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Abstract

There are research questions whose answers require record linkage of multiple databases that may be characterized by limited options for full
data sharing. For this purpose, the Open Data Infrastructure for Social Science and Economic Innovations (ODISSEI) consortium has sup-
ported the development of the ODISSEI Secure Supercomputer (OSSC) platform that allows researchers to link cohort data to data from
Statistics Netherlands and run large-scale analyses in a high-performance computing (HPC) environment. Here, we report a successful record
linkage genomewide association (GWA) study on expenditure for total health, mental health, primary and hospital care, and medication.
Record linkage for genotype data from 16,726 participants from the Netherlands Twin Register (NTR) with data from Statistics
Netherlands was accomplished in the secure OSSC platform, followed by gene-based tests and estimation of total and single nucleotide poly-
morphism (SNP)-based heritability. The total heritability of expenditure ranged between 29.4% (SE 0.8) and 37.5% (SE 0.8), but GWA analyses
did not identify SNPs or genes that were genomewide significantly associated with health care expenditure. SNP-based heritability was
between 0.0% (SE 3.5) and 5.4% (SE 4.0) and was different from zero for mental health care and primary care expenditure. We conclude
that successfully linking genotype data to administrative health care expenditure data from Statistics Netherlands is feasible and demonstrates
a series of analyses on health care expenditure. The OSSC platform offers secure possibilities for analyzing linked data in large scale and
realizing sample sizes required for GWA studies, providing invaluable opportunities to answer many new research questions.
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Data collected for administrative or policy purposes often include
detailed information at the individual level and are proving to be
of great value for medical and scientific research. The Nordic coun-
tries are well known for studies on health outcomes based on register
data because these data can be linked across registers with a unique
personal identification number (Maret-ouda et al., 2017).
Individuals’ data on, for example, education or income can be linked
to the use of social insurance schemes and health care and also to
data on their family members and their place of residence. The ad-
vantage of register data is that nonresponse is not a problem and that
data are collected in a uniform manner from all individuals.
However, register data are generally not collected with a specific
research purpose in mind. Cohort studies, on the other hand,
employ surveys, collect biological samples and carry out clinical
and experimental studies to gather data directly from participants
(lifestyle, personality, attitudes, genotypes, biomarkers and clinical

diagnoses). Linking individual-level register data to cohort data
offers the possibility to enhance existing data resources and address
research questions that are of relevance to individuals and to society.

In the Netherlands, population-based register data are collected
and analyzed by Statistics Netherlands (CBS; www.cbs.nl/en-gb) to
publish reliable statistics on the Dutch economy and society (www.
statline.nl). CBS has administrative data for approximately 17 mil-
lion inhabitants of the Netherlands on pedigree structure and out-
comes, including education, income and health, which can all be
linked at the individual level. CBS is legally entitled to make these
data, under strict terms, available for research purposes as well as
link them to external data in a secure remote-access (RA) environ-
ment (www.cbs.nl/microdata). However, this RA environment
does not offer high-performance computing facilities, which limits
the scale of research projects. The Open Data Infrastructure for
Social Science and Economic Innovations (ODISSEI; www.
odissei-data.nl) has set up a sustainable national data infrastruc-
ture for research in the Netherlands by coordinating the integration
of data from large cohort studies in the Netherlands and adminis-
trative data. ODISSEI has supported the development of a secure
platform, called the ODISSEI Secure Supercomputer (OSSC)
(Scheerman et al., 2019) on the high-performance computer facility
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at Samenwerkende Universitaire Reken Faciliteiten (SURF; www.
surf.nl). SURF hosts and maintains the Dutch national supercom-
puter Cartesius with 2000multicore compute nodes, connected with
Infiniband for high-speed, low-latency communication and storage
access. The OSSC is developed as a ‘Platform as a Service’ on top of
the Cartesius, where users can use the computing resources and soft-
ware offered on the supercomputer. The platform is based on cus-
tomizable, virtualized private clusters that are deployed onCartesius,
imposing strict securitymeasures required by data owners, and facil-
itates access and record linkage (Private Cloud on a Compute
Cluster [PCOCC], developed by CEA, https://github.com/cea-
hpc/pcocc.). From the CBS RA environment, data can be copied
to OSSC through a dedicated VPN connection between CBS and
SURF(sara), seamlessly and securely integrating the HPC cluster
into their own private network. Stringent automated security con-
trols make sure this VPN is the only path for sensitive data to leave
the cluster (see Figure S1).

