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Universidade de Lisboa, 1049-001 Lisboa, Portugal
e-mail: cvalls@math.ist.utl.pt

(Received 6 March 2014; accepted 5 October 2014; first published online 21 July 2015)

Abstract. We show that any evolution family with a strong nonuniform
exponential dichotomy can always be transformed by a topological equivalence to a
canonical form that contracts and/or expands the same in all directions. We emphasize
that strong nonuniform exponential dichotomies are ubiquitous in the context of
ergodic theory. The main novelty of our work is that we are able to control the
asymptotic behaviour of the topological conjugacies at the origin and at infinity.

2010 Mathematics Subject Classification. 37D10, 37D25.

1. Introduction. We consider an evolution family U(t, s) with a strong
nonuniform exponential dichotomy on a Banach space. This means that besides having
contraction in the stable direction for positive time and in the unstable direction for
negative time, the contraction is at most exponential. We show that a strong nonuniform
exponential dichotomy can always be transformed by a topological equivalence to a
canonical form that contracts and/or expands the same in all directions. This means
that there exist homeomorphisms ht such that

U(t, s) ◦ hs = ht ◦ V (t, s)

for every t and s, where V (t, s) is the evolution family determined by an autonomous
equation

x′ = −x, y′ = y.

This result was first established in [4], where it was also shown that there exist always
homeomorphisms ht that are locally Hölder continuous. Here, we use instead an
approach inspired in [12], which considers the particular case of uniform exponential
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dichotomies, that allows us to control the asymptotic behaviour of the maps ht at zero
and at infinity (the case of finite-dimensional spaces was considered earlier in [9]). We
note that this type of control was not obtained in [4]. The proof consists of constructing
explicitly the homeomorphisms ht. We refer to [1, 10, 14] for earlier related work.

The notion of a (uniform) exponential dichotomy, introduced by Perron in [11],
plays a central role in the stability theory of differential equations. In particular,
there exist large classes of linear differential equations with exponential dichotomies.
We refer the reader to the books [6, 7, 13] for details and references. On the other
hand, the notion of an exponential dichotomy is too stringent for the dynamics
and it is of interest to look for more general types of hyperbolic behaviour that
can be much more typical. This is precisely what happens with the notion of a
nonuniform exponential dichotomy. We refer the reader to [5] for a systematic study
of some of its consequences, in particular concerning the existence and smoothness
of invariant manifolds, the Grobman–Hartman theorem, and the existence of centre
manifolds, among other topics. From the point of view of ergodic theory, the notion
of a nonuniform exponential dichotomy is the typical situation for a dynamics with
nonzero Lyapunov exponents. The nonuniform part of the dichotomy can be made
arbitrarily small for almost all trajectories, although not necessarily zero. This is a
simple consequence of Oseledets’ multiplicative ergodic theorem in [8] (see [2] for a
detailed discussion). On the other hand, by work in [3], for certain classes of measure-
preserving transformations, the nonuniform part of the dichotomy cannot be made
zero on a set of full topological entropy and full Hausdorff dimension.

We emphasize that strong nonuniform exponential dichotomies are also
ubiquitous in the context of ergodic theory. More precisely, for a flow preserving
a finite measure and having only nonzero Lyapunov exponents, almost all linear
variational equations have a strong nonuniform exponential dichotomy (see [2] for
details). We note that there are plenty examples of measure-preserving flows. For
example, any Hamiltonian system restricted to a compact energy hypersurface is a
measure-preserving flow. Moreover, any geodesic flow on a compact manifold with
negative curvature is a measure-preserving flow and has nonzero Lyapunov exponents
(in fact it is an Anosov flow). We refer the reader to [2] for the description of many
other examples.

2. Nonuniform exponential behaviour. Let L(E) be the set of all bounded linear
operators acting on a Banach space E. A family of linear operators

U = {
U(t, s) : t, s ∈ �, t ≥ s

} ⊂ L(E)

is called an evolution family if:

(1) U(t, t) = Id and

U(t, s)U(s, r) = U(t, r) for t ≥ s ≥ r; (1)

(2) for each s ∈ � and x ∈ E, the map t �→ U(t, s)x is continuous.

