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e-FAMILIES OF OPERATORS
IN TRIEBEL-LIZORKIN AND TENT SPACES

GRANT WELLAND AND SHIYING ZHAO

ABSTRACT.  In this paper, we study the boundedness of e-families of operators on
Triebel-Lizorkin with wide range of parameters. We also prove that e-families of op-
erators are bounded from Triebel-Lizorkin spaces into (generalized) tent spaces, and
obtain a characterization of certain Triebel-Lizorkin spaces in terms of tent spaces. In
particular, the boundedness of fractional operators in Triebel-Lizorkin, and a sharp ver-
sion of 7'l theorem for generalized Calderon-Zygmund operators on Triebel-Lizorkin
spaces can be considered as applications of (proofs of) these results.

1. Introduction. In this paper, we study the boundedness of e-families of opera-
tors in Triebel-Lizorkin and (generalized) tent spaces. Christ and Journé introduced e-
families of operators in [CJ], where a T'1 theorem for Carleson measures was proved. A
discrete version of e-families of operators has been studied in [HITW] for certain Triebel-
Lizorkin and Besov spaces under the framework of the Frazier-Jawerth theory of smooth
atoms and molecules. In this paper, we discuss a different approach, which relies on the
method introduced in [CDMS] and the main result of the paper on the relation between
Triebel-Lizorkin spaces and tent spaces.

Tent spaces were systematically treated in [CMS], where boundedness of convolu-
tion operators were discussed. We give a slightly more general definition of tent spaces,
which is similar in nature to the definition of Triebel-Lizorkin spaces. We then obtain the
boundedness of e-families of operators from Triebel-Lizorkin spaces into corresponding
(generalized) tent spaces (Theorem 1.3). In the case of 1 < p < o0, the proof'is based on
an extrapolation theorem for vector-valued singular operators (Theorem A, see [GR]).
For the cases of p < 1 or oo, we make a use of the technique developed by Fefferman
and Stein in their fundamental work on H? spaces [FS], and take an advantage of the
atomic decomposition for tent spaces. As a consequence, we obtain a characterization of
Triebel-Lizorkin spaces in terms of tent spaces.

Finally, we briefly discuss two applications of our results: the boundedness of frac-
tional operators, and a sharp version of T'1 theorem for generalized Calderon-Zygmund
operators (see [T] and [HS]) in Triebel-Lizorkin spaces.

Let € > 0, and denote [e] the largest integer strictly less than e. A family S = {S;},>0
of operators is called an e-family of operators on R” if, for each ¢ > 0, the kernel K;(x, )
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of S, satisfies the following conditions:

tE
1.1 K, )| < C——s
( ) | (‘x y)\ (t+ lx _yl),ﬁ»(

forx, y € R", and

[e] -z Y ¢
1.2 K — P Kix,z)| < C ,
.0 e - Bkl < ) S

for 2|y — z| < t+|x — y|, where

(1.3) P K2 = 3 o=z

DIK(x,2)
W

is the Taylor polynomial of degree [¢] of K,(x,y) with respect to the second variable
in terms of y — z at point z. Here the common multi-index notation is used, i.e., ¥ =
(Y1,72,--.,7Yy) is an n-tuple of nonnegative integer, |Y| = v, + V2 + -+ + 7V, X7 =
X' xin forx = (x1,x2,...,%,) € R, D" = 3]18)2--- &), and D, stands for the
derivative with respect to the second variable. It is easy to observe that by replacing € by
any number less that € but bigger that [¢] we can always assume that € is not an integer.

If Sis a family of operators, we shall denote the adjoint of Sby $* = {S} },>0. Since we
only consider homogeneous function spaces, we shall say that an e-family of operators
S has the reproducing property if S(x”) = 0 for all || < [€] and there is an e-family of
operators R with the same property as S such that

oo . dt
(1.4) /oR’S’TZI

holds in the distribution sense, where I denotes the identity operator. We call that such a
pair (S, R) is a reproducing couple.

A well-known example of reproducing couples is given by the Calderdn reproducing
formula, that is, for any given ¢ > 0, there exists a Schwartz function ¢ € S so that
¢ is radial, spt(¢) C {x € R : |x| < 1}, frpx"¢p(x)dx = 0 for all |7| < [e], and
I |q§(t£)|2411 = 1 for £ # 0, where ¢ is the Fourier transform of ¢. If we define Q°f =
¢ *f, where ¢,(x) = "¢(x/1), then Q? is clearly an e-family of operators, and (0%, 0%)
is a reproducing couple.

A variant of the last example is the following continuous version of the ¢-transform
formula [FJ]. There exist Schwartz functions v, ¢ € § such that both (¢, ¢y € C*® with
compact support and vanishing near the origin, and J5° {p(t{)@(tg)% = 1for& # 0. Thus,
the reproducing property (1.4) is valid with S = 0¥ and R = QY. After the first version
of this paper was submitted, we learned that Han [H1] was able to show the existence of
nonconvolution reproducing couples.

Let w be a weight function on R”, then w is called a doubling weight if there is a
constant C so that |2B|,, < C|B|,, < oo for all balls B in R”, where 2B is the ball with the
same center as B but twice the radius, and |B|,, = [ w(y) dy. We also recall that a weight

https://doi.org/10.4153/CJM-1995-057-9 Published online by Cambridge University Press


file:///2B/u
https://doi.org/10.4153/CJM-1995-057-9

e-FAMILIES OF OPERATORS 1097

function w is said to satisfy the reverse Holder condition of order q (1 < q < 00), and
write w € RH,, if there exists a constant C such that

(1.5) (ll];l/w(x)qu)l/q< (|;‘/w(x)dx) 1 <g< oo,

for all balls B in R", where |B| denotes the Lebesgue measure of the ball B. We notice
that condition (1.5) is trivial for ¢ = 1, and it is a convention that condition (1.5) is void
for g = oo.

For 1 < p < 00, we denote p’ = p/(p — 1). We recall that a weight function w is a
Muckenhoupt’s 4, weight if there is a constant C such that

(1.6) (I'%'Aw(y)dy) (é/Bw(y)’_p/ dy)p_l <C l1<p<oo

or
(1.7) ! /w(y)d < Cessinfpw, p=1
. ‘Bl B y— B W, p— B

for all balls B in R". It is easy to see that w € 4, if and only if w7 € Ay. Also, it is
clear, by Holder’s inequality, that if w € A4, then w € 4, for all ¢ > p. A non-trivial fact
is that any A, weight w has the strong doubling property: for each ball B and measurable
subset E of B,

1Bl 181\°
(1.8) 2], < C( lEl) ’

with a constant C independent of B and E (see [Tor], for instance).