In the current study, we used the OSSC platform to link CBS
register data on health care expenditure to genotype information
from the Netherlands Twin Register (NTR; www.
tweelingenregister.vu.nl). The NTR is a large twin-family study
that has followed thousands of familymembers longitudinally with
surveys and has collected DNA samples from a large number of
their participants (Ligthart et al., 2019). The scientific aim of
our study was to run a genomewide association (GWA) study
and estimate the associations between genetic variants and health
care expenditure. While the effect of environmental determinants
related to overall health has been extensively studied, less is known
about the genetic architecture of individual differences between
people. Given that expenditure is directly related to medical con-
ditions that are characterized by genetic contributions, we hypoth-
esize that a substantial contribution of genetic differences to overall
health expenditure exists. Knowledge on the genetic contributions
to overall health is currently limited to studies that measured it
with self-reports. Twin studies indicate that self-rated health is
partly due to genetic differences between people, with estimates
of a heritability of over 30% in young adulthood (Silventoinen
et al., 2007) and almost 50% at older ages (Mosing, Pedersen
et al., 2010). The first GWA study (~6700 individuals) on self-rated
health did not report any genomewide significant hits (Mosing,
Verweij et al., 2010), but a better powered study in almost
112,000 individuals identified 13 independent genomewide signifi-
cant signals, of which several were in regions previously implicated
in specific diseases (Harris et al., 2017). The proportion of variance
in self-rated health explained by all the measured common genetic
variants was 13%. We argue that investigating overall health, more
objectively measured by health care expenditure, will lead to a bet-
ter understanding of its genetic architecture.

Methods

Participants

The NTR was established around 1987 by the Department of
Biological Psychology at Vrije Universiteit Amsterdam (Ligthart
et al., 2019). Adult twins, their families and parents of young twins
take part in surveys. DNA collection from blood or buccal samples
has been done in several large projects (Ligthart et al., 2019).
Genotyping has been carried out in subsamples that are, in general,
unselected for specific traits. Height measured in centimeters was
obtained from clinical and experimental studies or reported by
participants in surveys. Many participants filled out more than
one survey, and longitudinal height data were checked for

consistency. NTR data collection was approved by the Central
Ethics Committee on Research Involving Human Subjects of the
VU University Medical Centre, Amsterdam, an Institutional
Review Board certified by the U.S. Office of Human Research
Protections (IRB number 00002991 under Federal-Wide
Assurance-FWA00017598; IRB/Institute codes, NTR 03-180),
and informed consent was obtained from all participants.

Health Care Expenditure

Dutch residents are obliged by law (Health Insurance Act; ZVW)
to take out a basic health insurance. Just 0.07% of the population
are conscientious objectors and have no insurance for health care
expenditure (European Commission, 2017). Statistic Netherlands
(CBS) receives, via Vektis (www.vektis.nl), an executive organiza-
tion of health insurance companies in the Netherlands, health care
expenditure as reimbursed under the basic health insurance.
Health care expenditure included the annual costs per resident
for primary, hospital, mental health, birth and geriatric care,
physiotherapy and medication. Not included are costs that (1) fall
under a supplementary health insurance, (2) fall outside of the
Health Insurance Act and are paid by the patient or (3) fall under
long-term care. We analyzed average expenditure costs across all
available reporting years (2009−2016) for total health, mental
health, primary and hospital care and medication (Statistics
Netherlands (CBS), 2019a). Data were log-transformed prior to
analyses to correct for the skewness of the data.

