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Abstract  
 
ReconstrucƟng Quaternary-Ɵmescale environmental change in drylands provides insights into styles and 
rates of change in response to direct insolaƟon forcing and variaƟons in global temperature, ice-volume and 
sea-level. Changes to the relaƟvely inhospitable environments presented by drylands is also central to 
debates about the migraƟon and adaptability of hominin species. This review outlines approaches used for 
reconstrucƟng past environments, which use dated sequences of environmental proxies - the properƟes of 
physical sediments, chemical precipitates and biological materials. In addiƟon, climate model simulaƟons 
can explore responses to known climaƟc forcing factors. Advances in both approaches remain situated 
within conceptual frameworks about dryland responses to: (i) cyclical changes in the Earth’s orbit around 
the sun, either mediated via the global cryosphere during glacial-interglacial cycles (~100 ka periodicity 
during the last ~0.9 Ma), or mediated via the response of the global monsoon with ~23 ka periodicity 
(precession) and (ii) millennial-scale climaƟc shiŌs, which are thought to originate outside drylands, and in 
the North AtlanƟc.  
In this review, three examples are outlined to demonstrate areas of emerging consensus and remaining 
contradicƟons: (1) speleothem, and tufa, growth records that span hundreds of ka, (2) condiƟons at the Last 
Glacial Maximum (LGM), and (3) proxies recording millennial-scale events. Precessional-scale forcing of the 
monsoon is not always observed, with apparent mediaƟng roles from glacial boundary condiƟons in parts of 
the northern-hemisphere (NH) and from interglacial boundary condiƟons in part of the southern-
hemisphere (SH). The LGM in drylands was iniƟally conceptualised as experiencing pluvial (wet) condiƟons, 
which shiŌed to a glacial aridity paradigm, and is again shiŌing to a paƩern of global heterogeneity, in which 
some drylands were weƩer-than-present and others drier. However, there remain contradicƟons between 
environmental proxies and model simulaƟons, and spaƟal heterogeneity observed within many drylands. 
Dryland proxies that record millennial-scale events demonstrate clearly the importance of climaƟc 
teleconnecƟons across the globe in influencing dryland hydroclimate. The records of Quaternary dryland 
change across a range of Ɵmescales are used alongside simulaƟons of ecosystem response through Ɵme, 
hominin habitat and even hominin physiology to beƩer understand likely hominin dispersals through 
dryland regions. 
 
Impact statement  
 
Dryland environments have undergone significant change during the Quaternary Period (2.58 Ma), offering 
a crucial long-term perspecƟve on the climaƟc, environmental and ecological condiƟons observed today. 
This period is also central to understanding the large-scale impact of dryland climaƟc change on hominins, 
including the drivers for migraƟon and evidence for adapƟon to aridity. This review paper presents an 
overview of the approaches taken to reconstruct environmental condiƟons and to simulate climaƟc 
changes. The paper uses three key examples that exemplify advancements in the field, that illustrate 
evolving interpretaƟons, significant developments in thought, and areas where uncertainty persists. The 
paper emphasizes the complexity and variability of dryland changes—both across different regions and 
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within individual landscapes—evident in both reconstrucƟons and model simulaƟons. In its final secƟon, 
the review explores recent progress in understanding how hominins responded to climaƟc and 
environmental shiŌs in drylands during the Quaternary. The interplay between environmental change and 
hominin adaptaƟon, migraƟon, and evoluƟon is currently revitalizing this area of dryland research. 
 
 
 
 
IntroducƟon  
 
ReconstrucƟng the past in drylands is important for three key reasons. First, geomorphological processes 
operaƟng today are influenced by the landscape features inherited from the past, including the Quaternary-
past (~2.58 Ma). For example, the emplacement and migraƟon of dunes during the Quaternary influence 
modern-day surface hydrology, such as dune damming during flash-flooding as well as groundwater-fed 
interdune lakes (Al-Masrahy and Moutney, 2015; Liu and Coulthard, 2015), with recent dramaƟc examples 
recently observed in southeast Morocco (Egbejule, 2024). Second, it helps us to understanding the range of 
climaƟc and environmental condiƟons drylands can (or have) experience(d), which provides important 
context for the post-industrial period and changes predicted for the future. ReconstrucƟons using landforms 
and sediments progress alongside numerical model simulaƟons, which are valuable for exploring the 
influence of driving forces of past climate change in drylands, although model performance is evaluated 
using palaeoenvironmental data from reconstrucƟons, reminding us of the need to examine their ability to 
simulate past climates realisƟcally (e.g. OƩo-Bliesner et al., 2017). Thirdly, spaƟo-temporal changes to 
aridity are central to endeavours to understand hominin evoluƟonary transiƟons (e.g. Timmerman et al., 
2022), parƟcularly abiliƟes to tolerate dry condiƟons. Climate-induced changes to habitat can be simulated 
in order to test hypotheses about hominin evoluƟon and migraƟon across dryland regions.  

Quaternary dryland research is a major sub-topic within drylands science, and this review aims to outline 
the approaches taken to reconstruct the past. In doing so, it aims to provide some criƟque of the current 
state of knowledge producƟon and set out key areas of progress and conƟnued debate, rather than aƩempt 
a comprehensive review of Quaternary environmental change for all major dryland regions, which would 
require an extensive treatment beyond the scope of a short overview. The paper briefly outlines: (1) the 
range of environmental data used within those reconstrucƟons and some key numerical models used to 
simulate the past and (2) the dominant frameworks for global climaƟc change during the Quaternary. These 
frameworks are organised into different Ɵmescales that inherently reflect the climaƟc drivers, such as 
periodic variaƟons in the Earth’s orbit around the sun and the behaviour of the global cryosphere. I then (3) 
use illustraƟve examples to explore the status of understanding of Quaternary dryland environments, which 
also helps demonstrate how #2 has guided interpretaƟons. A combinaƟon of conceptual frameworks, proxy 
data and model simulaƟons are used by researchers to construct arguments, and therein, whilst we can see 
examples where some consensus is emerging, interpretaƟons and reasoning oŌen get complicated, and 
debates remain. The final secƟon (4) examines a major moƟvaƟon for current Quaternary dryland research, 
concerned with aridity as a factor likely to constrict hominin migraƟon and/or influence adaptability.   
 