Moreover, U is said to be a reversible evolution family if U(t, s) is invertible for all t ≥ s.
In this case, we write U(s, t) = U(t, s)−1 for t ≥ s and (1) holds for all t, s, r ∈ �.
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Let F be the set of all increasing continuous functions ρ : � → � with ρ(0) = 0.
Given ρ ∈ F, we write

�(t, s) = ρ(t) − ρ(s).

A reversible evolution family U is said to admit a strong ρ-nonuniform exponential
dichotomy if there exist complementary projections P(t) + Q(t) = Id for t ∈ � and
constants K, λ, α > 0 with λ ≤ α and ε ≥ 0 such that

P(t)U(t, s) = U(t, s)P(s) (2)

for t, s ∈ �,

‖U(t, s)P(s)‖ ≤ Ke−λ�(t,s)+ε|ρ(s)|, ‖U(s, t)Q(t)‖ ≤ Ke−λ�(t,s)+ε|ρ(t)| (3)

for t, s ∈ � with t ≥ s and

‖U(t, s)P(s)‖ ≤ Ke−α�(t,s)+ε|ρ(s)|, ‖U(s, t)Q(t)‖ ≤ Ke−α�(t,s)+ε|ρ(t)| (4)

for t, s ∈ � with t ≤ s.
Moreover, U is said to admit a strong ρ-exponential dichotomy with respect to

a family of norms ‖·‖∗
t if there exist complementary projections P(t) + Q(t) = Id for

t ∈ � and constants K, λ, α > 0 with λ ≤ α such that (2) holds for t, s ∈ � as well as

‖U(t, s)P(s)x‖∗
t ≤ Ke−λ�(t,s)‖x‖∗

s , ‖U(s, t)Q(t)x‖∗
s ≤ Ke−λ�(t,s)‖x‖∗

t

for x ∈ E and t, s ∈ � with t ≥ s and

‖U(t, s)P(s)x‖∗
t ≤ Ke−α�(t,s)‖x‖∗

s , ‖U(s, t)Q(t)x‖∗
s ≤ Ke−α�(t,s)‖x‖∗

t

for x ∈ E and t, s ∈ � with t ≤ s.
The following result gives a characterization of the notion of a strong ρ-

nonuniform exponential dichotomy.

THEOREM 1. For a reversible evolution family U, the following properties are
equivalent:

(1) U admits a strong ρ-nonuniform exponential dichotomy;
(2) U admits a strong ρ-exponential dichotomy with respect to a family of norms ‖·‖∗

t
satisfying

‖x‖ ≤ ‖x‖∗
t ≤ Ceε|ρ(t)|‖x‖ (5)

for some constant C > 0.

Proof. Assume first that U admits a strong ρ-nonuniform exponential dichotomy.
For x ∈ E and t ∈ �, we define

‖x‖∗
t = ‖x1‖∗

t + ‖x2‖∗
t ,

where

‖x1‖∗
t = sup

σ≥t

(‖U(σ, t)P(t)x‖eλ�(σ,t)) + sup
σ<t

(‖U(σ, t)P(t)x‖eα�(σ,t))
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and

‖x2‖∗
t = sup

σ<t

(‖U(σ, t)Q(t)x‖eλ�(t,σ )) + sup
σ≥t

(‖U(σ, t)Q(t)x‖eα�(t,σ )).
First, we show that (5) holds. Since

‖x1‖∗
t ≥ ‖P(t)x‖, ‖x2‖∗

t ≥ ‖Q(t)x‖,

we have

‖x‖ = ‖P(t)x + Q(t)x‖
≤ ‖P(t)x‖ + ‖Q(t)x‖
≤ ‖x1‖∗

t + ‖x2‖∗
t = ‖x‖∗

t .

