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Abstract

Forecasting of armed conflicts is a critical area of research with the potential to save lives and mitigate
suffering. While existing forecasting models offer valuable point predictions, they often lack individual-level
uncertainty estimates, limiting their usefulness for decision-making. Several approaches exist to estimate
uncertainty, such as parametric and Bayesian prediction intervals, bootstrapping, quantile regression, but
these methods often rely on restrictive assumptions, struggle to provide well-calibrated intervals across the
full range of outcomes, or are computationally intensive. Conformal prediction offers a model-agnostic
alternative that guarantees a user-specified level of coverage but typically provides only marginal coverage,
potentially resulting in non-uniform coverage across different regions of the outcome space. In this article,
we introduce a novel extension called bin-conditional conformal prediction (BCCP), which enhances
standard conformal prediction (SCP) by ensuring consistent coverage rates across user-defined subsets
(bins) of the outcome variable. We apply BCCP to simulated data as well as the forecasting of fatalities
from armed conflicts, and demonstrate that it provides well-calibrated uncertainty estimates across various
ranges of the outcome. Compared to SCP, BCCP offers improved local coverage, though this comes at the
cost of slightly wider prediction intervals.
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1. Introduction

In recent years, forecasting of armed conflict has become a central focus in conflict research, with
numerous projects aiming to predict a wide range of political and conflict-related outcomes (e.g., Bell
2016; Hegre et al. 2019; Hegre et al. 2021; Morgan, Beger, and Glynn 2019; Mueller and Rauh 2018;
Vesco et al. 2022; Williams et al. 2024). While significant progress has been made, most forecasts still
rely primarily on point predictions without accompanying measures of uncertainty at the individual
prediction level. Instead, model performance is typically evaluated through aggregate error metrics,
such as mean squared error or accuracy rates.

This reliance on point predictions alone is problematic for several reasons. First, point predictions,
while often informative, are inherently uncertain. In many cases, they will be incorrect, and without
uncertainty estimates, their utility to stakeholders is limited. This limitation is particularly concerning
in fields where outcomes are rare but have potentially high impacts, such as armed conflict forecasting.
In such cases, predicted outcomes often cluster around zero due to the rarity of high-fatality events. This
can lead to an underestimation of extreme events unless uncertainty is explicitly accounted for (Hegre
et al. 2024).
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Second, effective communication of forecast results requires uncertainty quantification. Stakehold-
ers, such as policymakers, are often more interested in the range of possible outcomes than in a single
point estimate. For example, a best-guess point prediction of zero fatalities in a given month for a
particular country may mask a non-negligible probability of severe conflict. The best point prediction
for a non-violent but stable country in a given month is typically 0 fatalities, but the probabilities of
more than 1,000 deaths or even 100,000 may be alarmingly high. Performing a simple prediction of
the probability of exceeding a fatality threshold (as in Hegre et al. 2021) can partially address this,
but the resulting probabilities are not necessarily well-calibrated and do not provide the full range of
the associated uncertainty. Well-calibrated prediction intervals can therefore help to communicate risk
effectively and to prevent the misinterpretation of single-valued forecasts. Similarly for binary outcomes,
providing prediction intervals for the probability of an event can help to communicate the uncertainty
in the models’ predictions.

Third, aggregate performance metrics, such as the area under the receiver operating characteristic
curve (AUROC) or continuous rank probability scores (CRPS), provide useful information about model
performance but do not indicate the level of uncertainty for individual predictions. A model may
perform well overall but still fail to quantify uncertainty correctly for different subpopulations or data
regions.

A variety of methods exist to estimate uncertainty in predictive modeling. Frequentist and Bayesian
parametric approaches allow for uncertainty estimation via the sampling distribution of a pivot
statistic or a posterior distribution, respectively. Frequentist prediction sets, however, require correct
specification of the distribution of the data to achieve finite-sample coverage of prediction sets at
any specified level, and otherwise rely on asymptotic justifications. Bayesian credible prediction sets
are not naturally calibrated to have any repeated sampling properties (i.e., they are not confidence
sets), but asymptotically they may exhibit coverage at their corresponding frequentist-specified level.
Resampling techniques such as bootstrapping and jackknifing provide another alternative, but they
can be computationally expensive and may not always offer well-calibrated uncertainty estimates.
Similarly, quantile regression can also provide prediction intervals, but these are model-specific and
may also not be well-calibrated in out-of-sample predictions (for reviews of techniques for obtaining
prediction intervals, see, for instance, Hesterberg 2015; Tian, Nordman, and Meeker 2022; Zhang et al.
2020).