Sources of evidence and numerical climate model simulaƟons 
 
To appreciate where our understanding of Quaternary environmental change in drylands comes from, we 
must acknowledge a range of archives (such as marine basin sediments and a range of terrestrial seƫngs) 
and proxies (sedimentary, chemical and biological properƟes that have recorded a response to past 
environmental condiƟons) (Table 1). Environmental reconstrucƟon uses abducƟve reasoning (Inkpen and 
Wilson, 2009), looking at changes in that proxy record through Ɵme to infer the past condiƟons under which 
it formed. This process is inherently imperfect, and whilst some signals can be staƟsƟcally transformed into 
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quanƟtaƟve esƟmates of temperature, precipitaƟon and salinity etc., many give qualitaƟve informaƟon 
about warmer or colder, or higher or lower moisture availability.  
 
[POSITION TABLE 1]  

Table 1: Archives and their proxies for past climaƟc and environmental condiƟons in drylands, giving an overview of 
archives and their proxies for past climaƟc and environmental condiƟons in drylands, and key modelling 
simulaƟons from which changes in dryland aridity can be inferred. (abbreviaƟons are used: N – north, N-cen – 
north central, NW – northwest, S – south, Sn – southern, W – West, Wn – western,  Kal – Kalahari). 
 

The study of Quaternary climaƟc change in drylands is not solely proxy-data driven, with ideas generated 
from conceptualising how variaƟons in global-scale temperature and circulaƟon paƩerns may have driven 
the hydroclimaƟc condiƟons in drylands. For example, Jamieson (1863), Passarge (1904) and Flint (1959) 
argued for dryland “pluvial” condiƟons during glaciaƟons, based partly on lower temperatures favouring a 
higher moisture balance, whilst Sarnthein (1977) argued that lower sea-surface temperatures during 
glacials drove conƟnental aridity, alongside the wind paƩerns tending to ouƞlow from conƟnental surfaces 
(Manabe and Hahn, 1977). 
 
Numerical modelling simulaƟons also advance our understanding of Quaternary dryland dynamics, allowing 
us to explore the how drylands respond to a range of climaƟc drivers, or boundary condiƟons, such as the 
orbital parameters that control Earth’s receipt of insolaƟon, greenhouse gas concentraƟons, global 
terrestrial ice cover, sea-level and meltwater fluxes. This includes simulaƟons of global aridity (e.g. Greve et 
al., 2017) and targeted simulaƟons of dryland regions (e.g. Liu et al., 2021). These may be conducted for 
individual Ɵme-slices, such as the global Last Glacial Maximum (LGM) or the mid-Holocene, undertaken as 
transient simulaƟons through Ɵme, or targeted to explore potenƟal climaƟc teleconnecƟons to a known 
discrete forcing event (see Table 1).  
 
Frameworks of Quaternary climaƟc change 
 
Orbital cycles 
 
The influence of changes to Earth’s orbit on glacial-interglacial cycles of the Quaternary, linked 
predominantly to the cryosphere in the Northern Hemisphere (NH), is well established (e.g. Milankovitch, 
1920; Hays et al., 1976; Ruddiman, 2006). The varying eccentricity of the ellipƟcal-shaped orbit influences 
total solar insolaƟon receipt with quasi-regular cycles of ~400 ka and ~100 ka. The other two cycles relate to 
seasonality of the receipt of insolaƟon: (i) the change in the degree of the Ɵtle of the Earth (obliquity) 
influences the intensity of season in both hemispheres (~41 ka), whilst (ii) the direcƟon the Earth’s axis 
points in space, combined with the rotaƟon of the ellipƟcal orbit around the Sun, influences the relaƟve 
strength of seasons in each hemisphere via the precession of the equinoxes (~23 ka). The pacing of global 
glacial-interglacial cycles, inferred from marine oxygen isotope straƟgraphy (MIS), starts at ~41 ka (e.g. 
Pisias and Moore, 1981; Ruddiman et al., 1986; Raymo et al., 1990), transiƟoning during 1.25-0.7 Ma to 
~100 ka cyclicity. In MIS even numbers are glacials and odd numbers are interglacials (Fig. 2A). The ~41 ka 
cyclicity is thought to relate to direct obliquity forcing, involving feedbacks with atmospheric greenhouse 
gases, whilst the ~100 ka cyclicity cannot be accounted for by the small total insolaƟon variaƟons related to 
eccentricity (Ruddiman, 2006). Notwithstanding the debates about the nature of the forcing-cryosphere 
response, and the role of internal forcing and ocean-atmospheric reorganisaƟons in the climate system (e.g. 
Broecker and Denton, 1989; Berger, 2013), the large change to the Earth’s climaƟc state during these 
glacial-interglacial cycles is likely to have influenced the terrestrial dryland regions.  
 
The way condiƟons in drylands have been conceptualised over global glacial-interglacial periods has gone 
through large changes in thought. There was a widespread shiŌ in the idea of dryland pluvials during glacial 
periods to dryland aridity, aided by the advent of chronological control for some proxies (e.g. Williams, 
1975; Sarnthein, 1977). This ‘glacial aridity paradigm’ was lent support by the Ɵming of higher volumes of 
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dust volumes in the AntarcƟc ice cores such as Vostok during glacials, and larger parƟcles in the Last Glacial 
Maximum (LGM) layers (PeƟt et al., 1999), and back to 800 ka in EPICA DomeC (Lambert et al., 2012) (Fig. 
2B), and marine sediments (Fig. 1 s1, Fig. 2C). However, higher dust concentraƟons do not necessarily 
require an expansion of drylands, being wind-driven (more turbulent atmospheric circulaƟon) and because 
of a potenƟal reducƟon in wet-deposiƟon of dust owing to a globally-averaged lower moisture content 
during cooler glacials. The marine archives also represent an average of terrestrial material received from a 
wide spaƟal area, so that spaƟal heterogeneity within dryland regions will not be recorded. Therefore, 
whilst the dryland-derived dust proxy in ice core and marine sediment archives remains an appealing record 
for terrestrial drylands because they cover a long Ɵmescale, capturing mulƟple glacial-interglacial cycles, 
they are insufficient for reconstrucƟng condiƟons in the drylands themselves. This requires terrestrial 
archives and proxies.  
 
