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INVARIANTS AND EXAMPLES OF GROUP ACTIONS ON
TREES AND LENGTH FUNCTIONS

by DAVID L. WILKENS
(Received 18th October 1989)

An action of a group G on a tree, and an associated Lyndon length function /, give rise to a hyperbolic length
function L and a normal subgroup K having bounded action. The Theorem in Section 1 shows that for two
Lyndon length functions I, I to arise from the same action of G on some tree, L=L" and K=K'. Moreover for
L non-abelian L=L' implies K=K’. That this is not so for abelian L is shown in Section 2 where two
examples of Lyndon length functions /, ' on an H.N.N. group are given, with their associated actions on trees,
for which L= L' is abelian but K#K".

1980 Mathematics subject classification (1985 Revision): 20F32, 20E06.

Introduction

A group G acting as a group of isometries on an R-tree T has an associated
hyperbolic length function L: G- R and, for each point ue T, a Lyndon length function
[:G-R. It is shown in [8] that G has a maximal normal subgroup K which has
bounded action on T. Both L and K are determined by the Lyndon lengths I, and these
results are brought together in the theorem in Section 1 where conditions are given for
two Lyndon lengths to arise from an action of G on some tree. A result of [1] shows
that a non-abelian L determines a Lyndon length function, and also the normal
subgroup K. In Section 2 properties of two examples of Lyndon length functions on an
H.N.N. group, and the associated group actions on trees, are given. The examples
illustrate that an abelian L may not determined a Lyndon length function nor the
maximal normal subgroup K associated with an action on a tree.

1. Invariants of actions

Let a group G act as a group of isometries on a metric tree (R-tree) 7. The notation
used follows that of [7], where metric trees are defined, and frequent reference will also
be made to [1], where properties of more general A-trees are established (here A
denotes an ordered abelian group). We note that L and [ used in [1] have been
interchanged.

A function . G-R is called an abstract Lyndon length function if it satisfies the
following axioms for all x, y, ze G:
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A1 I(1)=0;
A2 I(x)=1l(x""1),
A4 ¢(x,y) <c(x, z) implies c(x, y)=c(y, 2),
where c(x, y) =3(1(x) +1(y) = l(xy ™).

For each point ue T a function [l: G—R is defined by I (x)=d(u, xu), where d is the
metric on T It is clear that [, satisfies the axioms listed above and so is a Lyndon length
function. The hyperbolic length function L: G—R is defined by L(x)=inf{d(u, xu); ue T}.
The following property is part of Corollary 6.13 of [1].

Lemma. For any ue T, L{x)=max (0, I(x?) —1,(x)).

The subset N of G consists of the elements xe G with L(x)=0. In Section 7 of [1], the
hyperbolic length L is defined to be abelian if L(xy) =< L(x)+ L(y) for all x,ye G. We note
that if L is abelian then N is a subgroup of G. If not, there exists x,ye N with xy¢ N, in
which case L(x)=L(y)=0 and L(xy)>0. In Theorem 7.8 of [1], for L non-abelian, a
formula is given expressing the Lyndon length [, in terms of L, for some ue T.

By Corollary 2.4 of [8], for N#G, there is a maximal normal subgroup K of G
having bounded action on T; and for any ue T, K =core H, where

H,={aeG;l(ax)=I(x) for all x¢ N}.

It follows that K< N.

For I:G—R an abstract Lyndon length function the associated hyperbolic length
function L:G—R is defined by L(x)=max(0,/(x?)—I(x)) and, for N#G, the maximal
normal subgroup K of G with bounded action is defined by K=core H where
H={a€eG; l(ax)=I(x) for all x¢ N}. By the lemma the condition N #G is equivalent to
L+#0 on G (i.e. there is some xe G with L(x)>0). For a Lyndon length function I G- R,
L' and K’ are similarly defined.

Theorem. Let I, I'G—>R be Lyndon length functions with L, L' #0. If there exists an
action of G on a tree T, and points v, we T with =1, I'=1,, then
(i) L=L, and (ii) K=K'.
Moreover if L is non-abelian then (i) implies (ii).
Proof. By the lemma and Corollary 2.4 of [8], L and K are invariants of the action
of G on T, and are determined by the Lyndon length function at any point of T. It

follows that L=L"and K=K".
If L=L' is non-abelian then by Theorem 7.8 of [1] a Lyndon length function I, is
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determined by L, and [, arises at some point u on any tree on which G acts having
hyperbolic length L=L’. Hence K =K'=core H,.

For an abstract Lyndon length function l: G—-R Chiswell [2] defines an associated
tree 7, with a distinguished point ue T, and an action of G on T such that I=[,. We
recall some details of the construction. The points of T are equivalence classes [(x,r)]
for all xeG, 0<r£i(x), and u=[(x,0)]. Under the action of G the image xu=[(x, (x))].
For v,weT, [v,w] denotes the segment of T from v to w. For x,yeG then
[u, xu]  [u, yu] = [u, v] where the distance d(u,v)=c(x ™',y ™) =3((x) + I(y) —l(x " 'y)).