Conformal prediction offers a model-agnostic alternative for creating prediction intervals which
under certain conditions guarantees a user-specified level of coverage, i.e., that a user-specified min-
imum proportion of the future outcomes actually fall within the prediction intervals. Yet, standard
conformal prediction (SCP) algorithms only maintain marginal coverage and do not guarantee uniform
levels of local coverage across different subsets of the data.

In this article, we introduce a novel approach called bin-conditional conformal prediction (BCCP) to
address these limitations of the SCP. BCCP extends SCP by ensuring that prediction intervals achieve
appropriate coverage rates not only in the aggregate but also within user-defined subsets (bins) of
the data. This method provides a flexible, non-parametric framework for uncertainty quantification
that does not require restrictive model assumptions, while improving local coverage calibration. The
BCCP approach is a hybrid of the label-conditional, or Mondrian, conformal prediction approach,
and the SCP approach for real-valued outcomes. This method is compatible with both inductive and
transductive routines, though we focus on the inductive version here. Finite-sample, label-conditional
validity of Mondrian conformal prediction is established in Vovk, Gammerman, and Shafer 2022. Label-
conditional validity is distinct from notions of covariate/feature/object-conditional validity, e.g., as in
Chernozhukov, Wiithrich, and Zhu 2021 and Sesia and Romano 2021.

We demonstrate the advantages of BCCP using both simulated data and real-world data from
the Violence Early Warning System (ViEWYS) fatality forecasting model. Our results show that BCCP
consistently achieves the desired coverage levels across different subsets of the data, while SCP tends to
over- or under-cover in certain regions. We also compare BCCP to alternative methods for obtaining
prediction intervals. Here too we find that alternative methods often fail to provide well-calibrated
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uncertainty estimates across all ranges of the prediction target compared to the BCCP, which maintains
the desired coverage rates across the user-specified ranges (bins).

While this article focuses on forecasting fatalities from armed conflict, the BCCP method is
applicable to any domain requiring uncertainty quantification for individual predictions. It can be used
regardless of many distributional characteristics of the outcome. We conclude by discussing potential
future directions, including extensions of BCCP to other data structures and further evaluations
against alternative uncertainty estimation techniques. The method is implemented in the R package
pintervals and is available on CRAN.

2. Conformal Prediction

Conformal prediction is a general purpose, model-agnostic, method that, given any point prediction,
¥, any desired error rate, a € [0,1], and any measure of dissimilarity (non-conformity), can be used
to create a prediction interval around p that with probability of 1 — o contains the true value/label y.
Under the condition that the dissimilarity scores are exchangeable (e.g., independent and identically
distributed), conformal prediction sets are mathematically guaranteed to be calibrated to their user-
specified level of coverage in repeated sampling (Shafer and Vovk 2008; Vovk et al. 2022).

Conformal prediction is especially attractive because it is model-agnostic, i.e., that it can be applied
to any prediction algorithm that outputs a point prediction, regardless of whether the point prediction
is regression or classification and whether or not the prediction algorithm outputs any uncertainty
measures. This means that conformal prediction can be applied on top of machine learning algorithms
such as random forests, boosted tree models, and support vector machines without requiring any
further adaptation (Fontana, Zeni, and Vantini 2023; Shafer and Vovk 2008). Since its introduction
in 1999 (Saunders, Gammerman, and Vovk 1999; Vovk, Gammerman, and Saunders 1999), conformal
prediction has been applied to a wide range of prediction problems and algorithms (for a review, see,
Fontana et al. 2023).