VariaƟons to the global monsoon system (Wang and Ding, 2008) on ~23 ka (precession) cyclicity is also well 
established (e.g. Kutzbach, 1981; Cheng et al., 2022). This global-scale system includes the Asian monsoon, 
North African monsoon, North American monsoon, the Indonesian-Australian Monsson, South African 
monsoon, South American monsoon (Wang et al., 2017), with a strong influence on the hydroclimate of 
neighbouring dryland regions. For example, the well-established influence of the North African Monsoon on 
the hydroclimaƟc of the Sahara, including recent ‘greening’ during the North African Humid Period (see 
deMenocal and Tierney (2012) for a brief overview). The global-scale influence of ~23 ka (precession) 
forcing of insolaƟon is complicated by it occurring in anƟ-phase between Earth’s two hemispheres. This 
owes to the hemisphere ƟlƟng towards the Earth (experiencing summer) moving in a cycle from a short-
pass to a long-pass around the sun in Earth’s ellipƟcal orbit, such that for any year with a NH summer at 
short pass, the SH summer is at long pass, and vice-versa. Therefore, insolaƟon forcing is calculated and 
ploƩed for the hemisphere from which the monsoon-related response is being considered (Fig. 2N shows a 
NH and SH summer insolaƟon curve).  
 
Millennial-scale variability  
 
ClimaƟc variability with millennial-Ɵmescale pacing was iniƟally detected in the ice core proxies covering 
the last glacial (Dansgaard et al., 1972; 1982; 1993) as well as ice-raŌed detritus in marine sediment cores in 
the North AtlanƟc (e.g. Heinrich, 1988), with the noƟceable coincidence in Ɵming set out by Bond et al. 
(1993) and Broecker (1994). Hemming (2004) considered evidence for a global climate imprint of these 
events and started to consider whether a connecƟon (or teleconnecƟon) between events had a physical 
basis, via ocean and atmospheric circulaƟon. The 21 warming events from 87 to 12 ka have a quasi-periodic 
spacing of <2,000 years and last for 50 to 100 years (Wolff et al., 2010; Rousseau et al., 2017). Millennial 
events with a similar 1470 ± 500-year cyclicity have also been observed through in the Holocene (11.7 ka) in 
the North AtlanƟc (Bond et al., 1997), although the magnitude of the variaƟons is higher with larger ice 
sheets. The ‘agitaƟon’ to the climate system provided by millennial-scale variability may have a role in 
glacial-interglacial transiƟons (e.g. Hodell and Channell, 2016). In order to explore potenƟal teleconnecƟons 
between NH high-laƟtude driven millennial events and low-laƟtude dryland climaƟc responses, numerical 
climate model simulaƟons can be used.  
 
[POSITION FIGURE 1] Fig. 1. Map of current global dryland distribuƟon, alongside the locaƟons of the major proxy 

records explored in the three key example in this paper and an inset of the TraCE-21 ka simulaƟon for the Last 
Glacial Maximum from Lui et al. (2021) demonstraƟng which dryland regions are simulated to be weƩer-than-
present, or drier-than-present. Site numbers (s) are referred to in the text, and 1) North AtlanƟc dust records, 
ODP659 (deMenocal, 1995), MD03-2705 and ODP659 (Skonieczny et al., 2019), 2) Mukalla Cave (Nicholson et al., 
2020), 3) HoƟ Cave (Nicholson et al., 2020), 4) North Arabian Sea dust record ODP721/722 (deMencoal, 1995), 5) 
Red Sea dust record K11 (Ehrmann et al., 2024), 6) Gulf of Aden RC09-166 (Tierney et al., 2017), 7) Wadi Dabsa tufa 
record (Stone et al., 2023), 8) Soreq Cave (Bar-MaƩhews et al., 1997), 9) EgypƟan tufa growth (Kele et al., 2021), 
10) Rössing Cave, Namibia (Geyh and Heine, 2014), 11) Tswaing Crater (Partridge et al., 1997), 12) CD15410-06 
(Simon et al., 2015), 13) Naracoorte Caves (Weij et al., 2023), 14) Leeuwin-Naturaliste-region caves (Weij et al., 
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2023), 15-17) speleothems on the northwest seaboard of Australia (Denniston et al., 2017), 18) KaƟ Thanda-Lake 
Eyre Basin, 19) Murray Darling Basin, 20) Tasman Sea dust record (Hesse, 1994), 21) NaƟve Companion Lagoon, 
eastern Australia (Petherick et al., 2008), 22) Lake Chilwa, Malawi (Thomas et al., 2009), 23) Pella hydrax midden 
(Chase et al., 2019), 24) Zizou hyrax midden (Chase et al., 2019), 25) Spitzkoppe midden (Chase et al., 2019), 26) De 
Rif hyrax midden (Chase et al., 2011).  

 
Example 1: the Ɵming of dryland speleothem (and tufa) growth 

Speleothem and tufa growth in drylands are good indicators for reducƟons in aridity (Table 1), with 
uranium-series daƟng allows scienƟsts to constrain their growth records over mulƟple 100 ka cycles. This 
makes them a useful archive to explore both glacial-interglacial cycles and precession-forcing of the 
monsoon as drivers of Quaternary climate change in drylands. 
 