Let ¢ € S be the Schwartz function in Calderon’s reproducing formula, which has ¢
moment conditions (i.e., fp X" $(x)dx = 0 for all |¥| < ¢). We denote O, = Q7. Let w
be a weight function. For o € R with || < £+ 1,and 0 < p, ¢ < o0, the weighted
Triebel-Lizorkin space F5%(w) is defined as the space of tempered distributions modulo
polynomials, / € S’/ P, with respect to the norm (or quasi-norm)

@9 Wl = ([t ), 0<pa<o

and with the sup-norm sup{¢~%|Q,f(x)| : ¢ > 0} instead of L7(%) norm when g = o0, or

1/q
sup(‘Blffr() “lofx )|)th )

where the supremum is taking overall balls B C R” suchthatx € B, and (B) is the radius
of the ball B. We recall that, by definition, ||g|| o) = esssup{g(x)/w(x) : x € R"}. It is
well-known, and also will be implied by our results, that spaces Fg “(w) are well defined
in the sense that they do not depend on (up to equivalent norms) the choices of ¢. More

(l 10) Hf”Faq(w) - > 0< q < 00,

L®(w)
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(1.14) AY®fx)= sup 4,0, q= oo,
Hel(x)
and
e 1 B Jdydin /g
(1.15) C"qf(x)—igg(mffé(t o) -t—) , 1<g<oo,

where the supremum is taking over all of balls B C R” which contain x, and B is the tent
over the ball B, that is, B = {(x,7) € R""' : B(x,) C B}.

The (generalized) tent space 7, *¥(w) is the space of all measurable functions (including
Borel measures, if ¢ = 1) f on R{™' so that |[f||zase) = 4% ||y < c0if 1 <
P> q < o050t |[fllzeaey = [[C*|1xw) < 00, if p = coand 1 < g < oo. When
q = oo, the (generalized) tent space 7,"*°(w) (with 1 < p < 00) is defined as the
space of all continuous functions f on R%*! so that Il gy = 14*flrw) < 00, and
/e —fl|7§~°°(w) — 0ase — 0, where f;(x, 1) = f(x, t+¢). For 1 < p,q < 00, it is clear that
the dual space of 7, (w) is Tp',“"" (w'*"). The duality of spaces 77*%(w) and 754 (w) can
be shown exactly in the same way as in [CMS] (see also [D]), more precisely, we have

116 [ Ve oge ol B < ¢ [ aapwe g,

forall f € T*I(w) and g € To (w).
We now state the main result of this paper.

THEOREM 1.3.  Suppose Hypothesis 1.1. Then there is a constant C so that
(1.17) 1Nl 729y < Cllf 1l oo

for all f € Fy(w). Conversely,

(1.18) [ stac.0%]

Jor all g € Ty (w).

< (] (s
P ”g“I;“’(w)

We remark that inequality (1.18) is an extension of a result in [CMS], where convo-
lution operators were studied for tent spaces 7o

As an immediate consequence of the last theorem, we have the following character-
ization of Triebel-Lizorkin spaces by means of tent spaces, which is an analogue of the
relation between the Luzin area function and Littlewood-Paley g-function.

COROLLARY 1.4. Let1 < p, g < 0o (p and q are not both o0) and o € R. Suppose
thatw € A, if 1 <p < o0, and w € A N RHy if p = 1 or p = 00. Then a tempered
distribution f € S' | P belongs to Fy(w) if and only if Sf € Ty%(w) for some e-family of
operators S with € > |a|, provided S has the reproducing property.

The paper is organized as follows. In Section 2, we list a few lemmas which is needed
throughout of the paper, the proofs will be omitted for some well-known statements.
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Theorem 1.3 is proved for the case of 1 < p < 00 in Section 3. While in Section 4 we
generalize some results of Littlewood-Paley-Stein theory for Triebel-Lizorkin spaces,
and in Section 5, we use the results in Section 4 to complete the proof for both Theo-
rems 1.2 and 1.3 in the cases of p < 1 or p = o0. Finally, in Section 6, we point out
two applications of our results. In what follows, the letter C will denote constants, which
may be different from line to line, as long as the dependency of the constants are clear
in the context.

2. Some lemmas. We need to consider the operators

@1 (SO ) = [ Koy ) dy,

for ¢, s > 0, and their adjoints (S,Qs)*. Let K/4(x,y) and K7(x, y) be the kernels of S,Qs
and (S;0s)*, respectively, then

2.2) Kiswy) = [ Kx,2)p00 — )z,
and
(2.3) Kiiey) = [ K0, 2)uc — ).

The first two lemmas are well-known (see [CDMS], [HH] and [HS]).

LEMMA 2.1.  The kernel K, 4(x,y) satisfies the following estimates

5\¢ pe-ldl
< - <
2.4) Kol < C(2) e fr0<s <t
and
£\ SZ(—[(]
<c(= <
@.5) [Kuse)l < €(2) R oyE r0<iss

The same estimates are also valid for the kernel Kj (x,y).

LEMMA 2.2.  For fixed s, t > 0,

@6 [ (KK 00wl dy < () M, if0<s<t,

2.7 [ (1Kiste )|+ K00 [0 dy < C( )er(x» ifo<t<s,

t

s
where M is the Hardy-Littlewood maximal operator. The same estimates are also valid
Jor the kernel K} (x, y).

The next lemma is actually equivalent to the statement of Theorem 1.2 for the case of
1 <p, g < o0, the proof is very similar to the proof given in [HH], and hence omitted.
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precisely, if ¢ and ¢, are two Schwartz functions which satisfy Calderdn’s reproducing
formula, but with £, and £, moment conditions respectively, then spaces Fyy(w) defined
by using ¢; and ¢, are equivalent for || < min{¢;, £}. Of course, one can also use the
-transform formula to define the Triebel-Lizorkin spaces by setting Q; = OF, which
has all of moment conditions.

The Besov spaces B,‘f"’(w) are defined in a similar way (see [Tr]). In particular,
Fo®(w) = B&®(w), by definition.

Before stating our results we first list our general hypothesis for the results concerning
Triebel-Lizorkin spaces Fﬁ"’(w) and tent spaces T,"(w).

HYPOTHESIS 1.1.  Let € > 0 be given, and suppose that the definition function ¢ of
Triebel-Lizorkin spaces F}f’q(w) has at least [¢] moment conditions. We assume that

(D) |of <e;

(2) max{-2- —2_} < p < 0o, 1 <gq <00 andp and q are not both co;

() weAifl <p<oo andw € NN RHyy ifp < 1orp=o0;
(4) S is an e-family of operators on R" with S(x") = 0 for all |Y| < [e].