2.1. Assumptions of Conformal Prediction

Conformal prediction applies to settings for which we wish to obtain a 1 — « level prediction interval
for some label y,41, associated with feature x,1, based on a set of n example feature-label pairs,

(x1,91); .-+, (%n,yn). The conformal prediction set at level 1 — a € [0,1] associated with x,4+1 will
include the true label y,4+1 with probability at least 1 — «, provided the non-conformity scores for
(x1,91), -+ (%n,¥n), (Xn+1,yn+1) are exchangeable. The non-conformity score for (x;,y;) is a mea-

sure of dissimilarity between (x;,y;) and (x1,y1),...,(xi—1,%i-1)> (Xi+1,¥i+1); - - -, (Xn+1,Vn+1). A non-
conformity score can be constructed from any real-valued function that is invariant to the order of
points (x1,y1), ..., (Xi-1,¥i-1), (Xi+1,Yi+1), - - -, (Xn+1,Yn+1), but is generally taken as any real-valued error
function for a predictive algorithm such as: the absolute or squared error between the predicted and
observed values for regression problems, distance to nearest neighbor in nearest neighbor classification,
or one minus the soft-max activation function components of a neural network (e.g., Dey et al. 2023), etc.

To obtain the 1 — « prediction set for y,+1 we calculate the non-conformity score for our test case
using x,+1 and a range of hypothetical values which y,+1 may have. If the support of the prediction values
is finite (as in classification), then all possible labels are considered as the hypothetical values, while if
the support is infinite (as in real-valued regression), then a grid of reasonable hypothetical values based
on X, is iterated over. For each hypothetical y,.1 value a p-value is computed as the proportion of non-
conformity scores in the training data that are as large or larger than the non-conformity score for the
hypothetical y,11 value. The 1 — ¢ prediction set is constructed by including in it all hypothetical values
of yp41 corresponding to a p-value larger than o (Shafer and Vovk 2008; Toccaceli and Gammerman
2019).!

'In regression problems, the non-conformity measure is usually a prediction error function. In these cases, the non-
conformity score will increase as the value moves away from , and thus it is sufficient to find the hypothetical lower and
upper edge cases which produce p-values that are less than o
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2.2. Transductive and Inductive Conformal Prediction

The non-conformity scores can be obtained either transductively or inductively. The main difference
between these approaches is that transductive conformal prediction requires the prediction algorithm
to be re-trained for every new test case, while inductive conformal prediction splits the training
data into a training set and a calibration set. In the inductive case, the prediction algorithm is then
trained on the training set, and out-of-sample predictions and associated non-conformity scores are
calculated using the calibration partition. These non-conformity scores are then used when creating
the prediction set for the new test case (Papadopoulos 2008; Toccaceli and Gammerman 2019). For
computationally demanding machine learning algorithms, the inductive approach is more practical as
it avoids re-training the prediction algorithm for each test case, although it incurs a loss of statistical
efficiency/power due to the splitting of the data (Toccaceli and Gammerman 2019).

2.3. Local Coverage of Conformal Prediction

Conformal prediction is mathematically guaranteed to produce prediction sets having finite-sample
control over type I error rates, for any user-specified level of significance. However, while this property
holds in aggregate over repeated sampling, this property does not necessarily hold conditionally on
subsets of labels if y is categorical, or conditionally on regions of values, if y is real-valued (see, for
instance, Guan 2023). In particular, when the outcome y suffers from severe class imbalance or is heavily
skewed the SCP algorithm will tend to over-cover denser regions and under-cover sparser regions of y.

One proposed method for achieving appropriate coverage on subsets of the label space is to use
label-conditional, or Mondrian, conformal prediction, where the prediction set is calculated using only
the non-conformity scores of y’s associated with one label at a time. This approach guarantees that the
prediction set will have the correct coverage both in the aggregate and for each label of y (Toccaceli and
Gammerman 2019). This has been shown to work well in practice, e.g., when predicting housing prices
for different districts in a city (Hjort et al. 2023).

We extend the approach of label-conditional conformal prediction to real-valued y’s, where the labels
can represent different regions in the y space. In this case, the resulting prediction sets are calibrated to
the local distribution of the calibration data in each label-class and will therefore, under the assumption
of exchangeability, have the correct coverage in each label-class.

2.4. Bin-conditional Conformal Prediction

Not all types of data have a natural clustering structure that can be used to condition the label-
conditional conformal prediction algorithm. However, they may still suffer from non-uniform coverage
of SCP sets across the range of the outcome space of y (Guan 2023). This is especially a concern in cases
where the outcome y is real-valued and the distribution of y is skewed, which is not uncommon in social
science applications.