On the Arabian Peninsula, the disconƟnuous Mukalla and HoƟ Cave speleothems (14.917oN, 48.590oE and 
23.083oN, 57.350oE) (Fig. 1 s2,3) cover 1.1 Ma, with growth phases only occurring during peak interglacial 
and warm sub-stages during interglacials, and no growth during glacials (Nicholson et al., 2020). The record 
is used to delimit South Arabian Humid Periods (SAHPS) (Fig. 2G), which show correspondence with other 
proxy records for humidity in the region (Nicholson et al., 2020) (Fig. 1 s4-6, Fig. 2D-F), and MIS7 and MIS5 
interglacial tufa deposiƟon at Wadi Dabsa (18.307oN, 41.564o) (Stone et al., 2023) (Fig. 1 s7, Fig. 2I). The 
conceptual explanaƟon for the absence of speleothem growth during glacial periods is that glacial boundary 
condiƟons ‘dampen’ monsoon strength. More specifically, large NH high-laƟtude ice sheets influenced 
atmospheric circulaƟon, prevenƟng on-land penetraƟon of the summer monsoon (Burns et al., 2001; 
Fleitmann et al., 2003). A role for precession-forcing seems less conclusive - there is not a SAHP for every 
peak in insolaƟon (at 15oN) even during an interglacial (the non-dampened state) (Nicholson et al., 2020).  
 

[POSITION FIGURE 2] Fig. 2. Key proxy records globally and for drylands, where: (A) the LR04 oxygen isotope 
record, with Marine Oxygen Isotope Stages (MIS) above (Lisicki and Raymo, 2005), (B) AntarcƟca Vostok (PeƟt et 
al., 1999) and EPICA DomeC (Lambert et al., 2012) dust records, (C) North AtlanƟc dust records, ODP659 
(deMenocal, 1995) and 230Th corrected MD03-2705 and ODP659 (Skonieczny et al., 2019) (sites near 1), (D) North 
Arabian Sea dust record ODP721/722 (deMencoal, 1995) (site 4), (E ) Red Sea dust record K11 (Ehrmann et al., 
2024) (site 5), (F) Gulf of Aden RC09-166 terrestrial leaf wax δD (Tierney et al., 2017) (site 6), (G) speleothem-
growth record derived South Arabian Humid Periods (SAHPS) (Nicholson et al., 2020) (sites 2 and 3), (H) Soreq Cave 
δ18O record (Bar-MaƩhews et al., 1997) (site 8), (I) Tufa growth records from Wadi Dabsa, SW Arabia (Stone et al., 
2023) (site 7) and N Africa (summarised in Kele et al., 2021) (within box 9), (J) Rössing Cave speleothem growth 
record (Geyh and Heine, 2014) (site 10), (K) Tswaing Crater rainfall proxy (Partridge et al., 1997) (site 11), (L) 
CD154-10-06P southwest Africa humidity record derived from Fe/K raƟos for highly eroded terrestrial sediment 
(Simon et al., 2015) (site 12), (M) KDE (Kernel Density EsƟmates) for speleothem U-Th ages using 5 ka bandwidth 
for Naracoorte (east) (site 13) and Leeuwin-Naturliste region (west) (site 14) speleothems in southern Australia 
(Weij et al., 2024), and (N) insolaƟon curves for summer in each hemisphere to demonstrate precession-paced 
forcing, where solid orange line is 30oN June and dashed red line is 30oS December (from Laskar et al., 2004).   

 
Records of speleothem growth in the Negev Desert, adjacent to the Arabian Peninsula, do not align strictly 
with interglacials, suggesƟng glacial-interglacial forcing of aridity-humidity may not be widespread across 
NH drylands. The ~200 ka Soreq Cave (31.754oN, 35.021oE) δ18O record (Bar-MaƩhews et al., 1997) (Fig 1 
s8, Fig. 2H), along with dated fragments across seven other caves, indicate four Negev Humid Periods 
(NHPs) (Vaks et al., 2010), which do not align strictly with interglacials: NHP-4 (MIS10 into MIS9), NHP-3 
(MIS8), NHP-2 (MIS7), and NHP-1 (late MIS6 into MIS5). In examining a role for precession-paced forcing, 
Vaks et al. (2010) find NHPs lead NH insolaƟon peaks by several 1,000 years, with no clear explanaƟon. The 
conceptual mechanism to explain monsoon-forcing of NHPs is complicated, involving a Mediterranean Sea 
moisture source from synopƟc cyclones and an AtlanƟc moisture source. For the laƩer, a sea-surface 
temperature driven reducƟon of the Azores high pressure might allow the North African summer Monsoon 
(AtlanƟc-source) to reach as far east as the Negev (deMenocal, 1995; 2004; Bar MaƩhews et al., 1997).  
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Further west into northeast Africa, EgypƟan tufa growth records also record deposiƟon in glacial periods 
(MIS2 to MIS12), in addiƟon to peak interglacials, but not with precession-pacing (Kele et al., 2021) (Fig. 1 
s9, Fig. 2I). Kele et al. (2021) propose a mechanism for ‘glacial enhancement’ of moisture in Egypt rather 
than the ‘dampening’ experienced in southern Arabia. When the Sunda and Sahul shelves (Indonesia and 
north of Australia) are exposed as landmass during glacial lowering of sea level, reduced oceanic Indonesian 
throughflow leads to atmospheric circulaƟon changes that increased rainfall over east Africa. However, 
whilst Kele et al. (2021) draw on the CESM1 simulaƟon of response to that glacial sea level change to 
support this idea (Di Nezio et al., 2016), the simulaƟon only demonstrates an increase in rainfall over 
eastern equatorial Africa, not over Egypt.   
 
In the SH, stalagmite and flowstone growth records from Rössing Cave, Namibia (22.531oS, 14.798o) (Fig. 1 
s10) date to interglacials MIS5e, MIS7 and MIS11, but also extend through the MIS10 glacial (Geyh and 
Heine, 2014) (Fig. 2J). The proposed moisture source is a summer rainfall expansion over to the west coast 
of southern Africa, bringing Indian Ocean monsoon moisture, although it is not clear why Geyh and Heine 
(2014) do not consider precession-paces forcing. Two key long proxy records for eastern southern Africa do 
reveal some precession-pacing: (i) Tswaing Crater sedimentary proxy record (25.416 oS, 28.101 oE) (Fig. 1 
s11, Fig 2K) (Partridge et al., 1997) and (ii) CD15410-06 (31.177°S, 32.159°E) (Fig. 1 s12) humidity proxy 
based on Fe/K raƟos for highly-weathered terrestrial sediment delivered to the ocean (Fig. 2L) (Simon et al., 
2015). This example clearly illustrates the pracƟce of different authors with respect to using the 
frameworks for Quaternary climaƟc change - Geyh and Heine (2014, p381) frame their studying by asking 
“whether the speleothems of the cave formed during glacial or interglacial periods”.  
 