For an action of a group G on a tree T each element x¢ N has a unique axis in T.
The axis={veT; L(x)=I,x)}, and is an isometric image of R on which x acts by
translation through L(x). The existence of axes is established in Theorem 6.6 of [1] and
Theorem 11.2.3 of [5], where it is also shown that the axis={,.z [x"v, x""'v], where for
any ue T, [u, xu] n [u,x~ 'u]=[u,v]. If T arises by Chiswell’s construction from a length
I then I(x) =d(u, xu), and the part of [u, xu] intersecting the axis for x, that is [v, xv], is
the middle section of length L(x).

2. Two examples

The theorem raises the question of whether condition (i) implies condition (ii) if L is
abelian. The following examples of Lyndon lengths I, I’ on a group G with L=L’, but
K #K’, show that this is not true in general.

Let G be the group with generators ¢, g, for ie Z and relations t " 'g; t=g;,,, for ie Z.
Let N be the subgroup generated by the generators g;, for ieZ. Then N is a normal
subgroup of G, and G is an H.N.N. extension with base N and single stable letter r. Any
element x of G can be uniquely written as x=at" for some ae N, re Z.

Define : G—R by I(at")=|r|. It is easily shown that [ is a Lyndon length function. In
fact, in the notation of [6], [ is an extension of [, =0 on N by [, on G/N, an infinite
cyclic group, where I,(¢"N)=|r|.

For the identity element 1€ N, define m(1)= —co. For a#1 in N, if a=gj'gi.. gi¥,
g;=*1, in reduced form, define m(a)=2max(i,i,,...,i). For all ae N and re Z define
a=t""at'. If a=gj'g....gi*, in reduced form, then by repeated application of the

relations, a, =g, ,8i2,,...gi%+,, and so m(a,) =m(a) +2r.

https://doi.org/10.1017/50013091500007197 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500007197

316 D. L. WILKENS

Define I' G- R by I'(at”) =max {m(a) +r, |r|}. It is shown in Theorem 2 of [3] that I is
a Lyndon length function, and that N has unbounded lengths.

Proposition 1. The Lyndon length functions I, I'G—R have L(at")=L(at")=|r| with
K=N and K'={1}.

Proof. For x=at" then x?>=at"at" =aa_,t*". Thus I(x?)=|2r| and I(x)=|r|, and hence
1(x?) —I(x)=2r| = |r|=|r| 20

by the lemma L(x)=max (0, !(x?) —I(x)) =r|.

From the definition of the function m above, if r=0 then m(aa_,)=m(a) and if r<0
then m(aa_,)=m(a_,)=m(a)—2r. Thus for r=0, I'(x) =max (m(a)+r,r) and

I'(x?)=max (m(aa_,) + 2r, 2r) =max (m(a) + 2r, 2r).

The maximum will be achieved in the same position for I'(x?) and I(x) and so
I(x) =l (x)=r=(m(a)+2r) —(m(a) +r)=2r—r. For r<0, I'(x)=max(m(a)+r, —r) and
I'(x*)=max (m(aa_,) + 2r, — 2r) =max ((m(a) — 2r) + 2r, — 2r)=max (m(a), —2r). The maxi-
mum will be achieved in the same position for ['(x?) and I(x) and so I'(x})—l(x)= —r=
m(a)—(m(a)+r) = —2r —(—r). We therefore have L'(x)=|r|.

The length function ! has zero length for all elements of N and so K=N.

For aeN, I'(t "at")=I(a,) =max(m(a,),0) =max (m(a) +2r,0). So for a#1 the lengths
I'(t ""at") are unbounded for r>0. Thus any non-trivial normal subgroup of G, contained
in N, will have unbounded lengths under /'. It follows that K'={1}.

For an action of a group on a tree giving a non-abelian hyperbolic length function
Theorem 7.8 of [1] determines a Lyndon length function of the action solely in terms of
the hyperbolic length function. Since the maximal normal subgroup having bounded
action on a tree is an invariant of the action, and since Proposition 1 gives K#K’ it
follows that the Lyndon length functions ! and ! cannot arise from the same action of G
on some tree. A corresponding result to Theorem 7.8 for abelian hyperbolic length
functions is therefore not possible.

For the example of the Lyndon length function I: G- R it can be easily shown that
Chiswell’s construction gives a tree T which is an isometric copy of R on which at" acts
by translation through r. T is the axis for all elements not in N. This is an example of
the case (n A,# ¢) described in part (b) of Theorem 7.5 of [1].

Chiswell’s construction for I': G—R gives a tree T, with base point u, and an action of
G on T’ such that I'=1,. This is the situation described in Theorem 5 of [4], where N
has unbounded lengths and so, by Theorem 3.2 of [7], fixes no point of T". It is also
described in case (g) of part (b) of Theorem 7.5 of [1], where it is shown that G fixes a
unique end of T’. We illustrate this result by considering the axes in T'. Elements
x,y¢ N are said to be cyclically related if there exists r, s with x"=)". An element has
the same axis as a power and so cyclically related elements have identical axes. A half-
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line in T’ is an isometric image of (—0,0]. For teG, I'(t)=L'(t)=1 and so the axis for ¢
consists of U,,ez [u,t"u]. By the left of this axis we mean the direction from u to ¢, ", for
n>0.