A field with notoriously skewed outcomes is the prediction of fatalities from armed conflict, where
the number of fatalities is often zero but can also be very high in some cases (see, for instance, Hegre
et al. 2021; Randahl and Vegelius 2024). In this case, the prediction intervals may have too high coverage
in the lower range of y and too low coverage in the upper range of y. Additionally, the most salient
predictions are often those that are in the upper range of y, and it is therefore important that the
prediction intervals have the correct coverage in this range.

To solve the problem of non-uniform coverage across the range of y in real-valued outcomes, we
propose to extend the label-conditional conformal prediction approach to a BCCP approach, where the
outcome space is partitioned into user-specified ranges (bins) on which the user wishes to obtain correct
coverage.

We specify the BCCP algorithm for the inductive routine as follows.

1. Partition the data into a training set and a calibration set.
2. Train the prediction algorithm on the training set.
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3. Calculate the non-conformity score for each datum in the calibration set.

4. Partition the non-conformity scores into user-specified bins based on the observed y’s in the
calibration set.

5. Set a user-specified coverage level 1 — o which to obtain.

6. For each test case, run an SCP algorithm conditional on each bin separately, over a grid of
hypothetical y values associated with each bin.

7. Calculate prediction interval® for each bin by keeping the hypothetical y values which produce
non-conformity scores below the 1 — « quantile of the non-conformity scores of the y’s in the
bin-conditional calibration set.

8. Combine the prediction intervals from each bin to obtain the final prediction interval(s).

This algorithm guarantees prediction intervals with correct coverage in each user-specified bin of y,
assuming exchangeability of the data within each bin.

Two important questions arise when using the BCCP approach. The first is how to combine the
prediction intervals from each bin to obtain the final prediction interval, and the second is how to
partition the y’s into bins.

2.4.1. Combining Bins

A potential drawback of the BCCP approach is that the final prediction set is not necessarily contiguous.
Instead, this set may be a union of discontiguous prediction intervals. This is not necessarily a problem,
but it may be less intuitive for the user or the decision-maker. We refer to this as the discontiguous
prediction interval method.

In the case where the prediction intervals are discontiguous, an alternative is to contiguize the
intervals by using the lower and upper endpoints of the intervals across all bins. This approach
guarantees that the prediction regions have at least the correct coverage in each bin but may have higher
coverage than specified by « in some regions of the outcome space and in the aggregate.

2.4.2. Selecting the Bins

In the BCCP approach, the choice of bins is crucial, as it determines which ranges of the outcome space
will receive well-calibrated prediction intervals. Bin regions may be completely arbitrarily set, including
arbitrarily selected cut-off points, and do not need to be of equal size, neither in range nor in the number
of observations per bin.” We argue that it is primarily the user’s preferences and the specific application
that should guide the choice of bins, as it is up to the user to decide which ranges of y are of interest,
although the user could also optimize the bin boundaries based on some criterion and cross-validation.
While the bins can be defined arbitrarily, there are, however, some practical considerations that should
be taken into account when defining bin boundaries.

First, the bins must be large enough to contain a sufficient number of data points to obtain
reasonably precise estimates of the (1 — «v)-quantile of non-conformity scores. If a bin contains too few
observations, the (1 - «/)-quantile of non-conformity scores used for calculating the prediction intervals
may be imprecise, potentially leading to too wide prediction intervals.

Second, because the prediction intervals generated within the bins themselves may suffer from the
same issue of non-uniform coverage as the SCP approach does on the aggregate level (BCCP with one
bin is equivalent to SCP), the bins should be small enough to capture the local distribution of y for
the ranges of y that the user is interested in. However, increasing the number of bins comes with a
drawback: more bins will widen the prediction intervals because they enforce uniform coverage within
each bin. This creates a fundamental trade-off: fewer bins lead to narrower intervals but may fail to

2 As this method is used for real-valued y, we refer to the resulting prediction sets as prediction intervals
31t would also be possible to define bins based on some other criteria than the outcome variable, for instance on some
regions of covariates.
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provide consistent coverage across the outcome space, while more bins improve local calibration but
result in wider intervals. The choice of bins should therefore balance the need for accurate local coverage
with the goal of maintaining reasonably tight prediction intervals, considering the available data and the
specific application. Furthermore, increasing the number of bins may also lead to a larger proportion of
discontiguous prediction intervals, which may be less intuitive for the user when using the prediction
intervals for decision-making. Alternatively, if the final intervals are contiguized, the higher number of
bins will lead to a higher over-coverage rate in the aggregate.