In Australia, speleothem growth records covering ~350 ka for Naracoorte Caves (~36.95oS, 140.75oE) (Fig 1, 
s13) and Leeuwin-Naturaliste-region caves (~33.54 oS, 115.02 oE) (Fig. 1 s14) in the southern dryland margin, 
are derived from speleothem ‘rubble’ pieces combined into an age-frequency plot smoothed with a kernel 
density esƟmator (KDE) (Weij et al., 2023) (Fig. 2M). The KDE plots demonstrate a precessional rhythm of 
speleothem deposiƟon for both caves, with good coherence with the 30oS summer (Dec 21st) insolaƟon 
curve (Weij et al., 2024). The absence of growth peaks in the warmest part of the last three interglacials 
interrupts the precession-paced paƩern, which leads Weij et al. (2024) to suggest a threshold of warmth 
might be crossed during peak interglacials, leading to a drop in moisture availability. We could term this an 
‘interglacial dampening’ of moisture availability, in contrast to the ‘glacial dampening’ observed in the 
southern Arabian Peninsula. However, there is an absence of large KDE peaks in some of the glacial periods 
(e.g. during the two precession peaks later in MIS8 and the final precession peak in late MIS6 for 
Naracoorte and all of the precession peaks in MIS 8 for Leeuwin-Naturaliste) (Fig. 2M), which requires 
further explanaƟon.  
 
Overall, the speleothem and tufa records from drylands and their margins do not straighƞorwardly show an 
anƟ-phased NH and SH moisture availability response predicted from precession-paced forcing of 
monsoons. Feasible mediaƟng roles have emerged for either glacial, or interglacial, end-member boundary 
condiƟons, with: a glacial dampening in southern Arabia, a glacial enhancement in north-east Africa and an 
interglacial dampening in Australia. 

 
Example 2: (Re)assessing Last Glacial Maximum (LGM) aridity  
 
The Australian dryland margin speleothem record (Weij et al., 2024), is one line of evidence that challenges 
the ‘glacial aridity paradigm’ for the conƟnent (e.g. Hesse, 1994; Miller et al., 1997; Magee and Miller, 
1998). Alongside other speleothems on the northwest seaboard (Denniston et al., 2017) (Fig. 1 s15-17), and 
proxy evidence in the KaƟ Thanda-Lake Eyre and Murray Darling Basins (LEB, Fig. 1 s18 and MDB Fig. 1 s19) 
a conƟnental-wide picture of an LGM without a substanƟal decrease in moisture balance emerges (Cadd et 
al., 2024). Earlier LGM proxy data syntheses have variably excluded the arid interior in their treatment (e.g. 
Petherick et al.’s (2013) temperate zone review), included it (e.g. De Deckker et al., 2020), or focussed 
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solely on it (e.g. Fitzsimmons et al., 2013), demonstraƟng different conceptualisaƟons of spaƟal 
heterogeneity from the point of synthesis design. Key records from which arid (and cool) condiƟons have 
been inferred include: (i) low lake levels (e.g. Harrison, 1993), (ii) wind-derived terrestrial sediment in the 
Tasman Sea (Hesse, 1994) (Fig. 1 s20) and in lagoonal sediments (Petherick et al., 2008) (Fig. 1 s21), (iii) an 
increased rate of dune accumulaƟon across major desert dunefields (Hesse, 2016), and (iv) shiŌs in 
vegetaƟon from trees to herbs and grasses (e.g. Dodson, 1975; Harle, 1997; Colhoun et al., 1999). The 
emerging consensus for a posiƟve moisture balance during the LGM (De Deckker et al., 2020; Weij et al., 
2024; Cadd et al., 2024) is moƟvaƟon to re-examine these proxies.  
 
Terrestrial dust has been criƟqued as an aridity indicator (see secƟon 1). For the LGM dune accumulaƟon 
record, even before quesƟoning whether definiƟve link to aridity (and not primarily to windiness), there is a 
notable lack of spaƟal homogeneity. Whilst LGM accumulaƟon rates are increased the Malee (Lomax et al., 
2011), the wider Simpson-Strzelecki contains mixed rates, suggesƟng “a mosaic of bare patches of sand… 
and large areas of vegetated, stable surface” (Hesse, 2016, p 26). In the case of the vegetaƟon records, 
there is a growing argument that lower CO2 during the LGM had a greater influence on than any inferred 
changes in moisture availability (e.g. PrenƟce et al., 2022; Scheff et al., 2017). The lake and fluvial 
geomorphic records remain more enigmaƟc. First, there are potenƟal spaƟal contrasts. In the LEB region, 
shorelines and basin floor sediment from Lake Callabonna-Frome and KaƟ Thanda-Lake Eyre indicate low or 
desiccated condiƟons respecƟvely, in contrast to oscillaƟng-or-full lake condiƟons in the MDB region (see 
review by Fitzsimmons et al., 2013). Furthermore, LEB fluvial proxies (dated channel sediments and 
overbank sediments) yield a different hydrological record than the lake shorelines, with no discernible 
decrease in hydrological acƟvity during the LGM observed in a KDE probability density curve (see Cadd et 
al. (2024)). It is, however, sensible to apply cauƟon to using probability-density esƟmates on age databases 
from disconƟnuous sedimentary archives, parƟcularly when they are not sampled using the same verƟcal 
resoluƟon across space (e.g. Stone and Larsen, 2011). Cadd et al. (2024) also explore precipitaƟon minus 
evaporaƟon in the transient iTRACE simulaƟon (21 to 11 ka), which shows LGM condiƟons had at least as 
great (or greater) moisture availability than the Holocene across the whole conƟnent. This simulaƟon 
contrasts with the Fast Ocean Atmospheric Model (FOAM) Ɵme-slice simulaƟon of reduced strength Indo-
Australian summer monsoon during the LGM (Marshall and Lynch, 2006) but is similar to the transient 
TraCE-21 ka simulaƟon of a weƩer LGM (~30% reducƟon in the aridity index) at the conƟnental scale (Liu et 
al., 2021).  
 