Genotype Data

Genotyping was done on several platforms, that is, Affymetrix-
Perlegen, Illumina 660, Illumina Omni Express 1M, Affymetrix
6.0, Affimetrix Axiom and Illumina GSA. For criteria on quality
control (QC) of the single nucleotide polymorphisms (SNPs)
and samples, before and after imputation (see de Zeeuw et al.,
2020), data were cross-platform phased and imputed using
Mach-admix with GoNL (Francioli et al., 2014) as the reference
panel for all SNPs that were, after QC, present for at least one plat-
form (Boomsma et al., 2014). The cross-chip imputed data set was
used to calculate genetic principal components with the SmartPCA
software (Price et al., 2006). Subsequently, the data set was aligned
against the 1000G phase 3 version 5 reference panel and imputed
on the Michigan imputation server (Das et al., 2016). Best guess
genotypes were calculated for all SNPs in Plink 1.96 (Purcell
et al., 2007).

Record Linkage

Personal data (name, address, date of birth) of NTR participants
and their Administrative number (A-number) under which
Dutch residents are registered in the population register are stored
under a pseudonymized NTR identifier on a server that is discon-
nected from the internet; note that NTR does not have the social
security number (BSN) of the participants (Boomsma et al., 2008,
2018). Phenotype data are stored under a different pseudonymized
NTR identifier. The genotype data of NTR participants are stored
at SURF in binary format and do not contain any identifiers, but
the order within the data set is an implicit identifier. At CBS, all
individual-level register data (microdata) are stored under a pseu-
donymized identifier (RIN) and CBS has access to the A-number of
Dutch residents.

Figure 1 displays the different steps in the record linkage proc-
ess. Record linkage between the NTR identifier and CBS identifier
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was done by the Central Record Linkage department (CBK) at CBS
on the basis of the A-number (step 1). After linkage and removal of
the A-number, the NTR and CBS identifiers were encrypted and a
record linkage key was sent to SURF (step 2). The key with
encrypted identifiers was added to CBS microdata, and NTR
cohort data and the NTR cohort data were re-ordered (step 3).
SURF, which acted as a trusted third party (TTP), used the record
linkage key for pseudo-randomizing the order of the genotype data
(step 4). CBS uploaded CBS microdata and NTR cohort data to the
OSSC environment via a secure virtual private network (VPN).
SURF placed the reordered genotype data and the key of the
new order of the genotype data in the OSSC (step 5). NTR linked
CBS microdata to NTR cohort data and sorted the NTR cohort
data in the same order as the new order of the genotype data
(step 6). The complete procedure ensured that none of the parties

involved had access to all the record linkage keys and, therefore,
could neither identify participants in the cohort nor in the admin-
istrative or genotype data.

Statistical Analyses

To verify that the encryption of the NTR identifiers and the
pseudo-randomization of the genotype data were correct, we con-
ducted a GWA study on height reported by the NTR participants.
The data on height were uploaded to the OSSC together with the
other NTR cohort data— that is, data on covariates— and under-
went the same procedure of identifier encryption, and the analyses
were carried out using the reordered genotype data. A large meta-
analysis reported genetic variants associated with height (Wood
et al., 2014), andwe estimated the genetic correlation between these

Fig. 1. Flow chart of record linkage between data from the Netherlands Twin Register and data from Statistics Netherlands on the ODISSEI Secure SuperComputer (OSSC)
platform. Note: Step 1: Record linkage between the NTR identifier and CBS identifier on the basis of the A-number. Step 2: NTR and CBS identifiers were encrypted, and the
record linkage key was sent to SURF. Step 3: The key was added to CBS microdata and NTR cohort data, and NTR cohort data were re-ordered. Step 4: SURF used the record
linkage key for pseudorandomizing the order of the genotype data. Step 5: CBS uploaded CBSmicrodata and NTR cohort data to the OSSC environment via a secure virtual private
network (VPN). SURF placed the re-ordered genotype data and the key of the new order in the OSSC. Step 6: NTR linked CBS microdata to NTR cohort data and sorted NTR cohort
data in the same new order as the genotype data.
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and our own results with LD-score regression (Bulik-Sullivan et al.,
2015). For a successful procedure, we expected a genetic correla-
tion close to 1.