The following theorem is a motivation for this paper:

THEOREM 1.2.  Suppose Hypothesis 1.1, then there are constants C so that

(1.11) |15 5) ], ., < Wi

Sor all f € Fy9(w) with p # 0o, and

1 HB), gdt 9
a2 (g [ (s Fae) < Wl
forall f € F&(w).

For1 < p, g < oo (and || < 1), an (unweighted) discrete version of Theorems 1.2
have been proved previously in [HITW], and hence the proof for this case is omitted,
see also [HH]. For the case of p < 1, the theorem seems to be new, and the proof will
be given in Section 5. We also remark that it follows from the duality argument that the
converse inequalities of (1.11) and (1.12) hold if, in addition, 1 < p, ¢ < oo and § has
the reproducing property.

We now recall some notation for tent spaces. Let R*! = R" x (0, 00) be the usual
upper-half space of R™!. The standard cone I'(x) at x € R" is defined by

T ={0n eRI : x—y| <1}
Let a € R, and let w be a weight function, for a given function f on R*'!, we define

(1.13) a9y = (f[, (Vo )l)"‘iffft) , 1<g<oo,
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LEMMA 2.3.  Let K,4(x,y) be a kernel function which satisfies estimates (2.4) and
(2.5). Then, for |a| <€, 1 <p <00, 1 <q <00, andw € 3, there exists a constant C

such that
dyds
2.8) \V%QJKmuo%d%@ = se < Cleligres,
for all measurable function g(x,t) on R™!, where
dt
2.9 ”g”Lg"'(u) - "( o ~lsC )I) ) ’zp(u)'

The last lemma of the section is an important kernel estimates, which will be used in
the proof of Theorem 1.3.

LEMMA 2.4. Let K,s(x,y) be the kernel defined by (2.2), then there is a number &
with 0 < § < min{1,e — |a|} so that, if 4y — Y| < |x — y| and |x — z| < t for some
x € R” then

, s\ €0 tZ(—[c]——ﬁly _y/|5
_ < 2
(2 10) IKI,S(Z,y) KIJ(Z’y )l — C( ) ([+ lZ __yl),,.,.z(w[(]’

p Jor 12s <t+|z—y)|,

2e—[e]

=5 =6y, /|0
Q1) K~ K] < c(£) " 202

s/ (s+|z—y|yr2eled’ Jor 125 2 t+ ]z —yl.

PROOF. If12s < t+|z—y|and |[y—)/| < 2s, then the support of ps(y — ) — ¢s()/ — )
is contained in the ball {w : |w — y| < 4s}, and so

1 1
= wl <45 < 50+ — ) < 3+l — wl+ b =)

Therefore, 2y — w| <+ |z —w|, and 1 + |z — y| < (¢ + |z — w|). It then follows from
the fact that [x"¢(x)dx = 0 for all || < [€], and the estimate (1.2) that

[Kis(29) = Kisle )| = | [, (Kilzsw) = PLLK@.9) (940 = w) = 6507 — w)) dv]
< [, Kz, w) = PEL Ky 16400 — w) — 650/ — w)| dw

e | Iw—yF
|<4 dw
w—y|<ds

— Sn+l (t + |Z _ wl)n+26—[e]
f[ﬂy—yl

< €

< e e
¢ Ely —y|

sl-—e(t + |Z _yl)n+26—[5]

—§ 42e—[e]-6),, _ /10
SCGy ! by {!.
) (@Hfe—ylyE
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If 125 < t+|z—y| and |y — /| > 2s, then the supports of ¢,(y — -) and ¢,(y/ — -) are
disjoint. We also note that, by assumptions 4|y — )| < |x —y| and |x — z| < ¢, thus, if
|[w— /| <s we have

1 1
w—y <|w—y|+ly—)I<s+ly =)< FUH =) < 3@z —wl+w—yD.

Hence, 2|y — w| < t+]z—w|and 1+ |z — y| < 3(t+|z — w]) if either [w — y| < sor
|w —y'| < s. Therefore, since [ |$(x)| dx is finite,

IKt,A‘(Zay) - Kt,s(Z,yl)l S /ly—W|<S th(Z, W) — PLG,]_ t(Zay)| I¢S(y - W)l dW
* / —w|<s th(Z’ W) - PﬁlyKl(Z’y)l Id’s(yl — W)l dw

€ e—[e] 5 e—lel=b1y, _ 10
<o) mrppn <) e
(t+ [z — ylyr2td )+ ]z =yl

If 1+ |z — y| < 12s, then [y — )/| < 3s, since, by assumptions,
A=y <=yl <Pk —z+lz—yl <t+]z—y <125
Applying the hypothesis that S(x”) = 0 for all |7| < [¢], we have

K:,s(Z,y) - Kt,s(zay/)
= [ Kz, w)(9s(r = w) = P9, 6,y — 2) + P 6,(0" — 2) — 5" — w)) dw

= ...+/ ...:I+II.
|z—w|<4s 4s<|z—w|

Since

(50— w) = Pl — 2)) — (95~ w) — P, 60" —2)|

Nl =Wy — ¥ -
< len{ sntlel+2 ’ s+l }’

by using the estimate (1.1),

=yl — |t
=c Tyt / l +e
K |z—w|<ds (t+lz——w|)'l
6Iy y l j |Z _ |[e]+l o
Sn+[e]+2 |z—w|<4s (t + |Z _ wl)n+e—6
e—b6 2¢—[e]-01y, _ /|0
< C( ¢ ) s =
- s smr2e—[e]

C(£)6_6 s25—[5]—6ly _y1|5 ,
) GrE e

IN
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and

)
1 < Ctéb;nﬂy | Ls<|z—wl Wi—wl)"_ﬂ aw
Eycant ot dly S W—
s 4s<|z—w| (¢ + |z — w|yrred
< ()t LT

s/ Gy

dw

where we have used |y —)’| < 3sand s +|z — y| < 7s in both of the last inequalities of
two chains of inequalities above. This completes the proof. n

3. Proof of Theorem 1.3 (Case 1 < p < 00). We first note that, for 1 < p, ¢ < 00,
(1.7) and (1.8) are equivalent by the duality argument. For instance, suppose (1.17), we
take any f € F;"’q ('), then

R sevo2yors| = | [, scossn 2

< C [ AM@R)A (S)x) dx
< Cliglizza) 1571 ll,;a,.,f(wlf,,,)

< Cligllrga - orys
4

by (1.17), which shows (1.18).
We now prove (1.17) for the case of 1 < p < 0o0. We first observe thatif ¢ = 1 and
1 < p < 00, then for any & € IF (w'7") such that Al L p-ry < 1, we have

dydt
t

Jo At e = [ (15000 (5 [, ha)ds)
<c [ ([ (eeIss00) L) ay

00 dmn/q)4
< - q— J g
<q(f@1srT) by

Thus, (1.17) follows from weighted norm inequality for the maximal function in this
case.