Moreover, using (3) and (4) we obtain

‖x1‖∗
t ≤ sup

σ≥t

(‖U(σ, t)P(t)x‖eλ�(σ,t)) + sup
σ<t

(‖U(σ, t)P(t)x‖eα�(σ,t))
≤ 2Keε|ρ(t)|

and

‖x2‖∗
t ≤ sup

σ<t

(‖U(σ, t)Q(t)x‖eλ�(t,σ )) + sup
σ≥t

(‖U(σ, t)Q(t)x‖eα�(t,σ ))
≤ 2Keε|ρ(t)|,

which shows that (5) holds with C = 2K .
For y = P(s)x and t ≥ s, we have

‖U(t, s)y‖∗
t = sup

σ≥t

(‖U(σ, t)U(t, s)y‖eλ�(σ,t))
+ sup

σ<t

(‖U(σ, t)U(t, s)y‖eα�(σ,t))
≤ sup

σ≥t

(‖U(σ, s)y‖eλ�(σ,t)) + sup
s≤σ<t

(‖U(σ, s)y‖eα�(σ,t))
+ sup

σ<s

(‖U(σ, s)y‖eα�(σ,t))
≤ 2 sup

σ≥s

(‖U(σ, s)y‖eλ�(σ,t)) + sup
σ<s

(‖U(σ, s)y‖eα�(σ,t)),
where in the last inequality we have used that λ ≤ α. Hence,

‖U(t, s)y‖∗
t ≤ 2e−λ�(t,s) sup

σ≥s

(‖U(σ, s)y‖eλ�(σ,s))
+ e−α�(t,s) sup

σ<s

(‖U(σ, s)y‖eα�(σ,s))
≤ 2e−λ�(t,s)‖x‖∗

s
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again sing λ ≤ α. Analogously, for z = Q(t)x and t ≥ s, we have

‖U(s, t)z‖∗
s = sup

σ≤s

(‖U(σ, s)U(s, t)y‖eλ�(σ,s))
+ sup

σ>s

(‖U(σ, s)U(s, t)z‖eα�(σ,s))
≤ sup

σ≤s

(‖U(σ, t)z‖eλ�(σ,t)) + sup
s<σ≤t

(‖U(σ, t)z‖eα�(σ,t))
+ sup

σ>t

(‖U(σ, t)z‖eα�(σ,s))
≤ 2 sup

σ≤t

(‖U(σ, t)z‖eλ�(σ,s)) + sup
σ>t

(‖U(σ, t)z‖eα�(σ,s)).
Hence,

‖U(s, t)z‖∗
s ≤ 2e−λ�(t,s) sup

σ≤t

(‖U(σ, t)z‖eλ�(σ,t))
+ e−α�(t,s) sup

σ>t

(‖U(σ, t)z‖eα�(σ,t))
≤ 2e−λ�(t,s)‖x‖∗

t .

One can show in a similar manner that

‖U(t, s)P(s)x‖∗
t ≤ e−α�(t,s)‖x‖∗

s

and

‖U(s, t)Q(t)x‖∗
s ≤ e−α�(t,s)‖x‖∗

t

for t ≤ s. Therefore, U admits a strong ρ-exponential dichotomy with respect to the
family of norms ‖·‖∗

t .
Conversely, assume that U admits a strong ρ-exponential dichotomy with respect

to a family of norms ‖·‖∗
t satisfying (5). Then,

‖U(t, s)P(s)x‖ ≤ ‖U(t, s)P(s)x‖∗
t

≤ Ke−λ�(t,s)‖x‖∗
s

≤ KCe−λ�(t,s)+ε|ρ(s)|‖x‖
and

‖U(s, t)Q(t)x‖ ≤ ‖U(t, s)Q(s)x‖∗
s

≤ Ke−λ�(t,s)‖x‖∗
t

≤ KCe−λ�(t,s)+ε|ρ(t)|‖x‖

for x ∈ E and t ≥ s. Similarly,

‖U(t, s)P(s)x‖ ≤ KCe−α�(t,s)+ε|ρ(s)|‖x‖

and

‖U(s, t)Q(t)x‖ ≤ KCe−α�(t,s)+ε|ρ(t)|‖x‖
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for x ∈ E and t ≤ s. This shows that U admits a strong ρ-nonuniform exponential
dichotomy. �

3. Reduction to a canonical form. In this section, we show that an evolution family
admitting a strong ρ-nonuniform exponential dichotomy can always be transformed
to a canonical form that expands and/or contracts the same in all directions.