3. Simulation Study

To evaluate the performance of the BCCP algorithm, we conduct a simulation study to compare the
coverage and width of the prediction intervals obtained from the BCCP algorithm to those obtained
from the SCP algorithm across different values of y in the test set.

We use a simple simulation setup with two predictor features x; and x, generated as independent
uniform random variables between 0 and 1, and a prediction target y which is generated as a log-normal
distribution with parameters p = x; +x2 and o = 0.5 on the log-scale. The simulated distributions are
heavily right-skewed with a large proportion of near-zero values.

We generate 10,000 instances of our variables and partition these into three sets: a training set with
5,000 instances, a calibration set with 2,500 instances, and a test set with 2,500 instances. We then train a
simple linear regression model on each training set using the natural logarithm of y as the target variable
and x; and x; as the predictor variables. Predictions are made on the original y-scale by exponentiating
the model’s predictions.

Next, we compute the non-conformity scores on the calibration set, using the absolute prediction
error as the non-conformity measure. We partition the calibration data into four bins based on the
empirical 25th, 50th, and 75th percentiles of the y values. To highlight the importance of the choice
of bins we also consider two additional scenarios with two and six bins, again based on the empirical
percentiles of the y values in the calibration sets."

We then apply the BCCP algorithm to the test set using both the contiguous (BCCPc) and discontigu-
ous (BCCPd) interval approaches for e = 0.1, giving an expected coverage rate of 90%. The resulting
prediction intervals are compared to those generated by the SCP algorithm, as well as to prediction
intervals generated by alternative methods, including by bootstrapping errors from the calibration set
(either on y or log(y) scale), quantile regression intervals, and parametric prediction intervals based on
the log-normal distribution. For all methods, we evaluate both the overall coverage rate and the average
width of the prediction intervals, as well as their performance across different ranges of y.

3.1. Simulation Results

The mean aggregate and bin-conditional coverage of the simulation study are shown in Table 1. The
table displays both the aggregate coverage as well as the coverage in each of the four quartiles of y for the
SCP, BCCPc, and BCCPd algorithms. The results show that while the SCP algorithm achieves correct
coverage in aggregate, it fails to obtain the correct coverage across different ranges of y. In contrast,
the BCCP algorithms achieve at least the correct coverage in aggregate as well as within each bin it is
conditional on.

The results of the BCCP algorithms with two bins are especially illustrative as they show that the
coverage in both the first two and last two quartiles are correct in aggregate (i.e., marginally), but not
within the individual quartiles. The BCCP algorithms with four and six bins, on the other hand, show
that the coverage is at least at the nominal level for all quartiles as well as in aggregate. As expected, BCCP
with contiguized intervals (BCCPc) slightly over-covers some of the quartiles of y, except when using

*In practice, there is no strict requirement to use empirical percentiles for binning. Instead, the user can define bins based
on regions of the outcome space where they expect the local distribution to differ, or which are of particular interest.
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Table 1. Coverage of the different prediction intervals in aggregate and across empir-
ical quartiles (Q1-Q4) of y in the simulation study. a = 0.1 and expected coverage is

0.90.
Method Aggregate  Qlofy  Q2ofy Q3ofy  Q4ofy
SCP 0.9 0.99 0.98 0.99 0.64
BCCPc (2 bins) 0.9 0.89 0.91 1.00 0.80
BCCPc (4 bins) 0.91 0.90 0.90 0.95 0.90
BCCPc (6 bins) 0.92 0.90 0.90 0.95 0.93
BCCPd (2 bins) 0.9 0.89 0.91 1.00 0.80
BCCPd (4 bins) 0.9 0.90 0.90 0.90 0.90
BCCPd (6 bins) 0.9 0.89 0.90 0.91 0.88
Bootstrap 0.84 1.00 1.00 0.95 0.42
Bootstrap (log) 0.86 0.68 0.98 0.98 0.82
Log-normal 0.9 0.82 0.98 0.98 0.82
Quantile Regression 0.9 0.82 0.98 0.98 0.82

only two bins the results are identical for the discontiguous and contiguous intervals. The discontiguous
intervals (BCCPd) on the other hand, achieve coverage rates only marginally different from the nominal
90% in all bins they are conditional on.