The ‘glacial aridity paradigm’ is also challenged in southern Africa. Two proxy syntheses indicate an area 
weƩer than present west of ~27oE and south of ~17oS (covering the Namib Desert and most of the 
Kalahari), whilst the rest of the subconƟnent was drier, including the eastern fringes of the Kalahari (Chase 
and Meadows, 2007; Gasse et al., 2008). There is no clear peak in Kalahari dune building at the LGM for any 
part of the last ~120 ka (Stone and Thomas, 2008), and southern Africa is the tesƟng ground for a strong 
criƟque of dune accumulaƟon as a proxy for inferring dryland aridity (Chase, 2009). Model simulaƟons of 
LGM precipitaƟon over southern Africa are variable and indicate either drier or weƩer condiƟons (e.g. see 
Stone’s (2014) discussion of outputs from HadAM3, UGAMP, PMIP2 ensemble mean and NCAR-CCM3). 
TraCE-21 ka simulates an ~8% higher LGM aridity index than pre-industrial condiƟons for Southern Africa 
(Liu et al., 2021). In contrast, LOVECLIM transient simulaƟons reveals a spaƟal contrast, with weƩer-than-
present condiƟons in the southwest (30oS, 17oE) and drier-than-present condiƟons in the central-Kalahari 
(20oS, 22oE), which is similar in nature, but not spaƟal boundaries, to the proxy syntheses. 
 
The TraCE-21 ka model provides a global-scale perspecƟve on dryland LGM condiƟons, simulaƟng weƩer 
condiƟons (16% lower aridity index) compared to present, as driven by lower gas concentraƟons (GHG) (Liu 
et al., 2021). However, there is spaƟal heterogeneity in the simulaƟons: (i) weƩer-than present in northern 
American drylands, The Mediterranean, inner Asia, northeast Brazil, southern South America, and Australia, 
and (ii) drier-than-present in eastern Africa, the Sahel, (very slightly in north Africa), west and south Asia 
and southern Africa (Fig. 1 inset). By separaƟng out driving factors (orbitally-driven insolaƟon (ORB), GHG, 
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global ice-sheets (ICE) and meltwater forcing) using mulƟple simulaƟon runs (Liu et al., 2021), explanaƟons 
for the regional trends can be extracted: (1) NH mid-laƟtude drylands (northern America, inner Asia, the 
Mediterranean) respond most strongly to GHG and ICE; (2) NH subtropics respond mostly to ORB (the 
Sahel, north Africa, west and south Asia), with LGM-dryness roughly one precession-cycle ago; (3) SH mid-
laƟtudes (Australia, southern South America) are in tandem with the NH mid-laƟtudes and only increase in 
aridity post-LGM with reduced ICE and (4) tropical drylands (eastern Africa, northeast Brazil) are also largely 
driven by ICE, with lower sensiƟvity to ORB. Southern Africa stands out from the rest of the SH in terms of a 
drier LGM, and with no dominant driver. Liu et al.’s (2021) study is also a good demonstraƟon of our 
current limitaƟons in palaeomodel-proxy data comparisons. There are just 17 available hydroclimate 
proxies for (within, or near) nine of the eleven dryland regions, with a maximum of two per region, and 
none for Australia. This greatly limits the conclusions we can draw from model-data comparisons and 
masks the spaƟal heterogeneity that is revealed in more complete proxy-data syntheses (e.g. Thomas and 
Burrough, 2012; Stone, 2021).  
 
Overall, this example demonstrates a revision of the LGM aridity paradigm for both Australia and southern 
Africa back, although this is not necessarily a reversion to the idea of pluvial condiƟons, rather condiƟons as 
wet, or slightly weƩer than present. It also reveals complicaƟons and contradicƟons within the proxy 
record, and between model simulaƟons. Quaternary scienƟsts approach these contradicƟons in different 
ways. For some this represents a moƟvaƟon to re-examine how some of the proxy records are interpreted 
in terms of the abducƟve reasoning back to climaƟc condiƟons (e.g. Chase and Meadows, 2008; Cadd et al., 
2024). For others, the conclusion is that the LGM was spaƟally heterogeneous within dryland regions (e.g. 
Thomas and Burrough, 2012; Fitzsimmons et al., 2013; Stone, 2014; 2021).  
 
Example 3: millennial-scale hydroclimaƟc shiŌs in African drylands  
 
Luminescence-dated shorelines of Lake Chilwa in the savannah to semi-arid climaƟc region of Malawi, 
~15o30′S (Fig. 1 s22), revealed lake highstands at 38.4-35.5, 24.3–22.3, 16.2-15.1, 13.5-12.7, 11.01 ± 0.76 
and 8.52 ± 0.56 ka, (Thomas et al., 2009) (Fig. 3A). The first three have a coincidence of Ɵming with North 
AtlanƟc Heinrich Events/Stadials (HS) 4, 2 and 1, and the ~11 ka highstand with the Younger Dryas (Fig. 3A). 
A HadCM3 climate model simulaƟon was used to explore a potenƟal teleconnecƟon. It showed that a 
reducƟon of the AtlanƟc meridional overturning circulaƟon in response to a North AtlanƟc Heinrich iceberg 
discharge event has atmospheric teleconnecƟons, with increases the moisture balance at Lake Chilwa 
(Thomas et al., 2009) (Fig. 3B). The spaƟal paƩern in the simulaƟon is for increased moisture balance over 
much of southern Africa (south of 15oS) but drier condiƟons north of the equator (Fig. 3B). This invites 
future model-proxy comparisons for the African conƟnent in response to millennial-scale climaƟc forcing.  
 

[POSITION FIGURE 3] Fig. 3 (A) Timing of highstands of Lake Chilwa from luminescence daƟng of shorelines, 
compared to the Ɵming of Heinrich Events, (B) HadCM3 simulaƟon of terrestrial moisture balance over 
Africa caused by a “freshwater hosing” 50-70oN to simulate a North AtlanƟc Heinrich Event, displayed as an 
anomaly (modelled years 275-300 minus the average of 0-100 years), where the inset shows modelled 
reducƟon in AtlanƟc Meridional Overturning CirculaƟon (modified from Thomas et al., 2009).  

