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Abstract

We say that a graph H dominates another graph H′ if the number of homomorphisms from
H′ to any graph G is dominated, in an appropriate sense, by the number of homomorphisms
from H to G. We study the family of dominating graphs, those graphs with the property
that they dominate all of their subgraphs. It has long been known that even-length paths are
dominating in this sense and a result of Hatami implies that all weakly norming graphs are
dominating. In a previous paper, we showed that every finite reflection group gives rise to a
family of weakly norming, and hence dominating, graphs. Here we revisit this connection
to show that there is a much broader class of dominating graphs.

2020 Mathematics Subject Classification: 05C60 (Primary); 05C35, 05A20 (Secondary)

1. Introduction

A graphon is a symmetric measurable function W from [0, 1]2 to [0,1], where symmetric
here means that W(x, y) = W(y, x) for all (x, y) ∈ [0, 1]2. Very roughly, this may be seen as
a continuous analogue of a graph. The homomorphism density tH(W) of a graph H in a
graphon W is then given by

tH(W) =E

⎡
⎣ ∏

ij∈E(H)

W(xi, xj)

⎤
⎦ =

∫
[0,1]v(H)

∏
ij∈E(H)

W(xi, xj) dμv(H),

where μ is the Lebesgue measure on [0,1]. Our concern in this paper will be with the fol-
lowing question: for which ordered pairs of graphs (H, H′) is it the case that H dominates
H′, in the sense that

tH(W)1/e(H) ≥ tH′(W)1/e(H′)

for all graphons W?
This question has been studied both implicitly and explicitly for decades. For instance,

a celebrated conjecture of Sidorenko [17, 18] says that H dominates K2 if and only if H is
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168 CONLON AND LEE

bipartite. The necessity of the bipartiteness condition is simple to verify, but its sufficiency
is a difficult problem which has attracted a great deal of attention in recent years [2, 3, 5–7,
11, 14, 22].

One of the oldest results in this direction is a result of Godsil that first appeared in a paper
of Erdős and Simonovits [8]. If we write Pn for the path with n vertices, his result says that
Pn dominates Pm whenever 2 ≤ m ≤ n and n is odd. That is, even-length paths dominate all
of their connected subgraphs and this easily extends to all subgraphs. In what follows, we
will refer to a graph H with this property, that H dominates H′ for all subgraphs H′ of H
with at least one edge, as a dominating graph.

The only other graphs known to have this property are the weakly norming graphs whose
study was initiated by Lovász [15] and Hatami [10]. The fact that all weakly norming graphs
are dominating was proved by Hatami [10]. Until quite recently, only a handful of weakly
norming graphs were known [10, 16], but a much broader collection of examples was found
by the authors [4], who showed how to associate a family of weakly norming graphs to any
finite reflection group. The purpose of this paper is to show that the family of dominating
graphs is broader still. In particular, we will show that both previous families of examples,
weakly norming graphs and even-length paths, can be placed within a common framework.

One of the main results in [4] says that if there is a sequence of what we might call
reflections, each of which takes a subgraph J of a graph H and produces another subgraph J′,
that starts with a single edge and ends with H, then H is weakly norming. The corresponding
result here allows a second operation, which we call relocation, and says that if, through a
sequence of reflections and relocations, one can start with a single edge and get to a graph
H, then H is dominating. In [4], our results can be neatly packaged in terms of what we call
reflection graphs. Unfortunately, there seems to be no such clean statement here. Instead,
we will apply our reflection/relocation mechanism to produce a variety of examples, each
derived in some way from a reflection group. For now, we illustrate our results with just one
family of examples, which, by a recent result of Sidorenko [20], are known to not be weakly
norming. Recall that the 1-subdivision of a graph H is the graph obtained by replacing each
edge of H by a path with two edges.

THEOREM 1·1. The 1-subdivision of the complete bipartite graph Kt,t is dominating.

The rest of the paper is organised as follows. In the next section, we prove some nec-
essary conditions for a graph H to dominate another graph H′, thereby also giving some
conditions that must be satisfied by any dominating graph. In Section 3, we describe our
reflection/relocation mechanism and show that it produces dominating graphs. We then
use this mechanism in Section 4 to find new examples of dominating graphs, including
those mentioned in Theorem 1·1. We talk about applications of the domination property in
Section 5, before concluding with some further remarks and open problems.

2. Necessary conditions for domination

As we remarked in the introduction, any dominating graph must be bipartite. Here we
establish some more necessary conditions. First, we show that any connected dominating
graph must be 1-balanced, in the sense that e(H)/(v(H) − 1) ≥ e(H′)/(v(H′) − 1) for every
subgraph H′ of H. The proof is essentially due to Hatami [10], who proved an analogous
result for weakly norming graphs.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004124000185
Downloaded from https://www.cambridge.org/core. IP address: 18.217.105.10, on 11 Jan 2025 at 12:38:57, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004124000185
https://www.cambridge.org/core


Domination inequalities and dominating graphs 169

PROPOSITION 2·1. Let H and H′ be connected graphs. If H dominates H′, then
e(H)/(v(H) − 1) ≥ e(H′)/(v(H′) − 1).

Proof. For 1 ≤ k ≤ n, let In,k be the square-shaped subset {(x, y) : (k − 1)/n< x, y< k/n}
of the unit square and let W be the block graphon given by W = ∑n

k=1 1In,k . Then, since both
H and H′ are connected,

tH(W) =
n∑

k=1

n−v(H) = n−(v(H)−1) and tH′(W) =
n∑

k=1

n−v(H′) = n−(v(H′)−1).

Thus, the domination inequality tH(W)1/e(H) ≥ tH′(W)1/e(H′) can be rewritten as

n−(v(H)−1)/e(H) ≥ n−(v(H′)−1)/e(H′),

which yields the desired inequality e(H)/(v(H) − 1) ≥ e(H′)/(v(H′) − 1).