Next, we consider the case of ¢ = oo and 1 < p < 0o. Let € > 0, we shall prove that
there exists a constant C independent of ¢ so that

3.1 A A sup t‘“ISf(y)l)g(x)dxSClli‘;gs_aleﬂ||mu)’

e<|x—y|<t

for all g(x) > 0 with ||g|| /1-», < 1. Then the theorem will follow from this by the
monotone convergence theorem for the present case.
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We note that if [x —y| < randz € R” then ¢+ |x —z| < 2(¢+|y — z|). Hence, by using
Lemma 2.1, we have

sup KO (§>_Q|Kr,s()’, Z)|£is§

We<|x—y|<t
e+a g, e—a g t2f
<c s ([0 Y

,0):e<|x—y|<t
€
< Csup —————.
=P Ut 2y
Therefore,
e ( sup /°°(i)*“|1<,,s(y,z)|§)g(x)dx
Oure<h—yl<e?0 \S s

€

t2
<cC Rn(»g W)g(x)dx

‘X — Z|26 0 1
[ o O S L s
< CMtgee)

where the constant C is independent of . By using the last inequality, the left-hand side
of (3.1) is less than

/ ( sup /,;W, K s(v,2)Qf (2 )]—)g( Ydx

0, ):e<|x—y|<t
<€ /Rn(iggs_“!QJ(Z)l)Mg(z) dz

< Cuiggs—“lgsf(znM,ﬂ(w)nMgnur(w.fpf),

and so the (3.1) follows from the weighted inequality for the maximal function.

To prove Theorem 1.3 for 1 < p, ¢ < oo, we use the reproducing property of O, and
rewrite the inequality (1.17) as

1/p
(/m(//m) ) “sesones |qd2d’)p/q (x)dx)

s s

<c( ([ losenE) was)

In order to show this, we consider the Banach spaces E of measurable functions on
(0, 00) and F of measurable functions on R**! with norms

(3.2) e = ([ rord)™,

1/p
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and

6.3) W= (7, Vs ol aw®) ",

respectively.
Let K be the L(E, F)-valued kernel given by

t

(.4 K e = [[7(2) Kusle = 0,000,

where x, y € R" are parameters, and K, is defined by (2.2). We then approach the
problem by showing that the F-valued integral operator 7, defined by

(3.5) 1) = [ KGe.y)O)dy,
is a bounded mapping form L7(w) into Lf(w) for 1 < p < oo, ifw € 4,, that is,

(.6 (f Imeleeds) ™ < c( [, eoleeod) "

We note, by changing variable z = x — tw, that

1 = ([ s (£) ot~ mmv, )dydsqdu;dt)/

1/
= (L) "seswtren™,

where S,0yfi(z) = Jre Kis(z, ) (v, 5) dy.

By using the extrapolation theorem on 4,-weights, one can show the following the-
orem for vector-valued operators (see Theorem 3.16 on p. 496 of [GR] for a statement
for convolution kernels).

THEOREM A. Let E and F be Banach spaces. Suppose that T is defined by (3.5) with
a L(F, F)-valued kernel K(x,y) satisfying the following estimates:

)
y—y
G.7) Ky — Ko e < C% fordly ] < [x—9),

for some 0 <6 < 1. Assume that T is a bounded linear operator from Li(w) into LI(w),
for some fixed g, 1 < q < 00, and for all weights w € A, then T is bounded from Li(w)
into Li(w) for all w € A, for 1 <p < 0.

Now, we note thatif p = g and w € A4, it follows immediately from Fubini’s theorem
and the definition of 4; weights that

Ml = fo [ (1800 (5 [, o0d) S ay
<cf, [ (18 Lum @,
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This shows that the vector-valued operator T is bounded for p = ¢ and for all weights
w € 4,. Thus, by using the last theorem, we need only to verify the kernel estimate (3.7).
We notice that, by Holder’s inequality, we have

||K(x,y) - K(x’y/)”L(E,F)
= sup [|K(x,y) — K(x,y')f|r

Irle<t
/OQ(E) (Kis(z,y) — Kis(z, 3/ (s )ds qdzdt)l/q

Ilfll <1(/ /F ) ~
q/q 1/q
(I () ey 28]

To prove (3.7), we use Lemma 2.4. Let x, x’, y € R” be such that 2|y — y'| < |x — y|, we
then have

-

t aq’ _ , q’é

_/000 (S) IKI,X(Z,y) KI,S(Z,y )i 3
<c| 5"*'2‘”’( (S)f*H gy —yp )"' ds
- t (+z—yly2ta)

cl” tyemad s2l-0), /0 9 g
/,’—2(1+|z~y|)((§) (s+|z_y|)n+2e—[(]) r

So, we obtain

K .5) = Ky < € [

By -y \dzadr
I'x)

@+ —ly*) v

x— -6
N C(/l ! ./—yl)/[x z|<t((t+ lz[y—yr)n'ﬂ) dz%

1 fx= dt 1 dt
Yo (e—6)g =~ “
< Cly y| (lx —yl(n+6)q /(; t t + _/:iV' fn+d)q ¢ )

I RN
SC(Iy y!)

‘X _ y|n+6
as it required, where we have used the fact that ¢+ |z — y| > |x — y| if |x — 2| <.
4. A characterization of Triebel-Lizorkin spaces by tent spaces. This section

contains the generalization of some results of Littlewood-Paley-Stein theory for Triebel-

Lizorkin spaces. The idea, of course, goes back to the fundamental work of Fefferman
and Stein [FS] on AP spaces.
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We first note that, if ¢ is the Schwartz function in Calderdn’s reproducing formula,
then there is a constant ¢ > 0 such that sup,., |(¢€)| > ¢ for all £ # 0. In fact, since
J&° |d()]? dt/t = 1, there is a number L > 1 so that flL/L |$(0)|*dt/t > 1/2, and hence

1
24/log L

since ¢ is radial and dt/t is the Haar measure for the multiplicative group of positive
real numbers. It then follows from Theorem 5(a) of Chapter V in [ST] that we have the
following estimate for extensions of distributions on R” to the upper half-space R"*!.