We regressed the log-transformed total health, mental health,
primary and hospital care and medication expenditure on all
SNPs in linear mixed models in GCTA 1.92.1beta6 (Yang et al.,
2011), controlling for genetic relatedness by including a SNP-
derived genetic relationship matrix (GRM) with all the off-diago-
nal elements < .05 set to zero. Population stratification was taken
into account by including 10 principal components (PC) from the
PCA of the SNP genotypes as fixed effects (Price et al., 2006). Sex,
age and age-squared were also included as fixed effects. To declare
genomewide significance for SNP-phenotype associations, an
alpha level of 5 × 10−8 was adopted (Duggal et al., 2008). Based
on the GWA results, we conducted gene-based association analyses
inMAGMA (de Leeuw et al., 2015). Genetic variants were assigned
to genes on the basis of their position according to the NCBI 37.3
build, resulting in 15,438 genes. The European panel of the 1000
genomes (Auton et al., 2015) data was used as a reference for link-
age disequilibrium. In line with the Bonferroni method, a genome-
wide significance threshold of .05/15,438= 3 × 10−6 was adopted
for gene-based association tests.

We estimated family-based heritability by employing the
differences in genetic resemblance between all family members
in our sample as determined with the GRM in GCTA 1.92.1beta6
(Yang et al., 2011). The SNP-based heritability for each of the out-
come measures and the genetic correlation with self-rated health
(Harris et al., 2017) were estimated with LD-score regression
v1.0.0 (Bulik-Sullivan et al., 2015).

Results

Genotype data were successfully linked to CBS for 16,726 individ-
uals from European ancestry (Galinsky et al., 2016) who had given
consent for linking to external databases and for whom the
A-number was known. The analysis of adult height data
(N= 12,498) gave a SNP-based heritability of 37.3% (5.9). The
genetic correlation between our results and the results from the
large meta-analysis on height as reported by the GIANT consor-
tium was .99 (.06), indicating that the record linkage was done
correctly.

For 14,572 participants (5842 males and 8727 females; 699 fam-
ilies) with an average age of 45, genotype data and expenditure for
total health care in euros were available (males: mean = 1556.7,
SD = 3406.9; females: mean= 1668.8, SD = 3432.1), mental health
care (males: mean= 113.2, SD= 835.1; females: mean= 158.0,
SD = 1308.7), medication (males: mean = 175.1, SD= 784.1;
females: mean= 206.6, SD= 631.3), primary care (males: mean
= 117.4, SD= 49.1; females: mean= 133.7, SD= 61.1) and hospital
care (males: mean = 813.4, SD= 2292.9; females: mean = 1009.4,
SD = 2260.9; see Figure 2 and Supplementary Figure S2). The
unavailability of health care expenditure data might have been
due to, for example, residence outside of the Netherlands.

The results of the GWA analyses summarized in Manhattan
and Q-Q plots for health care expenditure are depicted in
Figure 3 and Supplementary Figures S3−S6. There were no
SNPs that were associated with health care expenditure at a
genomewide significance level, and gene-based tests did not reveal
genes that were significantly associated with health care expendi-
ture, with the strongest associations for the genes TRPV3 (17p13,
p= 2 × 10−5), CAT (11p13, p= 7 × 10−5) and SSBP2 (5q14,
p= 4 × 10−5). Family-based heritability was .319 (.01) for total

health care, .302 (.01) for mental health care, .294 (.01) for medi-
cation, .375 (.01) for primary health care and .295 (.01) for hospital
care, and SNP-based heritability was −004 (.03) for total health
care, .054 (.03) for mental health care, −.005 (.04) for medication,
.044 (.04) for primary health care and −.002 (.04) for hospital care
(see Figure 4). The genetic correlation between the GWA results
that showed a significant SNP-based heritability and the results
from the meta-analysis on self-rated health (Harris et al., 2017)
was .26 (.17) for mental health care expenditure and .70 (.30)
for primary care expenditure.

Discussion

The aim of the current study was to demonstrate the feasibility of
running a large-scale GWA study for health care expenditure by
linking NTR genotype data and CBS administrative data on the

Fig. 2. Histogram of total health care expenditure in euros separately for (A) males
(n= 5845) and females (n= 8727) and (B) for individuals < 40 years (n= 5059),
between 40 and 60 years (n= 8706) and >60 years (n= 483).
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OSSC platform. We successfully linked genotype data to self-
reported height from NTR participants in the OSSC after encrypt-
ing all identifiers and pseudo-randomization of the order in the
genotype data. The finding of a significant SNP heritability for
height and a genetic correlation of unity with the GIANT study
on height (Wood et al., 2014) confirmed that the encryption
and reordering of the data were done correctly. The OSSC thus
enabled us to link sensitive data from multiple databases in a pri-
vacy protecting way on a secure system that provided the required
high-performance computing facilities.