COROLLARY 2·2. If H is a connected dominating graph, then e(H)/(v(H) − 1) ≥
e(H′)/(v(H′) − 1) for every subgraph H′ of H.

Proof. By Proposition 2·1, we may assume that H′ is not connected. Let F1, F2, . . . , Ft

be the connected components of H′ and let di := e(Fi)/(v(Fi) − 1). Then

e(H′)
v(H′) − 1

=
∑

i di(v(Fi) − 1)∑
i (v(Fi) − 1/t)

<

∑
i di(v(Fi) − 1/t)∑
i (v(Fi) − 1/t)

,

and, hence, e(H′)/(v(H′) − 1) is smaller than a convex combination of the di. Therefore,
there must be a component Fj with dj > e(H′)/(v(H′) − 1). Hence, since, by Proposition 2·1,
e(H)/(v(H) − 1) ≥ e(F)/(v(F) − 1) for every connected F, we have e(H)/(v(H) − 1) ≥ dj,
which implies that e(H)/(v(H) − 1) ≥ e(H′)/(v(H′) − 1) for every subgraph H′.

As pointed out in [9], this result is not true if H is not connected, as may be seen by
considering the weakly norming, and hence dominating, graph consisting of two disjoint
copies of K1,2 and the subgraph consisting of a single copy of K1,2.

Our second condition states that every connected dominating graph has the property that
every vertex on the smaller side of the bipartition has the same degree. The proof is again
similar to a result of Hatami [10], who showed that every connected weakly norming graph
is bi-regular, i.e., all vertices on the same side of the bipartition have the same degree. This
stronger property does not necessarily hold for dominating graphs, since, as we shall see,
there are many examples, including even-length paths and the example C+

6 in Figure 1,
which are not bi-regular.

PROPOSITION 2·3. Let H be a connected dominating graph with bipartition A ∪ B. If |A| ≤
|B|, then every vertex v ∈ A must have the same degree. Moreover, the maximum degree� of
H is attained by the vertices in A.

Proof. Let ε < 1/2 be positive and let I and J be the two disjoint intervals [0, ε) and
[ε, 1], respectively. Denote by W the graphon 1I×J + 1J×I . Denote by S the star with �
leaves, which is clearly a subgraph of H. Then

tH(W) = ε|A|(1 − ε)|B| + ε|B|(1 − ε)|A| and tS(W) = ε(1 − ε)� + ε�(1 − ε).
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170 CONLON AND LEE

Fig. 1. The graph C+
6 , which is dominating but not weakly norming.

Since ε < 1/2, tS(W) ≥ ε/2�, so the inequality tH(W) ≥ tS(W)e(H)/�, which holds since H
is dominating, gives

2−e(H)εe(H)/� ≤ tS(W)e(H)/� ≤ tH(W) ≤ 2ε|A|.

But this gives a contradiction for ε sufficiently small unless |A| ≤ e(H)/�. On the other
hand, e(H) ≤�|A|. Therefore, e(H) =�|A|, which means that every vertex in A has
degree �.

As a corollary, we note that if the two sides of the bipartition of a connected dominating
graph H have the same size, i.e., |A| = |B|, then the graph must be regular.

The reason we have largely focused on connected dominating graphs is because of the
following result, which says that the components of any dominating graph must all be the
same. This generalises, and gives a simpler proof of, a similar result for weakly norming
graphs proved by Garbe, Hladký and Lee [9].

LEMMA 2·4. A graph without isolated vertices is dominating if and only if each of its
components is the same dominating graph.

Proof. It easy to check that the disjoint union of multiple copies of the same dominat-
ing graph is dominating, so we will focus on the opposite direction. To this end, let H be
a dominating graph with no isolated vertices and at least two components and write H =
H1 ∪ H2, where H1 is a single component and H2 is the union of the remaining components.
Then tH(W)1/e(H) ≥ tH1(W)1/e(H1) is equivalent to tH2(W)1/e(H2) ≥ tH1 (W)1/e(H1), where we
used that tH(W) = tH1(W)tH2 (W). Similarly, tH(W)1/e(H) ≥ tH2(W)1/e(H2) is equivalent to
tH1(W)1/e(H1) ≥ tH2(W)1/e(H2). Hence, if H is dominating, we must have that tH1 (W)1/e(H1) =
tH2(W)1/e(H2) for all W. But this is the same as saying that tH1(W)e(H2) = tH2 (W)e(H1) for all
W, which in turn implies that te(H2)H1 (W) = te(H1)H2(W) for all W. But, by [16, theorem
5·29], this implies that e(H2)H1 = e(H1)H2, so H2 must be a union of copies of H1. To ver-
ify that H1 is itself dominating, suppose that H = rH1 and consider the subgraph H′ = rH′

1,
where H′

1 is a subgraph of H1. Then, since H is dominating,

tH1(W)1/e(H1) = trH1(W)1/re(H1) = tH(W)1/e(H)

≥ tH′(W)1/e(H′) = trH′
1
(W)1/re(H′

1) = tH′
1
(W)1/e(H′

1)

for all W, implying that H1 is indeed dominating.
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3. Layered percolation

Given a connected graph H, we say that an automorphism φ of H is a cut involution if the
following conditions hold:

(i) φ is an involution, that is, φ = φ−1;

(ii) the fixed point set Fφ = {v ∈ V(H) : φ(v) = v} is a vertex cut of H;

(iii) V(H) \ Fφ is the disjoint union of sets Lφ and Rφ , where there are no edges between
Lφ and Rφ and they are mapped to one another under φ.1

The cut involution group WH is then the group of automorphisms of H generated by its cut
involutions.