 
Millennial-Ɵmescale change can also be examined using high-resoluƟon (~20-30 μm/y) banded hyraceum 
(fossilised urine) in hyrax middens on the western margin of southern Africa. The midden record composite 
δ15N from three dryland-zone middens (Pella, South Africa: 29.00°S, 19.14°E; Zizou: 24.07°S, 15.97°E and 
Spitzkoppe: 21.83°S, 15.20°E, Namibia) (Fig. 1 s23-25) contain evidence of phases of increased humidity, 
which Chase et al. (2019) correlate with HS3, 2 and 1. De Rif midden, just south of the current dryland zone 
(32.446°S, 19.221°E) (Fig. 1, s26), is also characterised by humid condiƟons during HS1 (Chase et al., 2011). 
Although not considered using a simulaƟon experiment, the driving mechanism explored is an oceanic 
teleconnecƟon with NH millennial events, via their influence on the southern AtlanƟc (Benguela upwelling 
zone) sea-surface temperatures (SST), and in turn the influence SSTs have on rainfall over Southern Africa’s 
western margin. This draws on the good temporal correspondence between SST records in the South 
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AtlanƟc Benguela upwelling zone (Farmer et al., 2005; Kim and Schneider, 2003) and the hyrax aridity 
proxies (Chase et al., 2011). However, unlike for the Chilwa Lake example, the hydroclimaƟc response of the 
De Rif midden during the YD (which also involves a North AtlanƟc meltwater event) is markedly different 
than for the HS events, with an abrupt drying signal. Chase et al. (2011) invoke an immediate atmospheric 
interhemispheric teleconnecƟon, as opposed to the oceanic teleconnecƟon with Benguela SST-driven 
hydroclimaƟc control for the HS events. These nuances are complex, and a paucity of conƟnuous and high-
resoluƟon proxies in African drylands restricts the possibility to test and refine these interpretaƟons, 
although transient numerical model simulaƟons for discrete spaƟal locaƟons may provide further insights.   
  
Approaches to understanding hominin response to Quaternary climate change  
 
Understanding Quaternary climaƟc condiƟons in drylands is central to ongoing debates around which 
species in the Homo genus first possessed the adapƟve capabiliƟes to occupy hyper-arid regions. For 
example, Mercader et al.’s (2025) asserƟon that H. erectus adapted to a steppe-desert environment in 
Tanzania by uƟlising fluvial resources, challenging the dominant narraƟve that only H. sapiens were capable 
of sustained adaptaƟons (e.g. Roberts and Stewart, 2018). Assessing the large-scale impact of dryland 
climaƟc change on hominins is made challenging by the spaƟally patchy and temporally punctuated nature 
of both the archaeological record and the terrestrial palaeoenvironmental record. Improving our 
understanding requires conƟnued efforts to provide environmental reconstrucƟons with robust 
chronological control at the site of the archaeological evidence, in order to provide the local environmental 
context for those finds. Model simulaƟons of past climates also offer an opportunity to revoluƟonise 
understanding (Timmerman et al., 2024). Early simulaƟon aƩempts used mulƟple snapshot simulaƟons. For 
example, Eriksson et al. (2012) used intervals increasing from 1 to 4 ka through the last 120 ka using the 
Hadley Centre model (HadCM3) to relate to the record of geneƟc variaƟon in modern human populaƟons. 
Increases in computaƟonal power now enable transient simulaƟons for 120 ka (e.g. Timmerman and 
Friedrich (2016) using the Earth system model LOVECLIMv1.1) and even through to 3 Ma (e.g. Zeller et al. 
(2023) using the Community Earth System Model v1.2 (CESM1.2)) (Table 1). 
 
Timmerman et al. (2022) use the CESM1.2 transient model simulaƟon of the last 2 Ma, linked to a climate 
envelope model (CEM), to explore how changes in temperature (annual mean), precipitaƟon (annual means 
and minimums) and terrestrial net primary producƟvity influenced the species distribuƟons we observe in 
the fossil record. The CEM used topographically-downscaled (1o x 1o grid) average climate data for 1,000-
year Ɵme windows and a species database of dated hominin fossils and lithic records (from Raia et al. 
(2020) and Mondanara et al. (2020)), from which species-presence locaƟons and their associated ages were 
extracted. The second step derived a habitat suitability model for each species (H. ergaster + H. habilis, H. 
erectus, H. heidelbergensis, H. neanderthalensis and H. sapiens) (Fig. 4), employing the Mahalonobis 
distance (a staƟsƟcal approach applicable to a correlaƟon matrix of data for the climaƟc variables chosen 
here, rather than pairs of climaƟc variables (Farber and Kadmon, 2003)).  
 
The habitat suitability model reveals “patchworks of habitable areas” (Timmerman et al., 2022 p.500) within 
Earth’s drylands, and demonstrates that H. sapiens is the most tolerant species, or “best equipped to cope 
with dry condiƟons” (p.497) (Fig. 4). This supports the idea that H. sapiens migrated along ‘green corridors’ 
in the dryland Saharo-Arabian belt (Larrasoaña et al., 2013; Breeze et al., 2016; Beyer et al., 2021; GroucuƩ 
et al., 2021), and supports the idea of a mulƟ-regional, or polycentric, origin for H. sapiens (Scerri et al., 
2018). Furthermore, these habitable areas appear likely to have been long-term refugia for a variety of 
hominins within Africa (Timmerman, 2022), and their locaƟons include dryland regions in both the south 
and north of the conƟnent (Fig. 4). Timmerman et al. (2022) also observe an orbital-Ɵmescale shiŌ in the 
posiƟon of these refugia, which supports the idea that orbital forcing of the global climate was a major 
driving factor for hominin species distribuƟons, and therefore also dispersal and likely also speciaƟon (e.g. 
Hua and Wiens, 2013). ClimaƟc change can also be invesƟgated as a driver of Homo species exƟncƟon, for 
example Raia et al. (2020), use a staƟsƟcal approach for the quanƟficaƟon of species vulnerability to climate 
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change (climaƟc niche factor analysis), based on using the Planet Simulator–Grid-Enabled Integrated Earth 
system model emulator (PALEO-PGEM) of Holden et al. (2019). Their niche analysis demonstrates a 
significant reducƟon in climaƟc niche space just before exƟncƟon (disappearance in the fossil record).  
 

