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A NOTE ON THE FREE SURFACE
INDUCED BY A SUBMERGED SOURCE
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Abstract

The free surface due to a submerged source in a fluid of finite depth at infi-
nite Froude number is reconsidered. A conformal transformation technique is
used to formulate this problem as an integral equation for the free-surface an-
gle. An elementary solution is found for the equation, which results in a closed
form expression for the free-surface elevation. Comparison is made with previous
numerical solutions.

1. Introduction

The classical problem of the free-surface flow of an ideal fluid induced by a
submerged source or sink with gravity as the restoring force has been the subject
of many papers. Solutions which have a stagnation point directly above the
source or sink have been given by Havelock [4], Peregrine (7] and by Vanden-
Broeck, Schwartz and Tuck [10]. More recently there have been several papers
dealing with these flows in which it has been assumed that a cusp exists in
the free surface directly above the source or sink. Tuck and Vanden-Broeck
[8] appear to have been the first to have encountered this type of solution in
classical free-surface flow when they considered the flow due to a submerged
source in a fluid of infinite depth. These authors found numerically that a
cusped solution existed at the unique Froude number 1.776; no cusped solutions
were found at other Froude numbers. This work was generalized by Hocking
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[5], who considered flows induced by a source at the apex of a submerged semi-
infinite triangular mountain. Cusped solutions were found numerically with
a unique Froude number corresponding to each apex angle of the triangular
mountain. Collings (3] has considered the flow due to a line source or sink within
a fluid of finite depth and above a horizontal bottom, but with no restoring force.
Hodograph methods were used to find cusped solutions when the source/sink was
in two positions: on the flat bottom (which is a limiting case of Hocking’s work),
and when the source depth was 0.56742 of the far fluid depth. This last figure
arose as a result of numerical experimentation which was necessary to give the
correct flux of fluid at infinity. Cusped flows due to a sink within a fluid of
finite depth, with gravity acting, have been considered by Vanden-Broeck and
Keller [9]. These authors have numerically confirmed the solutions of Collings
and have also shown that cusped flows exist for all Froude numbers larger than
some particular value.

Very recently, Hocking [6] has reconsidered the problem of Collings and, by
using the analytical properties of the complex potential, has derived an integral
equation satisfied by the free-surface angle; no closed-form solution to this equa-
tion is found. To progress, Hocking transforms his equation into the standard
aerofoil equation for which a formal solution, containing an integral, exists. This
integral is then evaluated by trapezoidal discretisation to give a numerical solu-
tion for the free-surface angle; some further computation gives the free-surface
elevation. To provide a check on the numerical scheme, Hocking also derives a
series solution to the integral equation. The radius of convergence of this series
was shown to be unity, which limited it validity to cases when the source or sink
is close to the flat bottom. A comparison of the numerical and series results for
the cusp depth was made, and these showed excellent agreement provided the
source was not too far from the bottom. The numerical results presented show
solutions to exist over a variety of depths for the source or sink within the fluid
and there seems to be no ‘critical depth’ as in the work of Collings.

An alternative to the classical hodograph methods for free-surface flows has
been developed and used by Bloor (1} for periodic water waves, and by Bloor and
King [2] for free-surface flows over a stepped bottom. The technique consists of
direct conformal transformation of the physical plane onto a half-plane in which
the complex potential can be written down. The application of the free-surface
condition results in an integral equation, the solution of which enables such
quantities as the free-surface elevation to be calculated. This note now considers
the same problem as that considered by Collings and Hocking, but the analysis
is performed by direct conformal transformation. Explicit closed-form results
are found for the equation of the free surface and the cusp height; the numerical
and asymptotic results of Collings and Hocking are confirmed as particular cases
of these results.
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2. Mathematical analysis