No genetic variants that were genomewide significantly associ-
ated with health care expenditure were found. For significantly
associated genes at the stringent genomewide level, larger studies
are required and this will become feasible when multiple Dutch
cohorts collaborate in the OSSC environment. No significantly
associated genes were found, but we identified some promising
genes — for example, SSBP2 — that were previously found to
be related to diseases (Liu et al., 2008). Overall, the proportion
of variance explained by all genotyped autosomal SNPs ranged
from zero to 5.4%. The estimate for the SNP-based heritability
was different from zero for mental health care expenditure and

Fig. 3. (A) Q-Q plot and (B) Manhattan plot of p values of the genomewide association analysis for total health care expenditure. Note: The top line is the genomewide significance
threshold (p< 5 × 10−8), and the bottom line indicates the threshold for suggestive significance (p< 1 × 10−5).

Fig. 4. Family-based and SNP-based heritability of total health, mental health, pri-
mary health and hospital care and medication expenditure.
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primary care expenditure. The genetic correlation between self-
rated health and health care expenditure was larger for primary
care (r= .70) compared to mental health care (r= .26). Family-
based heritability was much larger for all types of health care
expenditure (29−38%), indicating that there are possibilities for
larger samples to identify genetic variants related to health care
expenditure. Health care expenditure may be influenced not only
by a large number of genetic variants that all have a very small
effect but also by rare genetic variants that, although they can have
a large effect, explain only a small part of the differences between
people. Larger sample sizes are required to identify the effects of
common genetic variants on health care expenditure. The OSSC
brings these large sample sizes within reach as it will provide
the possibility to link multiple cohorts to the register data, allowing
the exact same outcome measure to be analyzed across all these
cohorts.

Identifying genetic variants associated with overall health is
important as these genetic variants can be employed in bidirec-
tional Mendelian randomization (MR; Smith & Hemani, 2014).
MR is a natural experiment that employs genetic variants as
instrumental variables, which has been suggested to provide
the best opportunity to establish the causal effect of specific traits
on overall health (Dixon et al., 2016), since randomized con-
trolled trials are in this case impossible to implement. The iden-
tification of the impact of specific traits on overall health will give
information needed to estimate the cost-effectiveness of preven-
tion and intervention programs. Such information is essential as
health care expenditure in the Netherlands has increased to 76.9
billion euros, 9.9% of the gross domestic product (Statistics
Netherlands (CBS), 2019b), only partly explained by the growth
of the proportion of the Dutch population over 65 years
(Howdon & Rice, 2018).

The OSSC platform presents a novel method for creating secure
computing environments on traditional multitenant high-perfor-
mance computing clusters. The platform as a service provides a
customizable virtualized solution using PCOCC to meet strict
security requirements for storing, processing and linking highly
sensitive data. The OSSC development is moving toward a produc-
tion-ready version of the platform by automating the manual steps
for setting up the virtual environment and creating a scalable and
robust solution. The platform allows data- and compute-intensive
research projects to be conducted in parallel. The individual-level
register data from Statistics Netherlands will offer opportunities for
research in public health, health care, economics, education, soci-
ology, bioinformatics, ‘omics’ and many other fields. The OSSC
platform also facilitates multidisciplinary research and promotes
open science by allowing for the increased linkage and interoper-
ability of sensitive data. Projects may, for example, link data from
MRI scans to data on psychiatric diagnoses as well as to data about
urbanization level of the neighborhood to get more insight into the
mediating effect of neural processes in the association between the
urban environment and psychopathology (Lederbogen et al.,
2011). In addition, in light of the current COVID-19 pandemic,
the linkage of this population-based register data with cohort data
will provide researchers with invaluable opportunities to deter-
mine the impact of the pandemic and the lockdown measures
on individual outcomes such as mental health and educational out-
comes in children, or address questions on host–virus interactions.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/thg.2021.18.
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