We first introduce the notion of a topological equivalence. Two reversible evolution
families U = {U(t, s)} and V = {V (t, s)} are ρ-nonuniformly topologically equivalent if
there exists a continuous map h : � × E → E, an increasing onto map L : �+

0 → �+
0

and a constant c ≥ 0 such that:

(1) ht = h(t, ·) : E → E is a homeomorphism for t ∈ �;
(2) U(t, s) ◦ hs = ht ◦ V (t, s) for t, s ∈ �;
(3) for t ∈ � and x ∈ E,

‖ht(x)‖ ≤ L(ec|ρ(t)|‖x‖) and ‖h−1
t (x)‖ ≤ L(ec|ρ(t)|‖x‖).

THEOREM 2. Given a reversible evolution family U and a C1 onto function ρ ∈ F,
if U admits a strong ρ-nonuniform exponential dichotomy, then it is ρ-nonuniformly
topologically equivalent to the evolution family

V (t, s) = e�(s,t)P(0) + e�(t,s)Q(0).

Proof. Write ω = ρ ′ (note that ω is a continuous function). For each t ∈ � and
x ∈ E, let

‖x‖t =
∫ ∞

t
‖UP (ξ, t) x‖∗

ξ ω (ξ ) dξ +
∫ t

−∞

∥∥UQ (ξ, t) x
∥∥∗

ξ
ω (ξ ) dξ,

where

UP(t, s) = U(t, s)P(s) and UQ(t, s) = U(t, s)Q(s).

Since ω > 0, the map x �→ ‖x‖t is a norm on E for each t.

LEMMA 1. For t ∈ � and x ∈ E, we have

1
Kα

‖x‖∗
t ≤ ‖x‖t ≤ 4K

λ
‖x‖∗

t . (6)

Proof of the lemma. Clearly,

‖x‖t = ‖P(t)x‖t + ‖Q(t)x‖t,

where

‖P(t)x‖t =
∫ ∞

t
‖UP(ξ, t)x‖∗

ξω(ξ ) dξ

and

‖Q(t)x‖t =
∫ t

−∞
‖UQ(ξ, t)x‖∗

ξω(ξ ) dξ.
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By Theorem 1, we have

‖P(t)x‖t ≤ 2K‖x‖∗
t

∫ ∞

t
e−λ�(ξ,t)ω(ξ ) dξ = 2K

λ
‖x‖∗

t

and similarly,

‖Q(t)x‖t ≤ 2K
λ

‖x‖∗
t . (7)

This yields the second inequality in (6). Moreover, for ξ ≥ t we have

‖P(t)x‖∗
t ω(ξ ) ≤ ‖UP(t, ξ )‖∗

t ‖UP(ξ, t)x‖∗
ξω(ξ )

≤ Keα�(ξ,t)‖UP(ξ, t)x‖∗
ξω(ξ ).

Therefore,

‖P(t)x‖t ≥ ‖P(t)x‖∗
t

K

∫ ∞

t
e−α�(ξ,t)ω(ξ ) dξ = ‖P(t)x‖∗

t

αK

and analogously,

‖Q(t)x‖t ≥ ‖Q(t)x‖∗
t

αK
. (8)

The first inequality in (6) follows now readily from (7) and (8). �
Write U(t) = U(t, 0), P = P(0) and Q = Q(0).

LEMMA 2. The following properties hold:

(1) t �→ ‖U(t)Px‖t is strictly decreasing and t �→ ‖U(t)Qx‖t is strictly increasing;
(2) for each x ∈ (PE ∪ QE) \ {0}, there exists a unique t ∈ � such that ‖U(t)x‖t = 1.

Proof of the lemma. Since

‖U(t)Px‖t =
∫ ∞

t
‖UP(ξ, 0)x‖∗

ξω(ξ ) dξ, (9)

we have

d
dt

‖U(t)Px‖t = −‖UP(t, 0)x‖∗
t ω(t) < 0.

Similarly, since

‖U(t)Qx‖t =
∫ t

−∞
‖UQ(ξ, 0)x‖∗

ξω(ξ ) dξ,

we have

d
dt

‖U(t)Qx‖t = ‖UQ(t, 0)x‖∗
t ω(t) > 0.