Suppose now that a particular choice for Lφ and Rφ has been made for each cut involution
φ of H. We define the left-folding map φ+:V(H) → V(H) of a cut involution φ of H by

φ+(v) =
⎧⎨
⎩
φ(v) if v ∈ Rφ

v if v ∈ Lφ ∪ Fφ

and, similarly, define the right-folding map φ− by swapping the roles of Lφ and Rφ . For
brevity, we refer to both the left- and right-folding maps as half-folding maps of φ. The
conjugate ψ of a half-folding map ψ is then the other half-folding map defined by the same
cut involution.

If J is an edge subset of H and φ is a cut involution of H, we define two edge sets J+(φ)
and J−(φ) by

J+(φ) = {e ∈ E(H) : φ+(e) ∈ J} and J−(φ) = {e ∈ E(H) : φ−(e) ∈ J}.
That is, J+(φ) is the graph formed by copying the edges of J from the left half onto the right
half, while J−(φ) copies the edges from the right half onto the left half. The maps J 	→ J+(φ)
and J 	→ J−(φ) are the ‘reflections’ mentioned in the introduction. In what follows, we will
sometimes abuse notation slightly by writing J(φ+) for J+(φ) and J(φ−) for J−(φ).

Let J0, J1, J2, . . . be a sequence of edge subsets of H. We say that it is a folding sequence
in H if, for each i ≥ 1, Ji = Ji−1(ψi) for some half-folding map ψi, calling the correspond-
ing sequence of half-folding maps (ψi)N

i=1 the signature of the folding sequence. If a finite
folding sequence J0, J1, . . . , JN in a graph H starts from a set J0 consisting of a single edge
and ends with JN = E(H), then we call it a percolating sequence. The reason for these defi-
nitions is that such folding sequences allow us to keep track of repeated applications of the
Cauchy–Schwarz inequality. Indeed, a simple application of the Cauchy–Schwarz inequality
gives

tJi(W) ≤ tJ+
i (φ)(W)1/2tJ−

i (φ)(W)1/2, (1)

where here we identify the edge sets Ji, J+
i (φ) and J−

i (φ) with their corresponding sub-
graphs. With this terminology in place, we may recall one of the main results in [4], which

1 This last condition was not stated explicitly in our earlier work [4], though it was used implicitly
throughout.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004124000185
Downloaded from https://www.cambridge.org/core. IP address: 18.217.105.10, on 11 Jan 2025 at 12:38:57, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004124000185
https://www.cambridge.org/core


172 CONLON AND LEE

Fig. 2. Different choices for J0 in C+
6 .

says that if there is a percolating sequence in a graph H, then, through appropriate repeated
applications of (1), we have that H is weakly norming.

THEOREM 3·1 (Conlon–Lee). If there exists a percolating sequence J0, J1, . . . , JN, then H
is weakly norming.

The aim of this section is to prove a multilayered variant of this result whose conclusion
is that a particular graph H is dominating. Suppose that H1, H2, . . . , Hk are edge-disjoint
subgraphs of H that partition the edge set E(H). We say that H1, H2, . . . , Hk are layers
of the graph H if there is a nontrivial subset � of the set of cut involutions of H such
that φ(e) ∈ E(Hi) for all φ ∈�, i ∈ [k] and e ∈ E(Hi). A layered percolating sequence for H
(with respect to H1, H2, . . . , Hk, though we typically omit this) is then a folding sequence
J0, J1, . . . , JN with signature (ψi)N

i=1 such that J0 consists of k edges e1, e2, . . . , ek, where
ei ∈ E(Hi) for each i ∈ [k], JN = E(H) and each ψi is a half-folding map associated to a cut
involution φi ∈�. The k edges e1, e2, . . . , ek that form J0 are called the seeds of the layered
percolating sequence. In particular, if there is a layered percolating sequence for H, then
each Hi is edge-transitive under the group of automorphisms of H generated by the set of
layer-preserving cut involutions �.

Example 3·2. On the left-hand side of Figure 2, the two thick edges represent one possible
choice for J0 in a layered percolating sequence for C+

6 . More precisely, the layers of the
partition are the outer cycle C6 and the star K1,3 of edges adjacent to the central vertex. The
inner edge percolates to cover the star K1,3, while the outer edge percolates to cover the
cycle C6. Moreover, as required for a layered percolating sequence, they percolate together
to cover the entire graph J. In contrast, the choice of thick edges on the right-hand side
of Figure 2 does not produce a layered percolating sequence. To see this, note that any cut
involution that places the two edges in opposite halves will delete one of the two edges when
we reflect.

For I ⊆ [k], let HI = ∪i∈IHi be the subgraph obtained by taking the union of all the edges
in the layers Hi with i ∈ I. As the second case in Example 3·2 above shows, even if a layered
percolating sequence exists, there may also be k-edge subsets F spanning all the layers such
that following the percolating sequence starting with F does not lead to the whole set E(H).
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This is a potential problem in generalising Theorem 3·1. However, we now show that, even
if this happens, the folding sequence does always end with E(HI) for some I ⊆ [k].

LEMMA 3·3. Let H be a graph with layers H1, . . . , Hk and let J0, J1, . . . , JN be a lay-
ered percolating sequence of H with signature (ψi)N

i=1. Then every folding sequence
F0, F1, . . . , FN with the same signature satisfies FN = E(HI) with I = J0 ∩ F0.

Proof. Let Fi,j := Fi ∩ E(Hj). Then Fi,j = Fi−1,j(ψi), by considering the restriction of
the signature (ψi)N

i=1 to E(Hj). Suppose that there is ej ∈ J0 ∩ F0 ∩ E(Hj), i.e., F0,j ⊇ J0 ∩
E(Hj) = {ej}. Then, by induction,

Fi,j = Fi−1,j(ψi) ⊇ (
Ji−1 ∩ E(Hj)

)
(ψi) = Ji−1(ψi) ∩ E(Hj) = Ji ∩ E(Hj)

for each i = 1, 2, . . . , N. In particular, FN,j = E(Hj).
Suppose now that J0 ∩ F0,j is empty. Let F = E(Hj) \ F for F ⊆ E(Hj). It then follows

that

F(ψ) = {e ∈ E(Hj) :ψ(e) /∈ F} = E(Hj) \ F(ψ) = F(ψ).