>0,

. d
suplde) > swp 18600 > (g0 [, 1P ) 2
>0

1 2logL N1/t

LEMMA B.  Let ¢ be the Schwartz function in Calderén s reproducing formula, and
Of = ¢ *f. Suppose that ) € S is such that | = 7¢ near origin for some 7 € C°(R").
Then for all 0 < g < oo and every integer N > 0, there is a constant C depending only
on ¢, v, g and N such that for all f € S and (x,t) € R™"!, we have

Cro oSN s\Ne L, ds
ethwe <c [ [ T |/S)M,(;) sTdy=
@D Qs
Che o=l Y

The next proposition is a continuous version of Peetre’s characterization of Triebel-
Lizorkin spaces (see [P]). In the rest of section we shall fixed ¢ to be the positive integer
in the definition of Fy¥(w).

PROPOSITION 4.1.  Letx € Rwith |a] < £+1,0 < p, g < 00,and 0 < r <
min{p, q}. Suppose that w € A,,,, then

4.2) ”M:(Qf)”L:"’(w) < C”f”ﬁgﬂ(w),

for all f € Fyd(w), where M:(Q/f) is defined by

[%8462]
. M; —_—
(4.3) H(QNX) = S T+ e —yl oy

and the norm || - || za(,, is defined by (2.9).

PROOF. Letf € §'. We have Peetre’s mean value theorem: there exists a constant C
independent of f and x € R” so that

M} Q) < C(67"M(©@fY )@V +6M; (1V(Q) @),

forallx € R",0 <t < ooand 0 < § < 1, where M is the Hardy-Littlewood maximal
operator.

We claim that the Lj*¥(w)-norm of M; (tV(Qf)(x)) is bounded by CIM N 290
for some constant C independent of £
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Taking this claim momentarily for granted, we then have

(" mtemy )"

By a standard approximation argument, we could assume that ||M;(Qf)|| oe is
finite. Then, by taking 6 sufficiently small, inequality (4.2) follows from the weighted
Fefferman-Stein vector-valued inequality for the maximal function, provided w € 4, ,..

M@ zec) < c( 5l

+ SV

Lr(w)

We now prove the claim made above. Since locally we can write 8¢78xj = 7¢ for
some 7 € C(R"), by Lemma B with N > || +n/r, we have |{V(Qy)(x)|? < I,(x)+11,(x),
where /,(x) and II,(x) are the first and second summand of the right hand side of (4.1),

respectively. Thus, Mf(tV(Q,/))(x)" <M /q(l,)(x) + M* /q(II,)(x) Since N > n/r,

" n+l
(4.4) / AP ey dy < C, forall (x,f) € R™!.

It then follows immediately that M* e (I)(x) < CM(Q/)(x)? with the constant C inde-
pendent of f and (x, £) € R"*!. Thus, to prove the claim we only need show that

@.3) [t aw s < ¢ [P (emrenm)s.

for some constant C independent of / and x.
To this end, we first note that, if x, y,z € R" ands > 0, then 1 + |x — z|/s <
1+[x—y|/s+|y—z|/s < (1 +|x—y|/s)(1+ |y —z|/s), and hence, for t > s,

1+|x —z|/s < THl=ylfs _ sy
(I+x=y/D0+|y—z|/s) = 1+[x—)|/t S( ) '

Therefore,

M (1))

—aq
= Csup )
yerr (1+ |x — y| /eyal”

10/ (@)] 7 W-labg _, d
<C/fgnp"l/R"((l+|x—yr/1)"/’(li-|y—z|/s)N) dz}(é) E ?s
o

= C'/O (S_QM:(QJ)(X))‘] Sup{/" (1+ |y - Zl/S)(an/r)q dZ} (;)(N*Ia""/r)qé

N
= C/ AaM*(st)( )) ( )(N ol /)

s’

the last inequality follows from (4.4). Therefore,

[ e aw < e [Paene)( (2 S

A
< [7 (s M)’ s
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This concludes (4.5), and hence the claim. n

PROPOSITION 4.2.  Let v € Rwith |a] < £+1,0 < p < 00, 0 < g < 00, and
0 <r < min{p,q}. Suppose that w € 4,,, then

4.6) “Qf”?;’"’(w) ~ IVHF;,""(M)’
forall f € Fp¥(w).

PROOF. We first assume that 0 < g < oo. Then, for eachx € R", we have |x—y| < ¢
for y € I'(x), and hence

o QW) dyat
AN < q//l.‘(x)((l T lx—y[/t)”/’) tn+1

d
<2 [*(cMnm)'S

Lemma B, we have the estimate

a q 1/q
R e

which is the Littlewood-Paley g}-function. A standard argument in Littlewood-Paley
theory shows that the 17(w) norm of the g}-function is bounded by the L’(w) norm of

A*9(Qf) (see, e.g., p. 315 of [Tor]), and hence |[f||f-;;.q(w) < C||Qf||7;x,q(w).
Now, if ¢ = 0o, we certainly have

Therefore, ||Of|7eewy < CIf]| feay by Proposition 4.1. Conversely, by virtue of

sup Q)] < A%®(ON)(x),

for all x € R", and hence ||f| o) < |Of |l 724(.)- To show the converse inequality, we
follow the idea in [FS]. For each number € > 0 and integer &, we define

(;>"/’ Q)|
t+te)  (I+elx—yly/r

We shall write M7 (Qf) = M;’f’eo(Qf). We notice that My .(Qf) — A**°(Qf) ase — 0.
We also note that, by Lemma 13 in Chapter IV of [ST], we have

@.7) MIMON(x) = sup

27k |x—y|<t<e!

