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ABSTRACT. A method is given for modifying the estimated radiocarbon dates of two samples 
when they are known to be in the wrong order. 

A radiocarbon date expressed in the form 1.720 BP ± 80, for example, 
implies that the best estimate of the date is 1720 BP and that the uncertainty 
in the measurement is estimated to be given by a Gaussian error distribu- 
tion with a standard deviation of 80 years (Orton, 1980). Orton has pointed 
out, however, that a particular difficulty arises when two samples have been 
dated in this way and one has been found to be earlier than the other, when 
there are reliable archaeological grounds, such as stratigraphy, for taking it 
to be the later. Such an anomaly can, of course, be clearly detected only 
when the times concerned lie within a monotonic region of the radiocarbon 
calibration curve. This paper provides a method of dealing with the situa- 
tion, when the order of the radiocarbon dates is taken to be incorrect. Sim- 
ilar difficulties could arise with other physical methods of dating with 
results expressed in the same way. All the times referred to in the calcula- 
tions are radiocarbon dates (BP). The problem is closely related to that of 
the estimation of differential counting measurements of positive quantities 
discussed by Vincent (1982,1984; Vincent 8c Vincent, 1984). However, it is 
now required to estimate each date, rather than merely the difference. 
Other relevant publications are (Katz,1963; Blumenthal & Cohen,1968). 

The method used is based on Bayes' (1763) principle. Since its strong 
advocacy by Jeffreys (1948), Bayes' method has been the subject of much 
controversy, but its soundness has received increasing recognition by many 
statisticians in recent years (eg, Lindley, 1965; Berger, 1980). As the 
method has been widely described in the literature, familiarity with its basic 
principles and terminology will be assumed here. Let t1 and t2 be the two 
dates and let the stratigraphic information be that t2 > t1. The theory that 
follows will also apply and will modify the estimated dates, when the radio- 
carbon order agrees with this but there is an appreciable overlap between 
the two Gaussian distributions. 

Since t1 and t2 must both be positive, we assume an initial prior distri- 
bution that is uniform over the region 0 < t1 < c, 0 < t2 < c. When the 
information obtained from the radiocarbon measurements is applied by 
Bayes' method, the Gaussian error distributions assumed provide a likeli- 
hood proportional to 

(t1 - t1)2 (t2 -- t2)2 exp - 
2 tr1 

- 
2 Fj (1) 

where t1 and t2 are the measured values for t1 and t2, respectively, and 1 and 
o2 are the corresponding standard deviations. t2 may be greater or less than 
t1. 

For the uniform prior distribution assumed, the resulting posterior 

157 

https://doi.org/10.1017/S003382220004409X Published online by Cambridge University Press

https://doi.org/10.1017/S003382220004409X


158 C H Vincent 

distribution is also proportional to this expression. This posterior distribu- 
tion then becomes the prior distribution needed to apply the stratigraphic 
information. This information is of a particularly simple type in which all 

(tl, t2) values belong to one or other of two regions, having likelihoods of 0 

and 1, respectively. To take such information into account, it is only neces- 
sary to omit the region of likelihood 0 from the integrals required for calcu- 
lating the posterior expected value and variance, with the uniform likeli- 
hood of 1 in the other region (Vincent, 1973; Berger,1980). 

The expected value of t1 is then 

tl = (2) 
`2 ex - (tl - tl)2 - (t2 - t2)2dt dt ff p tai 2a2 

1 2 

0(tl - t)2 (t2 - t)2 ft2 
tl exp - 

2o2 
- 

2a2 
dtl dt2 

1 2 

Approximating on the assumptions that t1 >> a1 and t>> a2 the lower 
limits of integration may be extended to - cc, as a very good approximation, 
and we then have 

aia0 (t2 - tl)2 

I 

where 

Kp 
2(ai + 2) 

t2-tl 
Ja? + 

Qp 2= U 
1 2+ a2 2 

and 

JY exp (_x2/2) dX 
I(y) = - 

2r 

(3) 

(4) 

(5) 