In particular, Fi,j = Fi−1,j(ψ) = Fi−1,j(ψ) and, therefore, F0,j, F1,j, . . . , FN,j is again a fold-
ing sequence with signature (ψi)N

i=1. Thus, by repeating the argument above, FN,j = E(Hj)
since J0 ∩ F0,j is nonempty. That is, FN,j is empty.

To summarise, FN,j is either the whole of E(Hj) or empty, depending on whether J0 ∩ F0,j

is nonempty or empty. Thus, FN = E(HI) with I = J0 ∩ F0.

At first glance, this lemma seems to be something of a dead end. Starting from a given
subgraph F0, we set out to cover the entire graph, but instead only managed to cover some of
its layers. It is at this point that we need to introduce our second operation. Suppose that we
have a layered percolating sequence in H whose set of seeds is K. Given a nonempty I � [k],
a subgraph H′ of H is said to be a relocation of HI if it dominates HI and contains more than
|I| seeds from K. We then say that the layers can be relocated if, for any nonempty I � [k],
there is a relocation H′ of HI . In particular, if there is always a subgraph isomorphic to HI in
H that contains more than |I| seeds, then the layers can be relocated. The rough idea is that
after each relocation step we can apply the folding sequence to the relocation to fill more
layers of H, which can in turn be relocated.

Example 3·4. As shown in Figure 3, the layers of C+
6 , in this case a copy of K1,3 and a

copy of C6, can both be relocated to include the set J0 on the left-hand side of Figure 2.

The main result of this section is now the following.

THEOREM 3·5. Suppose that H is a graph with layers H1, . . . , Hk. If there exists a layered
percolating sequence for H and the layers can be relocated, then H is dominating.

Proof. The case k = 1 is a corollary of Theorem 3·1, so we may assume k> 1. Let F be
an arbitrary nonempty edge subset of H and let � := (ψi)N

i=1 be the signature of a layered
percolating sequence J0, J1, . . . , JN . Note that, since each layer is edge transitive, we may
assume F ∩ J0 is nonempty.
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174 CONLON AND LEE

Fig. 3. Relocations of the inner star K1,3 and the outer cycle C6 in C+
6 .

We now define a rooted tree T (F;�) of depth N + 1 which encodes which graphs are
obtained through iterations of (1) and relocations. The vertices of T (F;�) are labelled by
edge subsets of H with the root labelled by the initial edge subset F. Each vertex at depth
d<N, labelled with J, say, has two children with labels J(ψd+1) and J(ψd+1). If, at depth N,
a vertex has label J = E(HI) for some nonempty I � [k], then it has a unique child labelled
by its relocation J′. Otherwise, it has a unique child labelled by the same J as the parent.
We now abuse notation slightly by using J to denote both an edge subset of H and the
corresponding subgraph. With this convention, each parent J relates to its children J(ψ) and
J(ψ) or its only child J′ through the inequalities

tJ(W) ≤ tJ(ψ)(W)1/2tJ(ψ)(W)1/2 or tJ(W) ≤ tJ′(W)e(J)/e(J′).

In either case, the sum of the size of the edge set times the corresponding exponent is the
same on both sides, i.e., |J| = 1

2 |J(ψ)| + 1
2 |J(ψ)| and |J| = |J′| · |J|/|J′|. This is therefore an

invariant throughout the entire process.
Denote by F1, . . . , F2d the edge subsets that label the vertices at depth d ≤ N. Because we

applied inequality (1) iteratively at each depth, we have the bound

tF(W) ≤
2d∏

i=1

tFi(W)1/2d
,

where
∑2d

j=1 2−d|Fj| = |F|. When d = N, by Lemma 3·3, each Fj is equal to E(HIj) for some
Ij ⊆ [k] and, moreover, at least one of the Ij is nonempty, since J0 ∩ F was nonempty. Then
the single child of any Fj with Ij = ∅ is the relocation Fj

′ of Fj, which, unless Ij = [k], con-
tains more than |Ij| seeds. If Ij is either empty or [k], then no relocation is possible. Thus, at
depth N + 1, the corresponding inequality is

tF(W) ≤
2N∏
i=1

tFi
′(W)αi , (2)

where F′
i is the label of the unique child of Fi, αi = |Fi|/|F′

i|2N and
∑2N

i=1 αi|F′
i| = |F|.
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We now expand this tree by adding the tree T (F′
j;�) starting from each leaf. Once again,

one of the leaves is equal to a relocation of some E(HJ), which, unless J = [k], contains
more than |J| seeds. Thus, for each j = 1, 2, . . . , 2N ,

tFj
′(W) ≤

2N∏
i=1

t
F(2)

i,j
(W)αi,j ,

where
∑2N

i=1 αi,j|F(2)
i,j | = |F′

j|. Hence, combined with (2), we have that

tF(W) ≤
22N∏
i=1

t
F(2)

i
(W)βi ,

where F(2)
i is a reindexing of the F(2)

i,j ’s and
∑22N

i=1 βi|F(2)
i | = |F|. We continue to iterate this

process, noting that, each time we iterate, we increase the maximum number of seeds in the
graphs that appear in the corresponding upper bound for F, until it reaches k. Therefore, if
we iterate k − 3 more times, we must obtain a bound of the form

tF(W) ≤
Nk∏
i=1

tKi(W)ρi , (3)

where Nk = 2(k−1)N ,
∑Nk

i=1 ρi|Ki| = |F| and at least one of the Kj, say K1, is equal to E(H).
Since the choice of F was arbitrary, each Kj also satisfies