[{x € R": M7HON0) > Ao < 277 {x € R" : ME(ON() > A}

for all A > 0, with a constant C independent of ¢ and &, since |2¢B|,, < C2"*/"|B|,, by
the strong doubling property (1.8) of w € 4, ,. Therefore, we obtain

(4.8) [ MEA QDY w)ds < C277 [ ME(QN@P () d.
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We also let
o AN e TAY) )
@.9) e Onw = sup ()" LIIV@AOL
[x—yl<t<e! tte (1 + Elx _y‘)n
We claim that
(4.10) Iy (NN ) < CIME QN 7w
for a constant C independent of f and e. To see this, we first note that, for0 < s <¢ < et
we have
+ely— +elx — - -
l Ely lel €|x y|+5‘x Z|S1+E|x Z|<1+‘ ‘<1+| Zl'
1+elx —y 1 +elx —y| t s

Therefore, by using Lemma B again, we have

A\ V@A
() o)

t n/r —a st( ) MNP —n d
- C/O /"((F’%) (1:-€||x—zz|)l"/’(§) ) (1+|x —Szl/s)(N—"/r)p dz?s

t U of@l "
C/R((TIZ) (1t+5|x_§|)n/r) (1+|x—tz|/t)(N‘"/’)p é

S (N=n/r—lal)p s ds
S Clg) (Qf)(x)p / ( ) -/D/‘(S) (1 + |x _ Z‘/s)(N_”/’)P dZ?
t—n
+CS Mk d
,;) re (Qf)(x)P D) (1 + |X — Zl/t)(N'"/r)p z

< €3 2 Wnlrnlppk Mk Of) (e,
k=0

with a constant C independent of x and e, where Do(f) = {y € R" : |x —y| < ¢} and
Di(t) = {y € R": 2"t < |x — y| < 2k¢} if k > 1. Thus, by taking the supremum over
|x—y| < t < &' on the lefi-hand side of last inequality and then taking the integral over
R” with respect to the measure w(x) dx, we have

/R - mE(QN(xY wix)dx < ci 2~ (N=n/r=n/p)pk . MEHON Y wix) dx
k=0
< c(ké 2-0v-anlrnlont) [ e (NP ds,

where we have used (4.8). Thus, (4.10) follows from this, if we choose N > 2np/r + n.
We now consider the maximal function

@11 M) = swp( 7 1 (sgopf"lgtf(y)l)’dy)l/r,
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and the set G, = {x € R" : em? (Qf)(x) < MZ.(Qf)(x)}, for some constant 0 < ¢ < 1
to be chosen. The same proof of Theorem 11 in [FS] (p. 186) yields that M7 (Qf)(x) <
CMX(Of)(x) for all x € G, .. Also, (4.10) implies that

s, MRAQNGY ) de <& [ me (NPl d
<3 o MNP ds,
if we choose that ¢ sufficiently small. Thus,
oo MEQNP ) dx <2 [ ME(QN@P wlx) di
< C [, ME@N@P wix) dx

<cC /R(fgop 10/ )|) wx) dx,

with a constant C independent of ¢, the last inequality follows from the weighted in-
equality for the maximal function. By taking the limit e — 0, we get ||Qf ||7;z.oo(w) <
CIIf1l poo(,,)- This concludes the proof of the proposition. ]

Let0 <p <landl < g < oo. We recall that a 7,"/(w)-atom is a function a(x, 7),
supported in B for some ball B C R”, and satisfying

1 . gdxdn\'? _ 1
_ a =% <
(4.12) (lBl //B(t lae, )" = ) < G 1<g< oo,
or
- 1
(4.13) sup 1 *la(x,1)| < 7 4=
(rer?! |B|.?

We also define a function, b(x), to be an F;,""(w)-atom if b is supported in some ball
B C R", satisfies the moment conditions [x"b(x)dx = 0 for all |Y| < ¢, and the size
condition

1

(4.14) Hb“i;""(w) < 1
|B|W/P

PROPOSITION4.3.  Leta € Rwith|a] < £+1,0<p<1,1<g<o00,and0<r<
p- Suppose that w € A, ,, then every element f € Fp(w) can be written as f = 3 Aibj
in the distribution sense, where b; are Fy¥(w)-atoms, ); € C, and ¥° X < CI[fH’F.’g,, o
PROOF. The same proof as in [CMS] gives the atomic decomposition of 7,*!(w)
(provided w is doubling), that is, every element g € 7,"/(w) can be written as g = - \;a;,
where a; are T,*(w)-atoms, and =X < C|| g||‘;,,,q(w). For instance, for the space 79(w),
P
by using the same notation as in the proof of Theorem 1 of [CMS], and defining p =
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Iy [P dydt]t, af = fxulB|'/*u="?|B|", and N = |B|"'/2'/?|B],,, one can verify
that each statement of the proof there is valid if L' is replaced by L' (w).
Now, if a is T,"¥(w)-atom, we define

@.15) b = G [ 0t

for some suitable constant Cy to be chosen, which is independent of a. We claim that
ais an ﬁ;”q(w)—atom. Indeed, if a is supported in B then b is supported in 2B, since ¢
is supported in the unit ball. The moment conditions readily follow from the moment
conditions of ¢. Finally, by using the same proof as in Section 1, we have
1 o q
Colbllzsa < C(W S (a0

) 1/q
with the constant C independent of a. We then choose Cy = C.
Now, if f € Fy*%(w), it follows from Proposition 4.2 that Qf € T5*%(w), and then
Of = ¥ N\ja;, with a; being T,,*(w)-atoms. Thus, the reproducing property of Q implies
that

dx dt
t

00 d
f6) = [ 0U0NWT = Co X by)

in the distribution sense. Furthermore,

1/p
Wiz < CNQfNrpay < C(20)
This proves the proposition. n

We remark that |[f1]; oy ” since the sets B and B x
(O, r(B)) are comparable. Therefore, by Proposition 4.2 and (1.16), we are able to see

that the dual space of F*9(w) is 29 (). Moreover, one can easily prove, by using
inequality (1.16) and the Hahn-Banach theorem (see Section 5 of [FJ]), that

is equivalent to [|Of]| -as o

(4 16) “f”F‘l“’(u) = Sup{_/R"f(x)g(x) dx : g € F;oa’ql(w) with ”g”p';“»‘i/(w) S 1}

5. Proof of Theorem 1.2 and Theorem 1.3 (Case of p < 1 or p = 00). We are
now ready to finish the proof of Theorems 1.2 and 1.3. We note that the endpoint cases
for Theorem 1.2, i.e., p = g = 1 and p = ¢ = 00, are basically known, since F;f‘*” w) =
Bg”’ (w). Also, when p = g = 1, Theorem 1.3 was proved in Section 3. We now study
the casesof p < lorp=o0oand1 < g # p.

Let S be an e-family of operators with S(x”) = 0 for all |Y| < [¢]. By Lemma 4.2, to
prove (1.11) and (1.12) we need to show that

5.1) [([a1snr )| < clofigee,

LPw)
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forf € Fy(w), 1< g <o00,|a] <eandw € 4 N R}(q/p),, and that

1 [ p® ar "
— —a q__
sup(lBI/B_o ) tdx)

Box

(5.2) < Cl|Of Il reaeys

L®(w)

for f € F&(w), 1 < g < o0, |a| < ¢, and any weight function w. Likewise, to prove
(1.17), we need to show that

(-3) 19711729y < CllQ N 7290,

forf € F:,""’(w), 1<g<oo,|a<eandw e 4 N R?-(q/p)r.
PROOF OF (5.1). Letf € Fp“(w), then, by Proposition 4.2, Of € Ty*(w). It fol-

lows there is a T,"¥(w)-atomic decomposition Q;f (x) = ¥ \;a;(x, #), By the reproducing
property, it suffices to show that there is a constant C so that

plq
[ st s)d—s )@) W) dx <C, 1<q<oo

o0 KL S0t

for all T,"%(w)-atoms a (with a necessary change if ¢ = 00).