The denominator in Eq (3) is the probability, based on the radiocarbon 
measurements, that t2 > t1. Those measurements give a Gaussian distribu- 
tion for the difference t2 - tl with mean t2 - t; and standard deviation 

a1 + o2' 
_ 

The value of t2 can be obtained similarly, by interchanging tl, tr and a1 

with t2, t2 and a2, respectively, in Eq (2). The integral 2 must be replaced 

by JThis gives 

a2a0 

V2ira1 
t2 = t2 + 

(t2 - tl)2 
X - 

2(ai + a2) 
r r 

I_t? - tl 

Q1 + aJ 
I 

(6) 
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We also have 

t2-t1=t2-tl + 

IO1 + U2 (t2 - tl)2 

2r 
exp 

2(a1 + 2) 
r 

I 
t2 - tr1 

Q1 + l\/2J 
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(7) 

which is in accordance with Eq (9) of Vincent (1982). It is shown in that 
paper that this value is always positive, as is to be expected. The function 
I(y) can be obtained from any table of the normal error integral, such as the 
Biometrika Tables for Statisticians (Pearson & Hartley,1966), or by numer- 
ical integration. 

The modified distributions are no longer Gaussian, but standard devia- 
tions 1m and a2m can be calculated for them, if desired, as follows: 

(t2 - t2)2 ft2 r 2 (tl - tl)2 exp - 22 (t1 - t1) exp - 22 dt1 dt2 
1 

dim = 
r r 

t2 - tl 
27rQ1r2I 

a2 62 1 + 2 

r r 

- (t1)2 = {cos2 8 + V 
+ 2 

t2 - t1 
sln2 B 

2 
(8) 

where zt1 = tl - t1 (9) 

B = tan-1(a1/2) (10) 

and V(y) is the variance of the truncated Gaussian distribution exp 
(- x2/2)/ , given by 

Y 
x2 exp (- x2/2) dx Y x exp (- );2/2) dx 

2 

V(y) 
I(y) 

y 
x2 exp (- x2/2) dx ex p 

2 
_ _ p (11) /I(y) /I(y) 

which can readily be obtained by numerical integration. Similarly, 

t2 t 
Q2m = Q2 sln2e + V 

2 

1 

cos2 6 . (12) 
Q1 + Q2 

The following examples were calculated using a simple computer pro- 
gram for the functions I(y) and V(y) and show typical results. The first is an 
example with a discrepancy in the order, while the second has agreement in 
the order but an appreciable overlap between the two Gaussian distribu- 
tions. The same time interval and standard deviations have been chosen to 
facilitate comparison. 
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Radiocarbon measurement 1 tl ± a1 1900 BP ± 85 1800 BP ± 85 
Radiocarbon measurement 2 t2 ± a2 1800 BP ± 70 1900 BP ± 70 
Stratigraphic indication t2 > t1 

Expected value of t1 tl 1805 BP 1779 BP 

Expected value of t2 t2 1865 BP 1914 BP 

Modified standard deviation 1 aim 62 74 
Modified standard deviation 2 a2m 58 64 

It can be seen from Eqs (3) and (6) that the changes in the two dates are 
proportional to their respective radiocarbon variances and are greater in 
the discrepancy case, for given a1, a2 and 

I t2 - tl I. If the latter value is large 
compared with both standard deviations and there is agreement with the 
Stratigraphic order, the changes in the values are small. 

Because V(y) is a monotonic increasing function of y with an upper 
limit of 1 at y = cc, it follows that aim <a1 and a2m < a2. It also follows that 
the modified standard deviations are smaller for the discrepancy case, for 
given Q1, a2 and It2 - tj. 

The validity of all these conclusions depends, of course, on the cor- 
rectness of the assumptions on which they are based. On these assump- 
tions, large discrepancies with the probability I(y) << 1 for 

y = (t2 - t)/\/a i + a2 (13) 

must be rare. When such a discrepancy occurs, therefore, it is necessary to 
keep in mind the possibility that some systematic error may have occurred 
(in addition to the random Gaussian errors on which this analysis is based) 
thus invalidating the results. This situation must be judged in relation to 
both the value of I(y) and the nature and circumstances of the two samples 
measured. The smaller the value of I(y), the greater is the confidence that is 
needed in the suitability of the samples and in the freedom of the measure- 
ments from any sources of systematic error, such as contamination of a 
sample. 
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