With regards to the alternative methods for generating prediction intervals, the results show that
only the log-normal and quantile regression intervals achieve correct coverage in aggregate, while the
other methods all produce coverage rates that are too low. That the parametric prediction intervals based
on the log-normal distribution and quantile regression achieve the correct coverage in aggregate is not
surprising, as the data was generated from a log-normal distribution. Strikingly, however, not even the
log-normal or quantile regression prediction intervals achieve the correct coverage across the different
ranges of y.

The effect of bin selection on coverage can also be seen in Figure 1 below which shows the coverage
rates across different values of the prediction target. The figure illustrates that as we increase the number
of bins, the coverage becomes more uniform across the range of y, but that non-uniformity may still
occur within the bins. For the highest values of y, the coverage is still much below the desired level
even when using the 6 bin solution. The figure also shows that increasing the number of bins for the
contiguized version of the BCCP algorithm (BCCPc) increases the over-coverage.

Looking at the SCP algorithm, we see that it severely over-covers values of y near zero, where most
of the data are located, and under-covers on the right tail of y, with the bootstrap method producing
similar patterns of coverage. The bootstrap (log), quantile regression, and log-normal intervals produce
near identical coverage patterns, with undercoverage at both tails and over-coverage in the middle of the
distribution. The log-normal prediction intervals, which are clearly unsuited to the prediction problem,
severly under-cover through the entire distribution.

The trade-off between coverage and width is illustrated in Figure 2 which shows the smoothed mean
width of the prediction intervals across the range of predicted y for the prediction interval methods
with correct aggregate coverage. The figure shows that the SCP algorithm produces the narrowest
intervals among the conformal methods, and that increasing the number of bins in the BCCP method
also increases the average width of the intervals. This demonstrates the tradeoff between maintaining
appropriate coverage and the width of the intervals. The quantile regression and log-normal intervals
are, as expected, near identical, and are narrower for lower values of y but increase in width faster than
the conformal counterparts.
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Figure 2. Mean interval width across different values of y. Only the discontiguous version of the BCCP algorithm is shown for legibility.
« =0.1and expected coverage is 0.90.

4, BCCP of Fatalities from Armed Conflict

To test the practical application of the BCCP algorithm and compare it to the SCP algorithm, we
apply both methods to a prediction model for fatalities from armed conflict. Specifically, we apply the
algorithms to one of the constituent models from the VIEWS fatalities forecasting project (Hegre et al.
2022). The model we use is the broad topics constituent model, inspired by Mueller and Rauh (2018),
which consists of a set of 64 predictor features including a number derived from 15 different topics
covered in news articles. The prediction target is the number of fatalities from armed conflict in which
atleast one of the actors is a state (Davies, Pettersson, and Oberg 2023), for each country month between
the years 2000 and 2022.

The prediction target in this application exhibits characteristics that may be challenging from a pre-
diction standpoint. In particular, the prediction target is severely zero-inflated and highly right-skewed
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with approximately 86.7% being zeros and the top 1% of the observations accounting for nearly 75% of
the fatalities.

We obtain the predictions using a standard random forest regressor. In line with ViEWS standards,
we make predictions for the number of fatalities on the loglp scale, i.e., log(fatalities+1) (Hegre et al.
2022). To test whether the prediction intervals we obtain have a correct level of coverage, we run a set
of 1,000 simulations where we randomly partition our data into training (70%), calibration (20%), and
test (10%).

In each simulation, we train the random forest model using the randomly assigned training data,
we then calculate the non-conformity scores by making out-of-sample prediction on the calibration
data, and finally we calculate the prediction intervals on the test data and compute the coverage of the
prediction intervals. We run both an SCP algorithm and the discontiguous BCCP algorithm using 2, 4,
and 7 bins’, as well as alternative algorithms for obtaining the prediction intervals, including quantile
forest intervals, bootstrapped intervals, and different parametric intervals.