To see this, suppose a(x, ) is such an atom, associated with the ball B in R” such that
spt(a) C B.If 1 < q < oo, by applying Proposition 2.3 to function a(x, f) with p = ¢
and w = 1, we have

(/"/000< / |S:Qsalx, s)ld_s>thd) leC(/R”/Om(t—ala(x’ t)i)q%dx)p/q
= C(// a(x, t)l)q@)p/q

IBIP/‘I
B

where we have used spt(a) C B and (4.12). By Holder’s inequality with the exponent
¢q/p and the inequality above, we get

/ S:Qsa(x, s)é )q?)p/qw(x) dx

/23(/000(ra.0
= (/28 /om( Osa(x,s)— )th ) </23 w(x)4/pY dx)'/(q/p)’

/
< i Uh n/‘” (= [ 1s0amn ) Gar)

|| )"/"|zB|u
< c( <c
128]) Bl

where we have used the assumption that w € R?-(q /py and the fact that 4, weights are
doubling.
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For g = 0o, we use (4.13) and obtain

s

/“’ S,0a(x, s)—-—’ w(x) dx

>0
< (Stl>1(1;)t / )w(x)dx
00 —a p
< i bulon (i) /Rn §) o
<C|23|“’ <c

|Blo

since, by using Lemma 2.1 with f = 1 there, we have the estimate

/o ( ) / |Ki s (x, y)ldy— < C(/O (t)ﬁa‘is +/t°°(§)'ﬁadss) <C.

To estimate the integral over R" \ 2B, we first notice that, by Lemma 2.1, we have

£\~ dr\?/? 50
6.9 ([7G) D) < i 1<a<w

and

t —Q
(5.6) sup(= ) IKise )] < € = o0,
>0 \S

S
(s +|x —yly*?

for any § with 0 < § < min{e, € + a}. In fact, (5.5) is easy to see by breaking the integral
into two pieces at s and using the estimates (2.4) and (2.5). A similar approach yields
(5.6). Moreover,

/

I ¢ dvd p/q
./R"\ZB(//B((5+|x_y|)n+5) yss) w(x)dx

00 S‘S q’d d rlq
< ,(ZIJI/ZMB\M([/B((H |x—y|)"+6) ys s) w(x) dx

= |BlP/d B, ds\p/d
z:: /2‘k413 W (/0 597 ?> w(x) dx

| A

x (|B 1/q r(B)b'
< 3 (BRI g
=1\ (2t1(B))
IBluJ 2(k+l)n IBlw

<C <C

|BJp/4 k;l 2Ky — T |Blp/e’

where we have used the strong doubling property of A4; weights, i.e.

|2k+lB|w S CZ(k+l)"|B|w,
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and (n + 6)p > n which follows from the assumption that

n n
p>max{ }
n+e n+eta

and the choice of ¢ so that it is less than but close enough to min{e, ¢ + a}.

If 1 < g < 0o, we use Minkowski’s inequality, the last two estimates, and the fact of
spt(a) C B, and then we have

/W\ZB(/ ( f)OStha(x §)— )—)p/qw(x)dx
< R”\H,(/[w.(ﬁ (ﬁ)_“"wx,y)l"%) a9 2 ds) (@) ds

$ 7 dyds\""
< C/Rﬂ\zB(f/B((s+ |x_yl)n+b) ys s) w(x) dx
% (// s‘“|a(y,s)|)"M)p/q
=c lBlp/q (o) E2) " <c

A similar estimate holds for ¢ = oo, if we pull out the sup-norm of s~%|a(y, s)| instead
of using Minkowski’s inequality. Thus, the proof of (5.4) is completed. n

PROOF OF (5.2). Letxy € R" be given, and B be a ball in R” which contains xy. We
first apply Proposition 2.3 to the function g(y,s) = O/ (¥)xz3(, s), and we have

(/Bforw)( [ ISzng(xs)ld—s)@d) <[, [ (rlgte )L ar)

d d 1/
= ([ (reefwl) ==)
< C|B|'/91Cf(xo).

We then write R™*! \ 4B = (2, 21 B \ 2%B. We claim that, for a fixed § with 0 <
6 < € — || and each k, we have

I / ?
(5.7 (//2;“\3\2/@(!) |K,s (e, y)|? dyds) < {2k+ICBZ|l/q (zkrt(B)) ’

Indeed, it is obvious by inspection that s + |x — y| > C~'2%¢(B), for all x € B and
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O,8) & 2/’;1\9, and therefore, by Lemma 2.1, we get

penl!) it 2

S

s<t t<s

l2k+lB‘ t o, s\ (€r)d ds 00 (1 (e~a)q' ds
SCW(/O £ (}) ?+./1 Sq(§> ?)
c(—————ﬁ )
=\ (24(B)) |21 B]

q
2k+lB|.

By using this after applying Hélder inequality, we obtain

/
(o 1 (7 iy i 000 ) 4 )

I/q
= (/B /or(B)([/z,;;B\ﬁ<t) |Kis(x, y)|q’ d)’ds)q/q dtd )
(//zmg _alQJ(y)])qdyds> /q

1/q
< zékf(jB)‘s (/0’(3) tﬁq—t—>l/q(|2llcﬁlg| //sz 7G|st0’)|>qdyd9)

o\ /4
< g iy o100 22)

Finally, by Minkowski’s inequality, we get

(|B| (0 gy Kiston 1050 22Y % e )1/"

S /
§(|B| LB (0 [ st 10501 22)' < ax )' ‘

o0 /
< CZ Zik(|2k+lB| //k+13 *alQ‘f(y)qude)

=2

| A

< c(i ) C 9o,

k=2

As a result, we have shown that, for each xo € R”, there is a constant C, independent
of xp, so that

1 "B), d 1/q
(G o 1N Sas) < comaoneo,

for all ball B containing x,. This yields (5.2). .
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PROOF OF (5.3). The proof is very similar to the proof of (5.1). We only need to
show that

(5.8) L[ soa “)_”m <€ 1<g<oo
for all 7,(w)-atoms a.