This yields the first property.
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Now, we establish the second property. By (9), we have ‖U(t)Px‖t → 0 when
t → ∞. On the other hand, for t ≤ ξ ≤ 0 we have

‖Px‖∗
0ω(ξ ) ≤ ‖UP(0, ξ )‖∗

0‖UP(ξ, 0)x‖∗
ξω(ξ )

≤ Keλρ(ξ )‖UP(ξ, 0)x‖∗
ξω(ξ )

and thus,

‖U(t)Px‖t ≥
∫ 0

t
‖UP(ξ, 0)x‖∗

ξω(ξ ) dξ

≥ ‖Px‖∗
0

K

∫ 0

t
e−λρ(ξ )ω(ξ ) dξ = ‖Px‖∗

0

Kλ
e−λρ(t).

Therefore, ‖U(t)Px‖t = ∞ when t → −∞, provided that Px �= 0. One can show in a
similar manner that

lim
t→∞‖U(t)Qx‖t = ∞ and lim

t→−∞‖U(t)Qx‖t = 0,

provided that Qx �= 0. The desired property follows now readily from the first
property. �

We proceed with the proof of the theorem. Define maps

hP
t : PE → P(t)E and hQ

t : QE → Q(t)E

by

hP
t (x) =

{
U(t)x/‖U(ρ−1(ρ(t) + log‖x‖∗

t ))x‖ρ−1(ρ(t)+log‖x‖∗
t ), x �= 0,

0, x = 0
(10)

and

hQ
t (x) =

{
U(t)x/‖U(ρ−1(ρ(t) − log‖x‖∗

t ))x‖ρ−1(ρ(t)−log‖x‖∗
t ), x �= 0,

0, x = 0.
(11)

Finally, we define ht : E → E by

ht(x) = hP
t (Px) + hQ

t (Qx).

In order to show that these maps yield a topological equivalence, we divide the proof
into steps.

Step 1. Invariance. We first show that

ht
(
e�(s,t)Px + e�(t,s)Qx

) = U(t, s)hs(x). (12)

For x ∈ PE, we have

hP
t (e−ρ(t)x) = e−ρ(t)U(t)x

e−ρ(t)‖U(ρ−1(s))x‖ρ−1(s)

= U(t)x
‖U(ρ−1(log‖x‖∗

t ))x‖ρ−1(log‖x‖∗
t )

= U(t)hP
0 (x),
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where

s = ρ(t) + log‖e−ρ(t)x‖∗
t = log‖x‖∗

t ,

and analogously,

hQ
t (eρ(t)x) = U(t)hQ

0 (x)

for x ∈ QE. Adding the former identities, we obtain ht ◦ V (t) = U(t) ◦ h0, where V (t) =
V (t, 0). This readily implies that

ht ◦ V (t, s) = U(t, s) ◦ hs

and so identity (12) holds.

Step 2. Injectivity of the maps ht. Assume that hP
t (x) = hP

t (y). Then,

x
‖U(τ1)x‖τ1

= y
‖U(τ2)y‖τ2

= ξ ∈ PE, (13)

where

τ1 = ρ−1(ρ(t) + log‖x‖∗
t )

and

τ2 = ρ−1(ρ(t) + log‖y‖∗
t ).

Therefore,

‖U(τ1)ξ‖τ1 = ‖U(τ2)ξ‖τ2 = 1,

which implies that τ1 = τ2. Hence, ‖x‖ = ‖y‖ and it follows from (13) that

c := ‖U(τ1)x‖τ1 = ‖U(τ2)y‖τ2 .

Therefore, x = y = cξ . The injectivity of the maps hQ
t can be proved in a similar manner.

This readily implies that the maps ht are one-to-one.