tKj(W) ≤
Nk∏
i=1

t
K(j)

i
(W)ρi,j

for some ρi,j with
∑Nk

i=1 ρi,j|K(j)
i | = |Kj|. Note that if Kj equals either ∅ or E(H), then so do all

of its descendants K(j)
i , while if Kj is neither ∅ nor E(H), then at least one of its descendants,

say K(j)
1 , is equal to E(H). Substituting this back into (3) yields, after a suitable relabelling,

that

tF(W) ≤
N2

k∏
i=1

tKi(W)σi ,

where
∑N2

k
i=1 σi|Ki| = |F| and the proportion of the Kj which are equal to neither ∅ nor E(H)

has dropped to at most a (1 − 1/Nk)-factor of what it was. Repeating this process, we see that
the proportion of Kj which are equal to neither ∅ nor E(H) converges to 0 and the proportion
which are equal to E(H) converges to some limit γ . But then we must have that γ e(H) = e(F)
and tF(W) ≤ tH(W)γ , which together yield the required domination inequality.

When applying Theorem 3·5, there are two conditions to check: the existence of lay-
ered percolating sequences and the possibility of relocations. While verifying the second
condition can be a little ad hoc, there is an approach to finding graphs with layered per-
colating sequences that builds on our earlier work [4] connecting weakly norming graphs
and reflection groups. We will be rather terse here, but we refer the reader to [4] for a more
comprehensive introduction to reflection groups.
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Let W be a finite reflection group with S a set of simple reflections and let
W1, W2, . . . , Wk be subgroups of W generated by subsets S1, S2, . . . , Sk of S, respectively.
Then the (S1, . . . , Sk; S, W)-reflection hypergraph, shown in [4] to be weakly norming, is
the k-partite k-uniform hypergraph whose parts are the cosets of Wi for each i = 1, . . . , k,
with an edge for every k-tuple of the form (wW1, wW2, . . . , wWk) with w ∈W . If we
now replace each hyperedge (wW1, wW2, . . . , wWk) by a (k − 1)-star centred at wWi,
we obtain a bipartite graph2 between the cosets of Wi and the union of the cosets of
W1, . . . , Wi−1, Wi+1, . . . , Wk, which we call the (S1, . . . , Sk; i, S, W)-graph. Since the
induced subgraph of this graph between the cosets of Wi and Wj, for each j = i, is the
(Si, Sj; S, W)-reflection graph and the set of reflections t ∈W give cut involutions of these
graphs (see [4, corollary 4·9]), the graph naturally has layers.

Example 3·6. Let W be the symmetric group on the three elements {1, 2, 3} and let S =
{σ12, σ23}, where σij is the permutation that swaps i and j. Then the graph C+

6 in Figure 1 is
isomorphic to the (S1, S2, S3; 1, S, W)-graph with S1 = {σ12}, S2 = {σ23} and S3 = S.

THEOREM 3·7. Let H be the (S1, S2, . . . , Sk; i, S, W)-graph. Then there exists a layered
percolating sequence J0, J1, . . . , JN such that J0 is the edge set of the (k − 1)-star induced
on {W1, . . . , Wk}.

We omit the proof, which is virtually identical to that of [4, theorem 1·2].

4. Constructions of dominating graphs

We now construct various examples of dominating graphs. Our first such family is as
follows and already includes our running example J = C+

6 from Figure 1.

THEOREM 4·1. Suppose that H is a reflection graph with one side A in its bipartition of
order a and regular of degree d. If d ≥ a − 1, then the graph H+

A formed by joining a new
vertex to each vertex in A is dominating.

Proof. Suppose that H is the (S1, S2; S, W)-reflection graph, where A is the family of all
cosets of the form wW1. Let S3 = S, so that W3 =W . Then H+

A is the (S1, S2, S3; 1, S, W)-
graph and, hence, by Theorem 3·7, there exists a layered percolating sequence starting with
two edges that form a star centred at v ∈ A. In fact, any such 2-star does the job, because of
the edge-transitivity of each layer.

By Theorem 3·5, it remains to show that the layers can be relocated. Let v0 be the vertex
adjacent to all the vertices in A and let B be the other side of the bipartition of H to A. First
observe that the layer isomorphic to the (S1, S2; S, W)-graph H can be relocated by using
the vertex v0. Concretely, we may replace any b ∈ B and its incident edges by v0 and the
edges between v0 and the neighbours of b, since v0 is adjacent to all vertices in A. Provided
d ≥ 2 (the easy case where d = 1 can be dealt with separately), this relocation contains two
seeds that form a 2-star centred on A, whereas H only contained one seed. The other layer
between v0 and A is just a copy of an a-star centred at v0. This star can easily be relocated to
another a-star centred in A containing more seeds than the star centred at v0, where we use
that each v ∈ A has degree d + 1 ≥ a in H+

A .

2 If multiple edges occur, then we simplify them.
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Fig. 4. Examples of H+
A .

This theorem adds many more examples of dominating graphs besides C+
6 . For instance,

Figure 4 shows the dominating graphs obtained by adding a vertex to four vertex-disjoint
copies of K1,4, the 1-subdivision of K4 and the 3-dimensional cube.

For a graph H, the K2,t-replacement of H is the graph obtained by replacing each edge
with a copy of K2,t, identifying the edge’s endpoints with the two vertices on one side of the
corresponding copy of K2,t. In particular, the K2,1-replacement of H is just the 1-subdivision
of H. Alternatively, the K2,t-replacement can be viewed as replacing each edge of H by t
multiedges and then 1-subdividing this multigraph. When we form the K2,t-replacement of
a graph, the side of the bipartition that corresponds to the original set of vertices is typically
smaller. Thus, by Proposition 2·3, for this graph to be dominating, the original graph H must
be regular. We now prove a sort of converse to this observation, showing that if H is a regular
reflection graph, then the K2,t-replacement of H is dominating.