Suppose a(x, 1) is a given T,"¥(w)-atom, associated with the ball B in R" such that
spt(a) C B.If 1 < g < oo, the same proof as in Section 3 by using Theorem A, we have

[ 00 s)—nTaq(w) (/ [ (e lae, 1) dx)p/q
< c(/ (¢ atx, t)l)q@)p/q

|B‘p/q

<C ,
|Bl..

since spt(a) C B. As before, Holder’s inequality and the inequality above imply that

/zg(ﬁ(x)(“’l / S.Qsa(y, )dsi)qifjt)p/ w(x)dx
< H /Om S(A)Qsa(',S)? 1“*"@)( /2 , w(x) /P dx

wyy“nmu
< C(— <C.
12B8]) Bl

A similar approach, as in the proof of (5.1), yields the same estimate for ¢ = oo.
Finally, by using Lemma 2.1 and the definition of I'(x), we have the kernel estimates:

t\-aa dydr\"!* $
(5.9) (/m)(;) |K,,s(y,z)|",,,7) <C———— 1<g<o,

G2y

) 1/@/py

and

s

G 1T

t —a
(5.10) sup (=) Ikl < €
WDEr(x) NS

for any 0 < § < min{e,e + r}. Again, a similar argument as before involving
Minkowski’s inequality gives us (5.8). m

Finally, the proof of (1.18) is similar as the one for (5.1). By using the atomic decom-
position of g € T;"Y(w), we only need to show that

s L[

for all 7,(w)-atoms a (with a necessary change if ¢ = c0). Since the kernel of Q,S}
satisfies the same estimates (2.4) and (2.5) as the kernel of S,(;, the proof of (5.11) is the
same as the one for (5.4).

pla
" osiat, z)dt )”E) W@)dr <C, 1<g<o0
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6. Some applications. In this section, we give two applications of the results (and
their proofs) stated in Section 1. First, we show the lift property of Triebel-Lizorkin (see
[Tr]) in our settings, which asserts that the fractional operator 5 is an isomorphic map-
ping from £7/(w) onto F;,”ﬁ‘q(w). The operator /5 is defined by means of its Fourier
transform, (1},‘)(5) = |€|7Pf(€) for f € §'/P. It is well-known that I is the fractional
integral (or the Riesz potential) of order 8 when 3 > 0, and is the fractional derivative
of order 8 when 3 < 0. By checking Fourier transforms, we have the following repre-
sentation formula of /j: there exists radial function € § so that 7 € C* with compact
support and vanishing near the origin, and that

00 dt
(6.1) If@=c| PO®7, forf €SP,
holds in the distribution sense.

THEOREM 6.1.  Suppose Hypothesis 1.1, and for 3 € R with |3 < ¢, define
00 dt y
(6.2) @) = | S, forf€ S|P

Then the operator Ty is bounded from Fy(w) to F;,’+ﬁ A(w) for |a| < e—|8|. In particular,
the fractional operator I is bounded from Fy(w) to F,O,’w’q(w) for aand 3 € R.

PROOF. The second statement follows from the first and the representation formula
(6.1) of I3. To proof the first statement, we need to show that || 74/]| £ 9() <l )

By Theorem 1.2, it is enough to prove that {s 0,73} is a §-family of operators with
la] <8 < e—|B|. Let Ki(x,y) be the kernel of S;, then the kernel of s PQ, T} is given by

Rxy = [~ (ﬁ)ﬁKZs(x,y)th ,

where K (x,y) is given by (2.3). It is not hard to check that estimates similar to (2.4) and
(2.5) in Lemma 2.1 and (2.10) and (2.11) in Lemma 2.4 are valid for the kernel K, 4(x, y)
defined above. It then follows that kernel K (x, y) satisfies the kernel estimates (1.1) and
(1.2) with the smoothness parameter ¢ = 6 there. We leave the details to the reader. m

We next consider a class of generalized Calderon-Zygmund operators. Recently, there
has been a great deal of work on the boundedness of Calderon-Zygmund operators in
Besov and Triebel-Lizorkin spaces. In particular, Han and Sawyer [HS], Han, Jawerth,
Taibleson and Weiss [HITW], Han and Hofmann [HH], and Torres [T] were able to show
that Calderdn-Zygmund operators are bounded on certain Triebel-Lizorkin spaces under
various weakened or generalized smoothness conditions. In this section, we prove a sharp
version of their results.

Let T be a continuous linear operator from the Schwartz space of compactly supported
test functions D to its dual space D’ associated to a kernel K(x, y) in the sense that

6-3) IN@ = [, [, K,y () dyds,
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where f, g € D have disjoint supports. We consider the following generalized Calderon-
Zygmund conditions for the kernel K(x,y) (see [T] and [HS]): For some 3 € R and

€e>0,
1
(64) [K(x,y)l S Cm, forx # Y,
and
x —z|
6.5 Kty —PLKGEy) < Ch'ﬁ— for 2|x — 2| < [x —y|.

For the simplicity, we shall assume that € is not an integer.
We also recall (see [T]) that a linear and continuous operator 7: D — 2 is said to
satisfy the weak boundedness property (WBP) of order 3 if

(6.6) [(Te)W)| < CP ([l + PVl )Pl o + FI V]| 10),

for all ¢ and ¢ € D with supports in a ball of radius 7.
The following theorem is not completely new, of course. But, we believe that some
combinations of parameters covered in the theorem are missing in the literature.

THEOREM6.2.  Lete > 0 (which is assumed not to be an integer) and — min{e,n} <
B < 1+ [e] — €. Suppose that max{B,0} < a < B+¢,

n n n
>max{ s }
P n+e+pf n+a—p n+al’

and 1 < q < 00, and that w satisfies condition (3) of Hypothesis 1.1. Then the operator
T, which is associated with a kernel function K(x, y) satisfying conditions (6.4), (6.5) and
(6.6), is bounded from Fy4(w) to 5 ~P4(w) provided T(x") = 0 for all || < [e].

Again, the proof is similar to the one for Theorem 1.2, except we shall use the fol-
lowing kernel estimates, which is similar to a lemma given in [HS].

LEMMA 6.3. Suppose that the kernel K(x,y) satisfies the hypothesis of Theorem 6.2.
Let K, i(x,y) be the kernels associated with the operators Q,TQ;, then

s\~8 t e
<Cl= -—_— <
6.7) |Krs(x, )| < C(t) (1 +log s) AT for0<s<t,
ifB =0,
tﬁ+e
6.8) |K,,;(x,y)| < CW for0<s<t
if 3 <0, and
t B+e sﬂ"’f
(6 9) |Km(x,y)| __<_ C(E) W forO <t S S.
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