Step 3. Surjectivity of the maps ht. Take y ∈ P(t)E. If hP
t (x) = y, then

x
‖U(τ )x‖τ

= PU(t)−1y,

where

τ = ρ−1(ρ(t) + log‖x‖∗
t ). (14)

Therefore, ‖U(τ )PU(t)−1y‖τ = 1 (the existence and uniqueness of τ is guaranteed by
Lemma 2). By (14), we obtain

e�(τ,t) = ‖x‖∗
t = ‖U(τ )x‖τ‖PU(t)−1y‖∗

t ,
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that is,

‖U(τ )x‖τ = ‖x‖∗
t

‖PU(t)−1y‖∗
t

= e�(τ,t)

‖PU(t)−1y‖∗
t
.

Moreover,

x = ‖U(τ )x‖τ PU(t)−1y = e�(τ,t) PU(t)−1y
‖PU(t)−1y‖∗

t
.

Similarly, if hQ
t (x) = y, then

x = e�(t,η) QU(t)−1y
‖QU(t)−1y‖∗

t

for a unique η (whose existence and uniqueness is guaranteed by Lemma 2).
This shows that hP

t and hQ
t are invertible, with inverses given by

(hP
t )−1(y) = e�(τ,t) PU(t)−1y

‖PU(t)−1y‖∗
t

(15)

and

(hQ
t )−1(y) = e�(t,η) QU(t)−1y

‖QU(t)−1y‖∗
t
. (16)

Then, ht is also invertible and its inverse h−1
t : E → E is given by

h−1
t (y) = (hP

t )−1(P(t)y) + (hQ
t )−1(Q(t)y).

Step 4. Existence of the map L. Take x ∈ PE. By (6) and (10), for

τ = ρ−1(ρ(t) + log‖x‖∗
t )

we have

‖hP
t (x)‖∗

t = ‖U(t)x‖∗
t

‖U(τ )x‖τ

≤ Kα
‖U(t)x‖∗

t

‖U(τ )x‖∗
τ

.

If ‖x‖∗
t ≤ 1, then since e�(τ,t) = ‖x‖∗

t , we have τ ≤ t and using (5),

‖hP
t (x)‖ ≤ ‖hP

t (x)‖∗
t

≤ αK
‖UP(t, τ )‖∗

t ‖U(τ )x‖∗
τ

‖U(τ )x‖∗
τ

≤ αK2e−λ�(t,τ ) = αK2(‖x‖∗
t )λ

≤ αK2Cλeελ|ρ(t)|‖x‖λ.

(17)

If ‖x‖∗
t > 1, then τ > t and using (5),

‖hP
t (x)‖ ≤ ‖hP

t (x)‖∗
t ≤ Kα‖UP(t, τ )‖∗

t ≤ αK2eα�(τ,t)

= αK2(‖x‖∗
t )α ≤ αK2Cαeεα|ρ(t)|‖x‖α.

(18)
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Similarly, using (11), we obtain

‖hQ
t (x)‖∗

t = ‖U(t)x‖∗
t

‖U(η)x‖η

≤ αK
‖U(t)x‖∗

t

‖U(η)x‖∗
η

for x ∈ QE, where

η = ρ−1(ρ(t) − log‖x‖∗
t )

or, equivalently, ‖x‖∗
t = e�(t,η). If ‖x‖∗

t ≤ 1, then t ≤ η and using (5),

‖hQ
t (x)‖ ≤ ‖hQ

t (x)‖∗
t ≤ αK2(‖x‖∗

t )λ

≤ αK2Cλeελ|ρ(t)|‖x‖λ.
(19)

On the other hand, if ‖x‖∗
t > 1, then t > η and using (5),

‖hQ
t (x)‖ ≤ ‖hQ

t (x)‖∗
t ≤ αK2(‖x‖∗

t )α

≤ αK2Cαeεα|ρ(t)|‖x‖α.
(20)

Now we observe that by (15),

‖(hP
t )−1(y)‖∗

t = e�(τ,t), (21)

where τ is determined by the identity

1 = ‖U(τ )PU(t)−1y‖τ = ‖UP(τ, t)y‖τ

=
∫ ∞

τ

‖UP(ξ, 0)U(t)−1y‖∗
ξω(ξ ) dξ

=
∫ ∞

τ

‖UP(ξ, t)y‖∗
ξω(ξ ) dξ.