[POSITION OF FIGURE 4] Fig. 4. Hominin species distribuƟons, expressed as Ɵme-averaged habitat 
suitability (intensity of blue shading) over 2 million years from Timmerman et al. (2022), also showing (with 
coloured circles) the locaƟons of fossil and/or archaeological artefact evidence associated with each of the 
five hominin groups, collated by Timmerman et al. (2022).  

Conclusions  
 
ReconstrucƟng Quaternary condiƟons in drylands allows us to understand how these environments change 
in response to climaƟc forcing over a range of Ɵmescales, from the changes to Earth’s orbit around the sun 
to the more abrupt millennial-scale cryosphere-oceanic reorganisaƟons. This major sub-topic in dryland 
science progresses via environmental reconstrucƟon and model simulaƟon approaches, both of which are 
guided by conceptual frameworks for global climaƟc change during the Quaternary. In the former, proxy 
records are interpreted within the frameworks of (i) comparing hydroclimaƟc condiƟons during glacials and 
interglacials, (ii) looking for precession-pacing in responses and (iii) examining any coincidences in Ɵming 
with millennial-scale events that originate in the North AtlanƟc region along with potenƟal teleconnecƟons. 
In the laƩer, model simulaƟon experiments are set up to explore the role of orbital forcing, long and short-
term changes to the Earth’s cryosphere with associated changes to sea levels and oceanic circulaƟon, as 
well as greenhouse gas concentraƟons. A major moƟvaƟon for Quaternary dryland research is the desire to 
understand how environmental changes in drylands relate to habitability limits for hominins and likely 
routes for migraƟon and dispersal. AŌer seƫng out approaches taken in reconstrucƟng the Quaternary 
past in drylands, this review used three key examples to examine and criƟque progress in understanding, 
before outlining current and future prospects for understanding the hominin response(s) to Quaternary 
dryland changes. 
 
The first example of dryland speleothem (and tufa) growth, reveals records of moisture availability that are 
more complicated than a precession-paced (~23 ka) control on summer monsoon rainfall, which would be 
anƟphased between the NH and SH. Instead, there is strong glacial-interglacial overprinƟng with regional 
contrasts in its nature. In the NH, southern Arabia experienced glacial dampening of monsoon rainfall from 
the Indian Ocean, whilst north-east Africa experienced enhanced rainfall during glacials. In the SH the 
southern Australian speleothems record is of reduced moisture availability in interglacials, likely 
represenƟng a temperature threshold, whilst the Namibian record on the west coast of southern Africa 
shows higher moisture balance during interglacials. In the second example, a combinaƟon of proxy data 
(reconstrucƟons) and model simulaƟons demonstrate a revision of the paradigm of high aridity during the 
LGM in drylands. The LGM is shown to be wet, or weƩer-than-present, across Australia and the west of 
southern Africa. However, a global-scale simulaƟon reveals heterogeneity across space with six dryland 
regions weƩer-than-present at the LGM, and five drier. PotenƟal explanaƟons for the simulated spaƟal 
paƩerns include different strengths of response to different climaƟc forcing factors (orbital parameters, the 
size of the global cryosphere, concentraƟons of greenhouse gases) in different regions, although southern 
Africa emerges as an outlier without a dominant driver. The LGM example also reveals that when 
environmental reconstrucƟons at many sites are considered, spaƟal heterogeneity of environmental 
change within that dryland emerges. This requires us to quesƟon the usefulness of model-proxy 
comparisons that are based upon only one or two records of environmental change. The spaƟal paƩerns 
within that heterogeneity require more invesƟgaƟon. For example, the contrast between moisture 
availability in north-east Africa and Arabia over glacial-interglacial Ɵmescales and the reason for the west-
east paƩern of weƩer versus drier for the LGM in southern Africa. It is also important to conƟnue to 
criƟque the hydroclimaƟc inferences that can be made from proxies. For example, deposited dust and dune 
accumulaƟon relate as much to wind regime as they do to moisture balance. The third example of 
millennial-scale hydroclimaƟc shiŌs in high-resoluƟon archives in southern Africa, provide an excellent 
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demonstraƟon of the likely teleconnecƟons between dryland climates and the North AtlanƟc during high 
magnitude chances to the cryosphere-ocean-atmosphere system.  
 
All three examples demonstrate a complexity of regional and local paƩerns of Quaternary environmental 
change within drylands, of which many details remain to be fully understood. The heterogeneity revealed 
across space from terrestrial proxy records, is a reminder of the importance of moving beyond marine 
archives for terrestrial dryland environmental condiƟons that accumulate a spaƟally-averaged record of 
sediments derived from the neighbouring conƟnental land mass. Therefore, site-specific studies of past 
environmental condiƟons are central to refining our understanding and importantly are at the heart of 
understanding the environmental condiƟons experienced by hominins in the landscapes they were 
inhabiƟng. Approaches to understanding hominin interacƟons with dryland environmental change are also 
driven forward by model simulaƟon approaches, including simulaƟons of habitat suitability. These suggest 
that it is likely H. sapiens were the most tolerant to dry condiƟons and able to uƟlise patchworks of 
habitable areas, with some habitable areas operaƟng as long-term refugia and others as shorter-lived 
“green corridors” for migraƟon and dispersal (Timmerman et al., 2022). However, recent environmental 
reconstrucƟons in Tanzania suggest that earlier members of the Homo genus may have also possessed 
ecological flexibility, such as H. erectus uƟlising dryland water sources and demonstraƟng adapƟon to 
steppe-desert condiƟons (Mercader et al., 2025). Quaternary dryland research has a rich history and an 
exciƟng future.  
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