THEOREM 4·2. The K2,t-replacement of a connected regular reflection graph H is
dominating.

Proof. Suppose that A ∪ B is the bipartition of H. Let H′ be the K2,t-replacement of H
and let A′ ∪ B′ be its bipartition, where A′ = V(H) and B′ is the disjoint union of t copies
of E(H). An edge in H′ then represents an incidence between the corresponding vertex and
edge in H.
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For a vertex b ∈ B′, let Eb be the set of vertices in B′ that have the same two neighbours
as b, i.e., the set of all copies of the same edge in H as b. For each b′ ∈ Eb, there exists a cut
involution φb,b′ of H′ that fixes all other vertices, but maps b and b′ to each other. Moreover,
the cut involutions φ of H extend naturally to cut involutions φ′ of H′ where φ′(v) = φ(v) for
v ∈ V(H) = A′ and φ′(u) is the jth copy of φ(e) if u ∈ B′ is the jth copy of e ∈ E(H). Together,
these cut involutions easily show that the two isomorphic induced subgraphs on A ∪ B′ and
B ∪ B′ are layers in H′.

We claim that any two edges ab and bc with a ∈ A, b ∈ B′ and c ∈ B give an appropriate
J0 for a layered percolating sequence. Indeed, by using the cut involutions φb,b′ for every
pair (b, b′), where b′ is a copy of the same H-edge as b, one obtains a folding sequence
J0, J1, . . . , Jt−1, where Jt−1 contains all edges of the forms ab′ and b′c with b′ ∈ Eb. If we
then use the standard percolating sequence for H given by [4, theorem 4·12], we obtain a
layered percolating sequence.

By Theorem 3·7, it remains to check that the layers can be relocated. Recall that the two
layers are the induced subgraphs on A ∪ B′ and B ∪ B′, respectively, which are isomorphic
copies of |A| disjoint td-stars, where d is the degree of a vertex in the regular graph H. To
relocate the layer on A ∪ B′, we replace a vertex a ∈ A by a vertex b ∈ B. Then the td-star
centred at a is replaced by another td-star that shares t leaves with each of the d different td-
stars centred at the neighbours of b in H. Let J be this edge-disjoint (but not vertex-disjoint)
union of d + 1 different td-stars. Then J consists of d copies of K2,t such that the two-vertex
side of each K2,t consists of a vertex v ∈ A and b, where v and b are adjacent in H, and
t(d − 1) pendant leaves attached to each v ∈ A. The induced subgraph on A \ {a} ∪ {b} ∪ B′
is the disjoint union of J and |A| − d − 1 further td-stars. Theorem 2·7 in [12] now implies
that

tJ(W) ≥ tS(W)d+1,

where S denotes the td-star. Thus, J dominates a td-star and, moreover, it contains two seeds.
It is then simple to conclude that the induced subgraph on A \ {a} ∪ {b} ∪ B′ is a relocation
of the layer induced on A ∪ B′.

In particular, this result clearly implies our Theorem 1·1, since the complete bipartite
graphs Kt,t are themselves regular reflection graphs. For more examples, suppose r< t and
consider the bipartite graph between the set of r-subsets and the set of (t − r)-subsets of [t]
where two sets are connected if and only if the smaller of the two sets is contained in the
larger one. This family of bipartite Kneser graphs, as they are known, includes Kt,t with a
perfect matching removed and the middle layer graph. They are all regular reflection graphs
and so, by Theorem 4·2, their 1-subdivisions, and all their K2,t-replacements, are dominating.

We have already seen that some trees are dominating, including even-length paths and
the example shown in Figure 4, but there are more examples. A perfect d-regular tree is a
tree T rooted at a vertex r such that r has d children, every vertex other than r or the leaves
has d − 1 children and every leaf is at the same distance from r. In particular, every path
of length 2k is a 2-regular tree of depth k. Thus, the following theorem generalises Godsil’s
result on even-length paths.

THEOREM 4·3. Every perfect d-regular tree T is dominating.
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Proof. We proceed by induction on the depth k of the tree. As the statement is simple
for k = 1, we may assume that T has depth k and any subgraph of the perfect d-regular tree
of depth k − 1 is dominated by that tree. Since it is clear that T has layered percolating
sequences, with the edges of any shortest path from the root r to a leaf serving as the seeds,
it will suffice to show that the layers can be relocated. The layers here are just the bipartite
graphs between the vertices of depths i and i + 1 for 0 ≤ i< k, so if we have a union of
at most k − 1 layers, then each of the connected components of the resulting graph is a
subgraph of the perfect d-regular tree of depth k − 1, so they and their union are dominated
by this tree. But this tree is easily seen to be isomorphic to a subgraph of T that includes a
shortest path from r to the leaves, so the layers can indeed be relocated.

To close this section, we note that, unlike weakly norming graphs (see [10]), the family
of dominating graphs is not closed under taking (bipartite) tensor products. For example,
consider the tensor product C+

6 × C+
6 , where the two copies of C+

6 are oriented the opposite
way. Then each side of the bipartition of C+

6 × C+
6 has vertices with two distinct degrees and

so, by Lemma 2·3, the graph cannot be dominating. However, as shown by the following
lemma, which says that blowups of dominating graphs are again dominating, some tensor
products are still allowed.

LEMMA 4·4. If H is a dominating graph, then so is H × Km,m for any integer m ≥ 1.