If t ≥ τ , then∫ t

τ

‖UP(ξ, t)y‖∗
ξω(ξ ) dξ =

∫ ∞

τ

‖UP(ξ, t)y‖∗
ξω(ξ ) dξ −

∫ ∞

t
‖UP(ξ, t)y‖∗

ξω(ξ ) dξ

= 1 − ‖y‖t

and thus ‖y‖t > 1. By (6) and Lemma 2, we obtain

∫ t

τ

‖UP(ξ, t)y‖∗
ξω(ξ ) dξ ≤ Kα

∫ t

τ

‖UP(ξ, t)y‖ξω(ξ ) dξ

= Kα

∫ ρ(t)

ρ(τ )
‖UP(ρ−1(η), t)y‖ρ−1(η) dη

≤ Kα(ρ(t) − ρ(τ )) sup
ρ(t)≤η≤ρ(τ )

‖UP(ρ−1(η), t)y‖ρ−1(η)

= Kα(ρ(t) − ρ(τ ))‖UP(τ, t)y‖τ

= Kα�(t, τ ).
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Hence, using (5) and (6), yields that

1 − K
λ

Ceε|ρ(t)|‖y‖ ≤ 1 − K
λ

‖y‖∗
t ≤ 1 − ‖y‖t = Kα�(t, τ )

and thus,

�(τ, t) ≤ Kα

1 − KC
λ

eε|ρ(t)|‖y‖ ≤ −αλe−ε|ρ(t)|

C‖y‖ .

By (21), we conclude that

‖(hP
t )−1(y)‖ ≤ ‖(hP

t )−1(y)‖∗
t ≤ exp

[
−αλe−ε|ρ(t)|

C‖y‖
]
. (22)

On the other hand, if t < τ , then∫ τ

t
‖UP(ξ, t)y‖∗

ξω(ξ ) dξ =
∫ ∞

t
‖UP(ξ, t)y‖∗

ξω(ξ ) dξ

−
∫ ∞

τ

‖UP(ξ, t)y‖∗
ξω(ξ ) dξ

= ‖y‖t − 1

and thus ‖y‖t > 1. By (6) and Lemma 2, we obtain∫ τ

t
‖UP(ξ, t)y‖∗

ξω(ξ ) dξ ≥ λ

4K

∫ τ

t
‖UP(ξ, t)y‖ξω(ξ ) dξ

= λ

4K

∫ ρ(τ )

ρ(t)
‖UP(ρ−1(η), t)y‖ρ−1(η) dη

≥ λ

4K
(ρ(τ ) − ρ(t)) inf

ρ(t)≤η≤ρ(τ )
‖UP(ρ−1(η), t)y‖ρ−1(η)

= λ

4K
(ρ(τ ) − ρ(t))‖UP(τ, t)y‖τ

= λ

4K
�(τ, t).

Hence,

�(τ, t) ≤ 4K
λ

(‖y‖t − 1) ≤ 4K
λ

(
4K
λ

‖y‖∗
t − 1

)

≤ 4K
λ

(
4KC

λ
eε|ρ(t)|‖y‖ − 1

)
,

which by (21) yields that

‖(hP
t )−1(y)‖ ≤ ‖(hP

t )−1(y)‖∗
t

≤ exp
[

4K
λ

(
4K
λ

CKeε|ρ(t)|‖y‖ − 1
)]

.
(23)

Similarly, using (16), we obtain

‖(hQ
t )−1(y)‖∗

t = e�(t,η)
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for y ∈ QE, where η is determined by the identity

1 =
∫ η

−∞
‖UQ(ξ, 0)U(t)−1y‖∗

ξω(ξ ) dξ

=
∫ η

−∞
‖UQ(ξ, t)y‖∗

ξω(ξ ) dξ.

One can show in analogous manner that if t < η, then

‖(hQ
t )−1(y)‖ ≤ exp

[
−αλe−ε|ρ(t)|

C‖y‖
]

(24)

and if t ≥ η, then

‖(hQ
t )−1(y)‖ ≤ exp

[
4K
λ

(
4K
λ

CKeε|ρ(t)|‖y‖ − 1
)]

. (25)

It follows readily from (17)–(20), (22)–(25) that there exists a map L with the
desired properties. This completes the proof of the theorem. �
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