A point source of strength m is situated on or above a flat horizontal bottom
and beneath a free surface; there is no restoring force. A Cartesian coordinate
system X,Y is situated on the flat bottom; the source is a distance d above the
origin of these coordinates. A cusp in the free surface is assumed to lie directly
above the source. Far away from the source the flow is uniform with speed U,
directed away from the source; the depth of the fluid is h. The usual assumptions
of ideal fluid flow allow the dynamics of the flow to be described by an analytic
complex potential W = ®+1¥, where ® and V¥ are velocity potential and stream
function respectively. Boundary conditions appropriate to the free surface are
that the fluid speed is constant and equal to U on the free surface. Because
of the steady nature of the flow, ¥ is constant on the free surface and the flat
bottom. Flux considerations give #m = Uh, and we choose ¥ = 0 on the free
surface, and ¥ = Uh on the flat bottom.

The physical problem here is non-dimensionalised using the transformations
z=z+1y=(X+1Y)/h, w=p+itp =(®+:i¥)/Uh. (2.1)

As the flow is symmetric about the y-axis, it is sufficient to consider the flow to
the left of the source. The non-dimensional flow domain and associated bound-
ary conditions are shown in Figure 1. The source is situated at the point S,
which is at a height é above the origin of the coordinates and, due to the nondi-
mensionalisation, its strength is now 1/7. ABS is a streamline on which ¢ =1,
DCS is a streamline on which ¢ = 0. The fluid speed g on the free surface is
unity, as are the depth and speed of the uniform flow at infinity.
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FIGURE 1. The dimensionless flow induced by a submerged source
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FIGURE 2. The transform &-plane and the images of the boundary points in the physical

z-plane

The region occupied by the fluid is now transformed onto the upper half of
the £ = ¢ + ¢n plane by the mapping

dz _ K 1 [ 6(t)dt
A€ T €+ 1)12¢ e"p{?/m E—t } 22)

The transform plane is shown in Figure 2. In this mapping, which is a gener-
alisation of the Schwarz-Christoffel formula, the quantity 8(t) is the angle made
by the tangent to the free surface with the z-axis at the point which corresponds
to £ = t+10. When ¢ is real and positive, the integral in (2.2) becomes a princi-
pal value together with a contribution 76(¢) which ensures dz/ d€ is an analytic
function whose natural logarithm has 6(¢) as its imaginary part on the positive
real axis. It is convenient to write

p= 1 ][°° 0(t)dt,
T Ji=o §—1
where f denotes the Cauchy principal value of the integral. Then on the free
surface ¢ > 0, J X
z .

In the uniform flow far away from the source, the depth of the fluid is unity.
Thus by integrating (2.2) along a vertical line from A to D in the z-plane, that
is from A’ to D' around a large semi-circle in the £-plane, it can be seen that
K = —1/x. The complex potential in the £-plane is that of a source at the point
—3 of strength 1/, giving the complex velocity on the free surface as

(s(s + 1))/
(s +3)
where u and v are the z and y components of the fluid velocity, and O is the

angle made by the fluid velocity with the z-axis. From (2.4) we see that

_ (e +1))*/?
(s +3)
Equation (2.5a) shows that the flow is tangential to the free surface and
directed away from the source; (2.5b) allows the constant velocity condition on
the free surface to be written

1 [*o@)dt _ ¢+s
4 7€=o ¢t _l°g{(g(g+1))1/2} 0<g <o (2.6)

u— v = qgexp{—i6} = exp{—P —i(6 — 7)}, (2.4)

0=40-m, exp{—P}. (2.5a,b)

https://doi.org/10.1017/50334270000006123 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000006123

is) Free-surface flow by submerged source 151

This linear equation for 4 is of Wiener-Hopf form. It is convenient to convert
it into a convolution equation over the who!e real line by using the change of
independent variable r = —1/mlog¢, 8(¢) = 8(r) to give

% 0(t) dt (=™ +3)
]€ pme e i log { (e + 1)1 —oo<r<oo. (2.7)

Equation (2.7) is readily solved in operational form by Fourier transforms.
The solution can be written in integral form as

