
19
The complex Klein–Gordon field

This chapter is a supplement to the material for a real scalar field. Much of the
previous chapter applies here too.

19.1 The action

The free-field action is given by

S =
∫
(dx)

{
h̄2c2(∂µφA)

†(∂µφA)+ m2c4φ∗AφA

+V (φ†
AφA)− J †

AφA − JAφ
†
A

}
. (19.1)

The field now has effectively twice as many components as the real scalar field,
coming from the real and imaginary parts.

19.2 Field equations and continuity

Since the complex field and its complex conjugate are independent variables,
there are equations of motion for both of these. Varying S first with respect to
φ∗A, we obtain

δS =
∫
(dx)δφ∗A

(−h̄2c2 φA + m2c4φA + V ′(φ2
A, φA)− JA

)
+1

c

∫
dσµδφ∗A(∂µφA) = 0, (19.2)

which gives rise to the field equation(
− + m2c2

h̄2

)
φA(x) = (h̄2c2)−1 JA(x), (19.3)
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426 19 The complex Klein–Gordon field

and the continuity condition over a spacelike hyper-surface,

�(∂σφ(x)) = �!σ = 0, (19.4)

identifies the conjugate momentum !σ . Conversely, the variation with respect
to φA gives the conjugate field equations, which give rise to the field equation(

− + m2c2

h̄2

)
φ∗A(x) = (h̄2c2)−1 J ∗A(x), (19.5)

and the corresponding continuity condition over a spacelike hyper-surface,

�(∂σφ
∗(x)) = �!∗σ = 0. (19.6)

19.3 Free-field solutions

The free-field solutions for the complex scalar field have the same form as those
of the real scalar field,

φ(x) =
∫

dn+1k

(2π)n+1
φ(k)eikx δ

(
h̄2c2k2 + m2c4

) ; (19.7)

however, the Fourier coefficients are no longer restricted by eqn. (18.15).

19.4 Formal solution by Green functions

The formal solution to the field equation may be expressed in terms of a Green
function G AB(x, x ′) by

φA(x) =
∫
(dx ′)G AB(x, x ′)JB(x

′), (19.8)

where the Green function satisfies the equation(
− x +m2c2

h̄2

)
G AB(x, x ′) = δ(x, x ′)δAB . (19.9)

Similarly,

φ
†
A(x) =

∫
(dx ′)J †

B(x
′)G B A(x

′, x). (19.10)

Note that, although the fields are designated as conjugates φ and φ†, this
relationship is not necessarily preserved by the choice of boundary conditions.
If the time-ordered, or Feynman Green function is used (which represents virtual
processes), then the resulting fields do not remain conjugate to one another over
time. The retarded Green function does preserve the conjugate relationship
between the fields, since it is real.
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19.6 The energy–momentum tensor 427

19.5 Conserved norm and probability

Let s be independent of x , and consider the phase transformation of the kinetic
part of the action:

S =
∫
(dx)h̄2c2

{
(∂µe−isφ∗)(∂µeisφ)

}
δS =

∫
(dx)

[
(∂µφ∗(−iδs)e−is)(∂µφeis)+ c.c.

]
=

∫
(dx)δs(∂µ Jµ), (19.11)

where

Jµ = −ih̄2c2(φ∗∂µφ − φ∂µφ∗). (19.12)

The conserved ‘charge’ of this symmetry can now be used as the definition of
the inner product between fields:

(φ1, φ2) = ih̄c
∫

dσµ(φ∗1∂µφ2 − (∂µφ1)
∗φ2), (19.13)

or, in non-covariant form,

(φ1, φ2) = ih̄c
∫

dσ(φ∗1∂0φ2 − (∂0φ1)
∗φ2). (19.14)

This is now our notion of probability.

19.6 The energy–momentum tensor

The application of Noether’s theorem for spacetime translations leads to a
symmetrical energy–momentum tensor. Although the sign of the energy is
ambiguous for the Klein–Gordon field, we can define a Hamiltonian with the
interpretation of an energy density which is positive definite, from the zero–zero
component of the energy–momentum tensor. Using the action and the formula
(11.44), we have

θ00 = ∂L
∂(∂0φA)

(∂0φA)+ ∂L
∂(∂0φ∗A)

(∂0φ
∗
A)− Lg00

= h̄2c2
[
(∂0φ

∗
A)(∂0φA)+ (∂iφ

∗
A)(∂iφA)

]+ m2c4 + V (φ).

(19.15)

Thus, the last line defines the Hamiltonian density H, and the Hamiltonian is
given by

H =
∫

dσH. (19.16)
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428 19 The complex Klein–Gordon field

The off-diagonal spacetime components define a momentum:

θ0i = θi0 = ∂L
∂(∂0φA)

(∂iφA)+ ∂L
∂(∂0φ∗A)

(∂iφ
∗
A)

= h̄2c2
{
(∂0φ

∗
A)(∂iφA)+ (∂0φA)(∂iφ

∗
A)
}
. (19.17)

Taking the integral over all space enables us to integrate by parts and show that
this quantity is the expectation value (inner product) of the momentum:∫

dσθ0i = h̄2c
∫

dσ
(
φ∗∂i∂0φ − (∂0φ

∗)∂iφ
)

= −(φ, pi cφ), (19.18)

where p = −ih̄∂i . The diagonal space components are given by

θi i = ∂L
∂(∂ iφA)

(∂iφA)+ ∂L
∂(∂ iφ∗A)

(∂iφ
∗
A)− L

= 2h̄2c2(∂iφ
∗)(∂iφ)− L, (19.19)

where i is not summed. Similarly, the off-diagonal ‘stress’ components are given
by

θi j = ∂L
∂(∂ iφA)

(∂ jφA)+ ∂L
∂(∂ iφ∗A)

(∂ jφ
∗
A)

= h̄2c2
{
(∂iφ

∗
A)(∂ jφA)+ (∂ jφ

∗
A)(∂iφA)

}
= h̄−1c(φA, pi p jφA). (19.20)

We see that the trace over spatial components in n + 1 dimensions is∑
i

θi i = H− 2m2c4φ2
A − 2V (φ)+ (n − 1)L, (19.21)

so that the full trace gives

θµµ = gµνθνµ = −2m2c4φ2
A − 2V (φ)+ (n − 1)L. (19.22)

This vanishes for m = V = 0 in 1+ 1 dimensions.

19.7 Formulation as a two-component real field

The real and imaginary components of the complex scalar field can be
parametrized as a two-component vector or real fields ϕA, where A = 1, 2.
Define

#(x) = 1√
2
(ϕ1(x)+ iϕ2(x)) . (19.23)
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Substituting in, and comparing real and imaginary parts, one finds

Dµ = ∂µ + ieAµ, (19.24)

or

DµϕA = ∂µϕA − eεAB AµϕB . (19.25)

The action becomes

S =
∫
(dx)

{
1

2
(DµϕA)(DµϕA)+ 1

2
m2ϕAϕA − JAϕA

}
. (19.26)

Notice that the operation charge conjugation is seen trivially here, due to the
presence of εAB , as the swapping of field labels.
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