We will only sketch the proof of this lemma, working throughout in the language of
graphs rather than graphons. Suppose then that J is a subgraph of H × Km,m and we would
like to show that tJ(G) ≤ tH×Km,m(G) for all graphs G. The first step is to show that there
exist subgraphs J1, . . . , Jt of H and positive real numbers α1, . . . , αt with

∑t
i=1 αi = 1 such

that tJ(G) ≤ ∏t
i=1 tJi×Km,m(G)αi . For this, we consider an edge e = (u, v) of H such that J

contains an edge of the form (e, ·). Then, if we fix all vertices in H × Km,m except those of
the form (u, ·) and (v, ·) and use the fact that Km,m has a percolating sequence, we can show
that tJ(G) ≤ ∏s

i=1 tBi(G)βi , where each Bi is a subgraph of H × Km,m which includes either
all or none of the edges in e × Km,m and the βi are positive real numbers with

∑s
i=1 βi = 1.

Repeating this process for all edges e = (u, v) of H such that J contains an edge of the form
(e, ·) implies that tJ(G) ≤ ∏t

i=1 tFi(G)αi , where each Fi is a subgraph of H × Km,m which
includes either all or none of the edges in e × Km,m for all e ∈ E(H) and α1, . . . , αt are
positive real numbers with

∑t
i=1 αi = 1. But then each Fi is of the form Ji × Km,m, giving

exactly the inequality we require.
The second step is to show that Ji × Km,m is dominated by H × Km,m for each Ji. For

this, given a graph G, consider the auxiliary graph G∗ whose vertex set A is the set of
(not necessarily distinct) ordered m-tuples in G with an edge between a and a′ if there is
a homomorphic copy of Km,m between a and a′ in G. Then, since H is dominating,

tJi×Km,m(G) = tJi(G
∗) ≤ tH(G∗)e(Ji)/e(H) = tH×Km,m(G)e(Ji×Km,m)/e(H×Km,m),

as required. Combining the results of the two steps then completes the proof.
We note that the same proof works with Km,m replaced by any other vertex-transitive

reflection graph, such as an even cycle or a hypercube. Moreover, a similar result also holds
for H × Km,n with m = n or even with Km,n replaced by any other reflection graph, but one
needs to assume that H satisfies an appropriate bipartite version of the domination property
(which is indeed satisfied by all of our examples) for the proof to go through.
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5. Applications of the domination property
5·1. Sidorenko’s conjecture

Building on earlier work applying entropy techniques to Sidorenko’s conjecture [3, 11, 14,
22], it was shown in [4, section 5] that weakly norming graphs can be used as building blocks
to produce a family of graphs satisfying the conjecture. The proof of that result only relied
on the fact that weakly norming graphs are dominating, so it easily extends to dominating
graphs. To say more, we need some definitions.

A tree decomposition of a graph H is a pair (F , T ) consisting of a family F of vertex
subsets of H and a tree T on F such that:

(1)
⋃

X∈F X = V(H);

(2) for each e ∈ E(H), there is a set X ∈F such that X contains e;

(3) for X, Y , Z ∈F , X ∩ Y ⊆ Z whenever Z lies on the path from X to Y in T .

Given a graph H and an induced subgraph J, a J-decomposition of a graph H is a tree
decomposition (F , T ) of H satisfying the following two extra conditions:

(1) each induced subgraph H[X], X ∈F , is isomorphic to J;

(2) for every pair X, Y ∈F which are adjacent in T , there is an isomorphism between the
two copies H[X] and H[Y] of J that fixes X ∩ Y .

We say that a graph is J-decomposable if it admits a J-decomposition. Our application of
the domination property to Sidorenko’s conjecture is now as follows.

THEOREM 5·1. If J is a dominating graph, then every J-decomposable graph H satisfies
Sidorenko’s conjecture. That is, for any graphon W, tH(W) ≥ tK2 (W)e(H).

As in [4], we expect that entropy techniques can be used to broaden this class further, but
we have chosen not to pursue this direction here.

5·2. The Erdős–Simonovits conjecture

The supersaturation conjecture of Erdős and Simonovits [21] is often cited as an equiv-
alent formulation of Sidorenko’s conjecture, but it is in fact stronger for sparse graphs.
Recall that ex(n, H) is the largest number of edges in an H-free graph with n vertices. Their
conjecture is then as follows.

CONJECTURE 5·2 (Erdős-Simonovits). Let H be a bipartite graph. Then there exist pos-
itive constants c and C such that every n-vertex graph G with at least C · ex(n, H) edges
contains at least c · nv(H)pe(H) copies of H, where p = tK2 (G).

In full generality, this conjecture is known for only a handful of special cases. However,
here we show that dominating graphs do satisfy the conjecture to some nontrivial extent.
In the proof below, we will use the notation Hom(H, G) to denote the set of homomor-
phisms from a graph H to another graph G. In particular, if G has n vertices, tH(G) =
|Hom(H, G)|/nv(H).

THEOREM 5·3. Let H be a bipartite graph with maximum degree �. If H dominates H \ v
for each v ∈ V(H) and each H \ v satisfies Sidorenko’s conjecture, then there exist positive
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constants c and C such that every n-vertex graph with at least Cn2−1/� edges contains at
least cnv(H)pe(H) copies of H, where p = tK2 (G).

Proof. Suppose, for the sake of contradiction, that there are no such constants c, C> 0.
That is, given any c, C> 0, there exists an n-vertex graph G with e(G) ≥ Cn2−1/� such that
at least a (1 − c)-proportion of the homomorphic copies of H in G are degenerate. As each
degenerate copy of H is contained in a homomorphic copy of H \ v for some v ∈ V(H), it
follows that

∑
v∈V(H)

|Hom(H \ v, G)| ≥ (1 − c)|Hom(H, G)|.