In the two-bin version, we split the calibration data into bins based on true zeros versus non-zeros.
In the seven-bin versions we keep one bin for zeros and then split the non-zeros into six bins based
on an exponentially increasing number of fatalities in each bin such that the bins are defined in the
following way; bin 1: 0 fatalities, bin 2: 1-2 fatalities, bin 3: 3-7 fatalities, bin 4: 8-20 fatalities, bin 5: 21-
54 fatalities, bin 6: 55-148 fatalities, and bin 7: 149+ fatalities. In the four-bin version, we use the same
binning structure as the seven-bin version but combine bins 2-3, 4-5, and 6-7. The binning structure
we have chosen is essentially arbitrary, but does result in bins with approximately similar number of
observations outside the bin for zeros. We do not claim that this is the optimal binning structure for
these data but rather a first attempt to explore the potential of the BCCP algorithm on this type of data.
Across all simulations we use o = 0.1 giving an expected coverage of 90% for the prediction intervals.

A further issue with this prediction problem is that since the prediction target is the loglp trans-
formed counts of fatalities, the prediction target is not strictly continuous but rather quasi-continuous,
where the true values are restricted to the loglp transformation of all positive integers. This also poses
a challenge to the continuous conformal prediction algorithm since it limits the valid values of the
prediction interval. To deal with this problem, we make our predictions and prediction intervals on
the original fatality scale by reversing the loglp transformation’ for the predictions and the prediction
intervals. To ensure that the prediction intervals correspond to this data structure, we round the lower
and upper bounds of the prediction intervals to the nearest integer.”

4.1. Results

We begin by comparing the coverage of the algorithms in aggregate as well as across true zeros and
non-zeros. These results can be seen in Table 2 below. These results exhibit the same pattern as in
the simulation study, i.e., that while the SCP algorithm produces an aggregate coverage level close to

5In these simulations we assume that predictions from the models are exchangeable; we thus ignore the panel structure of
the data. We recognize that this is a strong assumption which is unlikely to hold fully in practice. However, the purpose of this
exercise is to test the performance of the prediction intervals in a controlled setting. We also tested the BCCP algorithm on a
standard (single) time series split of the data and found that the results were similar to the results presented here in that the
BCCP algorithm produced prediction intervals with the near correct level of coverage, albeit with a slight under-coverage in
the tails, while the SCP and other alternatives severely over-covered zeros and under-covered the right tail. The results of this
test can be made available on request. We discuss the plausibility of the exchangeability assumption and possible extensions
to deal with this problem in the discussion section.

%We use the discontiguous version of the BCCP algorithm as it is the more principled option which is expected to yield
the nominal level of coverage rather than a slight over-coverage. Tests of the contiguized BCCP algorithm showed that the
performances of the methods do not differ substantially. The results for the contiguized version of the BCCP algorithm can be
made available on request.

"That is, & — 1.

8This approach may lead to a slight under- or over-coverage of the prediction intervals, but we believe that this is a reasonable
approximation given the quasi-continuous nature of the prediction target.
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Table 2. Coverage of predictionintervals. o = 0.1 and expected
coverage is 0.90.

Method Aggregate  Zeros  Non-zeros
SCP 0.92 0.98 0.52
BCCPd (2 bins) 0.90 0.90 0.90
BCCPd (4 bins) 0.90 0.90 0.91
BCCPd (7 bins) 0.90 0.90 0.90
Bootstrap (log) 0.92 0.98 0.51
Bootstrap 0.90 1.00 0.29
Log-normal 0.94 0.99 0.63
Negative Binomial 0.92 0.99 0.44
Poisson 0.90 0.99 0.32
Quantreg 0.99 1.00 0.89
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Figure 3. Coverage of prediction intervals across the seven bins in the data. Only the discontiguous versions of the BCCP algorithm
are shown.

the nominal level’, it both severely over-covers the zeros and under-covers the non-zeros. The BCCP
algorithms, on the other hand, manage to produce an appropriate level of coverage among both zeros
and non-zeros.

For the other methods, the results are mixed. The bootstrapping and parametric methods all produce
coverage levels which are near the user-specified level in aggregate, but severely over-cover the zeros
and under-cover the non-zero observations. The quantile regression intervals cover all zeros, and

The slight over-coverage for the SCP algorithm in the aggregate is likely related to the rounding of the interval edges.
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Figure 4. Mean width of prediction intervals across different number of fatalities.

approximately the correct proportion of non-zero observations. Interestingly, the bootstrapped (log)
intervals have nearly identical coverage rates as the SCP algorithm.