- 00 1 (et +5)
o(r) = .7[=—oo emt/2 _ g-7t/2 log { (e~m(r=0) (e—7(r—1) + 1))1/2 } dt.  (2.8)

t

The integral in (2.8) is evaluated by returning the ¢-variable, differentiating
under the integration sign to produce an integrand which is suitable for contour
integration. The resulting expression #'(¢) is then integrated with the boundary
condition #(o0) = 0 applied to give

0(¢) = —m/2 + 2tan™"(s'/?/5'/?) — tan~1(¢1/2). (2.9)

The values of P and # can now be analytically continued into the upper half
of the &-plane to give the value of the integral appearing in the transformation
(2.2) which can now be written in the form

dz _ i{[(25'/% — 1)€ + 8] +1i[€ + 2s/2 — 5]€1/2}
g (€+9)2(E+ 1)1/ '
Equation (2.10) can be integrated, subject to the condition that z —» —oco+ 1
as ¢ — oo along the real axis, to give
¢ 2(s'/2 — 1)(1 — 8)V2(£ + 1)1/ {5 + is1/2¢1/2}
(1 - )3/ { (£+9)

D/2 (1 — §)1/2
+ (2542 — 1 - 53/2) [log { EEL;‘/? + El - 3‘/2}

. _ 1— 1/261/2
~2itan”" {§1/2(2)+ NEE } ]

1/2 1/2
1 \3/2 §/5+(£+1)
+1i(1—8)*/“log {51/2 T[] (2.11)
The relation between the source position in the physical and transform planes is

found from 6 = z(—s) and is calculated from (2.11) after some limiting processes
to be

(2.10)

2=+

— _gl/2 1/2 _q _ 43/2
6=%—%tan‘l{ 2s—1 }_(1 st/?) (23 1-3s )logs.

2s1/2(1 — s)1/2 n(1— g)1/2 n(1— s)3/2
(2.12)
Equations (2.11) and (2.12) are the solution to the problem addressed by this
note. A graph of the variation of s with § is given in Figure 3, and shows that

https://doi.org/10.1017/50334270000006123 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000006123

152 A. C. King and M. L G. Bloor 6]

2 251
2.001
1.751
1.501
5125‘
&1.00-
0 751
0 50

0 257

FIGURE 3. The relation between § and S

solutions exist for all 6§ > 0, that is, all source positions within the fluid. The
equation of the free surface is found by putting £ real and positive in (2.11).
Graphs of the free surface for various positions of the source are given in Figure
4. The position of the cusp in the free surface is z(0) i.e.

_ 1 1/2 1/2
Yeusp = 1+ m {2(3 / -1)(1-39) /
1-(2-3)1/2
+(231/2_1—33/2)]0g {1—_#:—83—1/2—}} (213)

The special case of the source on the bottom is found by letting s — 1 in
(2.11), (2.12) and (2.13) to give the free surface as

2 § 12 1,.1/2 t
=i+ = — sinh™ _ 2.
z z+7l_ (§+1> sinh™ (¢*/*) Cr )i (2.14)

with § = 0 and yeysp = 1 — 2/, which is in agreement with the asymptotic
result of Collings [6] and the series result of Hocking [10]. Some comparisons of
these exact results with the numerical results of Hocking are shown in Figure
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FIGURE 4. Flows induced by a source at various positions within a fluid (a) 6 = 0
(b) 6 =0.4 (c) 6 =0.8 (d) § = 1.2. A = Hocking’s numerical solution
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FIGURE 5. Cusp-to-base and cusp-to-source ratios vs source-to-base ratio. A= Hocking’s
numerical solution

4(a) for the free-surface elevation, and in Figure 5 for the cusp-to-source and
cusp-to-base ratios. The agreement between the results is seen to be very good.

3. Conclusions

A conformal transformation and integral equation technique has been used to
construct solutions to the steady flow induced by a source submerged beneath a
cusped free surface and above a flat horizontal bottom when there is no restoring
force. Solutions are found at all submergences of the source in a simple closed
form, and the numerical and asymptotic results of Collings and Hocking are
confirmed.
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