Let H′ be the subgraph of H that attains the maximum value of |Hom(H \ v, G)| amongst all
H \ v for v ∈ V(H). In particular, v(H)|Hom(H′, G)| ≥ (1 − c)|Hom(H, G)|. Dividing both
sides by nv(H) then gives (v(H)/n)tH′(G) ≥ (1 − c)tH(G). Combining this with the domi-
nation inequality tH(G) ≥ tH′(G)e(H)/e(H′) and the Sidorenko inequality tH′(G) ≥ tK2 (G)e(H′)

gives

v(H)

(1 − c)n
≥ tH′(G)e(H)/e(H′)−1 ≥ tK2(G)e(H)−e(H′) ≥ p�,

where the final inequality used e(H) − e(H′) ≤�. Therefore, p ≤ (v(H)/(1 − c))1/� n−1/�.
Now choosing c = 1/2 and C = 3v(H) yields the desired contradiction.

6. Concluding remarks

Which graphs are dominating? Following [4], it is reasonable to conjecture that a graph is
weakly norming if and only if it has a percolating sequence, but we suspect that there is
no such clean characterisation for dominating graphs. However, there are several interesting
questions whose answers would help to clarify the nature of this family.

For instance, is it the case that every dominating graph arises through our reflec-
tion/relocation mechanism? And, if so, is it the case that they can all be associated in some
nontrivial way to a reflection group? It is a little hard to make these questions more precise,
but perhaps there is some example we missed that answers both in the negative.

We have already seen that there are dominating graphs, such as our running example C+
6 ,

which are not edge transitive. This again sets them apart from weakly norming graphs, since
Sidorenko [19] has shown that any weakly norming graph must be edge transitive. However,
all of our bi-regular examples are edge transitive. It would be interesting to decide if this is
a more general phenomenon.

It would also be interesting to decide whether there are examples other than trees where
we need to look at three or more distinct layers (or, alternatively, where we need to relocate
two or more times) to confirm the domination property. For both Theorem 4·1 and 4·2, we
use only two layers and, despite searching extensively, we did not find any interesting exam-
ples with more layers. A related problem is to find an example of a dominating graph which
has more than two distinct degrees on the larger side or, which would be more interesting,
to show that no such graph exists.

Finally, as with our work on weakly norming graphs, most of the concepts and results in
this paper extend to hypergraphs. We will not go into this in any depth here, but many of the
same questions can also be asked in this more general context.
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Strong domination. We say that a graph H strongly dominates another graph H′ if

|tH(W)|1/e(H) ≥ |tH′(W)|1/e(H′)

for any bounded symmetric measurable function W from [0, 1]2 to R. That is, W is no
longer required to take positive values. This is in line with the distinction between norming
and weakly norming graphs in [10]. We then say that a graph H is strongly dominating
if it strongly dominates all of its subgraphs. As in [4], our results here have analogues in
the strongly dominating case. For instance, the analogue of Theorem 3·5 holds provided all
of our reflections and relocations correspond to strong domination inequalities. In practice,
this means that all of our cut involutions must be stable, meaning that the fixed set of the
involution is an independent (or stable) set. However, besides the family of norming graphs
themselves (see [13] for an in-depth study of which reflection graphs are norming), the only
strongly dominating graphs we were able to identify are even-length paths. It would be
interesting to find more.

These notions also suggest the study of which graphs have the strong Sidorenko property,
that H strongly dominates K2, i.e.,

|tH(W)| ≥ |tK2 (W)|e(H)

for all bounded symmetric measurable functions W : [0, 1]2 →R. Clearly, any such graph
must be bipartite. If H has the stronger property that it strongly dominates K1,2, then H
must also be positive, in the sense that tH(W) ≥ 0 for all W (see [1] for more on positive
graphs, including a tantalising conjecture about their structure). To show this, suppose that
tH(W)< 0 and choose some W ′ such that tH(W ′)> 0. Then there exists p> 0 such that
tH(W + pW ′) = 0. However, unless W + pW ′ averages to zero along almost every fibre,
a situation which an appropriate choice of W ′ avoids, we must have tK1,2 (W + pW ′)> 0,
contradicting the assumption that H strongly dominates K1,2. We believe that a similar con-
clusion should hold if we only know that H strongly dominates K2, namely, that once we
delete any isolated edges from H, the remaining graph H′ should be positive.

It is tempting also to conjecture a converse, saying that any positive bipartite graph has
the strong Sidorenko property. Unfortunately, this is false. Indeed, the disjoint union 2H of
two copies of H is always positive, but it does not have the strong Sidorenko property unless
H itself does. It remains a tantalising problem to classify, or at least formulate a reasonable
conjecture about, those graphs which do have the strong Sidorenko property.

Other domination inequalities. Given a graph H and a vertex x, the graph Hx(k) is the sub-
graph induced by all vertices of distance at most k from x. If H is vertex transitive, then we
may omit the subscript x. We make the following conjecture.

CONJECTURE 6·1. Suppose that H is a vertex-transitive reflection graph with
diameter d. Then H() dominates H(k) for all 1 ≤ k ≤ ≤ d.

Why believe this conjecture? For one thing, it holds when H is an even cycle, as follows
easily from the fact that even-length paths are dominating. But, less obviously, it also holds
when H is the n-dimensional cube Qn. This again follows from our reflection/relocation
mechanism. Indeed, if we label the vertices of the cube with the subsets of [n], then, for x
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the empty set, H(k) consists of all subsets of [n] with at most k elements. If we relocate H(k)
by moving each vertex S to S�{i} for some i and then percolate, this increases the number
of layers by one. Iterating then gives the result.

Observe that Q3(2) = C+
6 is dominating, as is Qn(2) for any n, but Qn() is generally

not. However, the fact that Qn() dominates Qn(k) for all 1 ≤ k ≤  may be seen as a near
miss. Conjecture 6.1 is then just asking to what extent this phenomenon generalises. Note
that the fact that H is vertex transitive allows for easy relocations, but it also seems to be
a necessary condition, as such relocations are not always possible in non-vertex-transitive
reflection graphs such as the 1-subdivision of an octahedron.
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