Further dividing the results into the value ranges corresponding to the seven bins used for the BCCP
algorithm, we again see that the coverage remains appropriate for the number of bins used. These results
are shown in Figure 3. This further highlights the flexibility of the BCCP algorithm and the importance
of setting the number of bins so that the coverage is appropriate across the most important ranges of
the prediction target. For the alternative methods, we see that the quantile regression intervals maintain
an appropriate level of coverage across all bins except the first, where it covers all observations, and the
last, where it covers only 80% of the observations. The other methods all exhibit the same pattern with
over-coverages of zeros and ever increasing under-coverages of non-zeros as the number of fatalities
increases.

Lastly, looking at the average width of the prediction intervals, we see that the BCCP algorithm
produces wider intervals than the alternative methods. This is shown in Figure 4 below. This result is in
line with the simulation study, where we saw that the BCCP algorithm produced wider intervals than
the SCP algorithm, and that increasing the number of bins also increased the width of the intervals. This
is a tradeoff where the user needs to weigh the uniformity of the coverage over various regions with the
width of the resulting intervals.

5. Discussion

In this article, we have introduced a new conformal prediction algorithm that maintains an appropriate
level of coverage across different ranges of the prediction target. When the prediction target has a heavily
right-skewed and/or zero-inflated distribution, SCP approaches fail in producing correct coverage
uniformly over the outcome space. We demonstrated that our BCCP method achieves correct coverage
within user-defined bins of values, although at the cost of wider prediction intervals. The method
performed well in both a simulation study and in a real-world application predicting the number of
fatalities from armed conflict.

Furthermore, this article has highlighted the need for developing methods that allow researchers to
produce forecasts which not only give point predictions, but also accurate and interpretable prediction
intervals. The BCCP algorithm extends the applicability of conformal prediction algorithms to a
wider range of prediction problems, as it allows the user to define the most important ranges of the
prediction target and ensures that the prediction intervals are calibrated within these ranges. This may
be particularly important in fields where the end users of the predictions are not experts in statistics
and machine learning but rather stakeholders or policymakers who may need to make decisions based
on the predictions. In this article, we have shown the utility of this method for right-skewed count
data (fatalities) but this framework can be used regardless of many distributional characteristics of the
outcome, including for estimating uncertainty in predicted probabilities.
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The algorithms within the conformal prediction framework assume that the predictions from the
models are exchangeable, meaning that their order does not matter. In the context of conflict prediction,
this assumption may not hold as the data generating process may change over time. Despite this potential
limitation, the strong performance of the BCCP algorithm in the real-world application suggests that
the method may be robust to some violations of this assumption. Additionally, the general approach
presented in this article may also easily be combined with other methods developed for conformal
prediction in applications which do not necessarily fulfill the exchangeability assumption (see, for
instance, Barber et al. 2023; Hjort et al. 2023; Mao, Martin, and Reich 2024).

Selecting the number of bins to use in the BCCP algorithm is a crucial step in the application of
the method. In this article, we have argued that the number of bins should be set by the researcher
based on the data and research question. Essentially, the method requires the bins to be large enough to
contain a sufficient number of observations for the (/2,1 - «/2) quantiles of non-conformity scores
to be estimated with reasonable accuracy in the calibration data, but beyond that the number of bins
and their cut-points can be arbitrarily set by the researcher. While it is possible to simply set a number
of observations to be achieved per bin and then maximize the number of bins, we caution against this
approach as the number of bins will affect the width of the prediction intervals. Instead, the number
of bins should be set such that an appropriate level of coverage is achieved for the most important
ranges of the prediction target, defined by the researcher. However, given a specific application and
evaluation metric, it may also be possible to optimize the number of bins in the BCCP algorithm by
treating it, and the cut-points, as a hyperparameters. Future research should investigate methods for
selecting the number of bins in the BCCP algorithm in such a data-driven manner, for instance by
using cross-validation or other model selection techniques.

We have made the BCCP algorithm available in the pintervals package for R on CRAN.
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