Proposition 2. Under the action of G on T’ two non cyclically related elements, not in
N, have axes that intersect in a half-line. In particular the axes for t and at” (r>0) agree
from the left to the point t~™@/2)y,

Proof. We first consider the axes for ¢ and at’, with r>0. For k>0, (at")*=
at'at’...at’=aa_,a_,,...a_g " =bt’, writing b=aa_,...a_y_,, and s=kr. Since
r>0, m(b)=m(a). Let x=t" and y=(at")*=bt* where n>0 will be taken to be as large as
we like. The Lyndon lengths I'(x)=n and

I'(y)=max {m(b) +5_ max {m(az +s
s

Following Chiswell’s construction we compare the segments [u,x 'u] and [u,y~ 'u],
and the segments [u, xu] and [u, yu].

The segments [u, x ~'u] and [u, y~'u] coincide to a distance c(x, y) from u where
2¢(x, y) =T +1(y) = l(xy™")
=Io)+I(y)—1yx")

=I(x)+1I(y)=rpe™)

— n+max {m(b:+s—max {m(b)+s—n

n—s

m(b) +s—(n—s)

=n+max{
S

25 for n sufficiently large.

{m(b) +2s {m(a) +2s
=max =max
2s

For m(a)<0, I'(y)=L'(y)=s and so [u,y~ 'u] is contained in the axis for y, which is also
the axis for at". Since c(x,y)=s, [u, y~'u] is contained in [u, x ™ 'u], and hence, since the
above holds for any k>0, the axis for at” agrees from the left with the axis for ¢ at least
as far as the point u. For m(a)>0, I'(y)=m(a)+s and L'(y)=s, and so the part of the
axis of y in [u,y ™~ 'u] is the middle section of length s. Since c¢(x, y)=(m(a)/2) +s this lies
in [u,x " 'u]. Since the section of [u,y~'u] to distance m(a)/2 from u is not in the axis
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for y it follows that the axis for at" coincides with that for ¢ from the left to a distance
m(a)/2 to the left of u, that is to the point ¢t~ ™@/2)y,

For m(a) <0, when I'(y)=s, consider the segments [u,xu] and [u, yu] which coincide
up to a distance ¢(x~!,y~!) from u, where

2c(x™ 1 yT ) =1+ 1) =171y =10 + () = I(t~"brY)

=) +1(y) =B

4 s—max {m(b,,)+s—n=n+s_max{(m(b)+2,,)+s_n
h—s n—s
=n+s—max {m(b) +tndts for n sufficiently large.
n—s

For k, and hence s, sufficiently large 2c(x ™1,y ") =n+s—(m(b) +n+s) = —m(b) = —m(a).
[u, yu] lies in the axis for y, which is the axis for at”, and this coincides with [u, xu] to a
distance c(x~ !,y ') = —(m(a)/2) from u. Thus the axis for at" coincides with the axis for
t from the left to a distance —(m(a)/2) to the right of u, that is to the point ¢~ ™@/2)y,

Now consider the axes for two general elements at’, bt’, taking r, s>0 since the axis
for an element is the axis for its inverse. Since their axes agree from the left with the
axis for ¢ their intersection must agree from the left at least as far as the point ™ ‘u
where c¢=max (m(a)/2,m(b)/2). The two axes must therefore either be identical or
intersect in a half-line. If m(a)#m(b) then the two axes will separate at the point ¢t u
and so intersect in a half-line. An element has the same axis as a power and so powers
can be taken to equate powers of t. It suffices therefore to consider elements x=at” and
y=>bt'", and it remains to consider the case m(a)=m(b). For x and y non cyclically
related a#b. Moreover, since taking powers of x and y gives similar elements, it can be
assumed that r is as large as we please. Thus

”’("r)*’ and L'(x)=L(y)=r.

I'(x) =I'(y) = max {
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Consider the segments [u,xu] and [u,yu] which coincide to a distance ¢(x~',y~ ')
where

2(x7Hy™ )=+ () - 1(x""y)
=l(x)+I(y)—(t™"a " br")

= 1) +1()~I(a; b))

-1
=2max {m(a: tr_ max {m(a,o br)

-1
— 2max {m(a) +r_ {m(a 0b) +2r
r

—2max {'"(“r) T (m(ab)+20)

_ -1
=max {Zm(a) m(a”b) for r sufficiently large.

—m(a~'b)

The parts of the axes for x and y within [u, xu] and [u, yu] respectively extended to a
distance (m(a)/2) +r from u. For r sufficiently large this will be greater than c(x~!,y™?),
which is independent of r, and so the two axes will diverge at this point. The two axes
therefore intersect in a half-line.
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