averaged and zero-loss normalized (i.e. corrected for ensemble coherence) contrast for
this profile is about 0.35. (b) Energy-loss filtered electron hologram (7 eV) of vacuum region and corresponding contrast profile
25 nm below the edge of the bar. The averaged and zero-loss normalized (i.e. corrected for ensemble coherence) contrast for this
profile is about 0.50.

indicate a strong shape dependence of the resonance ener-
gies. The 7 eV surface resonance found here is of interest
for the following coherence measurements. The upper edge
will serve as a reference region for a measurement without
that surface plasmon, which might be suppressed through
the presence of the platinum coverage.

Interference fringes were generated by means of a
biprism oriented perpendicularly to the edge of the above-
mentioned aluminium bar. Since the in-focus image ap-
pears slightly above the biprism plane, a negative voltage
has to be applied in order to generate interference fringes
within the first image plane. Fringes above and below the
edge were recorded in an energy-filtered series with the
mentioned filter settings. The results are obtained by eval-
uating the contrast in each line parallel to the edge, which
is shown in Figures 13a and 13b for 7 eV filtered electron
holograms. The modulus of the degree of coherence given
by the fringe contrast

|μ| =
Imax − Imin

Imax + Imin

is measured by the ratio of difference and sum of maximum
and minimum local intensity.

For evaluation of contrast we chose vacuum regions
at a distance of 25 nm to the edges. A difference of about
0.15 in mean contrast is observable between fringe profiles
above and below the edge. To enhance the significance, the
acquisition of the filtered series was repeated 5 times for
the reference area above bar and 8 times for the surface
plasmon resonance area below bar. The subsequently aver-
aged contrast values appear with reduced noise. A further
statistical evaluation gives access to rough estimates for
error bars.

9 Results

The evaluation of the fringe contrast in both vacuum re-
gions leads to significant differences for the regions above
and below the aluminium bar. The measured contrast
was normalized by the contrast of the zero-loss hologram
fringes, in order to eliminate the contrast attenuation by
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Fig. 14. (Color online) Normalized mean contrast of the
fringes 25 nm above (blue) and below (red) the respective edge.
The red curve shows a maximum around 6 eV, whereas the
blue curve decreases monotonically. The contrast maximum is
attributed to the surface plasmons.

ensemble coherence within the electron beam (Eq. (4)).
The determination of fringe contrast is performed for each
image of the filtered series, which provides a function of
contrast in dependence on energy loss. Such a series was
already examined in [14] by an energy filtered hologram
series for bulk aluminium, but without surface resonances.
The normalized contrast is represented in dependence on
energy.

The contrast is changing also in dependence on the
distance from the edge. It appears that the contrast cor-
responding to the resonance increases with increasing dis-
tance to the edge, which is a similar behaviour as predicted
in [8] and already measured in [7]. A very interesting ex-
planation for that in a way counterintuitive result can be
found in [21] in terms of an interpretation of the famous
double slit experiment.

These very first results show that a significant increase
of contrast for the fringe pattern below the edge in the re-
gion between 5–7 eV (Fig. 14, in red) coincides with the
presence of a surface plasmon resonance in the spectrum
of Figure 12 (right); on the contrary, the reference area
above the edge only shows a monotonic decrease of con-
trast with increasing energy loss. Further experiments are
necessary to increase the signal to noise ratio in the ex-
tracted contrast plots in order to interpret all details of
the contrast profiles.

10 Conclusions

We interpret our findings as a correlation between the na-
ture of the surface plasmons with the increase of coherence
in the surface plasmon scattered wave field. The findings
cannot be explained by a simple increase of intensity due

to a higher excitation probability from the surface plas-
mon, because this increase would be proportional to Imax

and Imin in the same way, hence would cancel out directly
in the evaluating contrast formula

|μ| =
Imax − Imin

Imax + Imin
·

Consequently, because the Coulomb delocalization func-
tion K0 is the same for both measurements above and
below the bar (at least in the vacuum region), the in-
crease of coherence must be related to object properties.
This means that the density-density correlation function
S(x, x′, δE) for a surface plasmon appears to be the dom-
inating factor. It is different in bulk plasmon scattered
wave fields, where extension of coherence is predominantly
determined by Coulomb delocalization [8].

The results are encouraging for further studies of co-
herence effects in inelastically scattered wave field. These
studies are necessary to obtain a deeper insight into the
nature of collective excitations in solids, which become
more and more important in technologic applications, e.g.
in the field of plasmonics. The possibilities of inelastic
holography for investigating surface plasmon coherence
will be outstandingly interesting for understanding the
very beautiful surface plasmon eigen-modes in triangular
silver nano-particles by answering the initial question: do
the electrons see the whole shape of a nano-particle?
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Holography, (5–7 April 2009, Triebenberg Lab, TU Dresden)
with C. Colliex (UPS), C. Mory (UPS), L. Calmels (CNRS
Toulouse), H. Kohl (U Muenster), H. Rose (TU Darmstadt),
P. Schattschneider (TU Wien), J. Verbeeck (U Antwerp), C.
Koch (MPI Stuttgart), P. Nellist (U Oxford), P. Potapov
(Globalfoundries, Dresden), W. Strunz (TU Dresden) and A.
Lubk (TU Dresden) have been indispensable. We are grate-
ful to Dr. P. Formánek (Leibniz Institute of Polymer Research
Dresden, Germany) for preparing the Al-specimen by FIB, and
to H. Müller and B. Einenkel for technical assistance. The
Francqui Foundation (Bruxelles) helped to establish the very
fruitful cooperation of H.L. with the group of D. Van Dyck,
U Antwerp. These investigations have been performed within
European Union Framework 6, Integrated Infrastructure, Ref-
erence 026019 ESTEEM.
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