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Abstract

This paper demonstrates feasibility of aerodynamically-supported motion of a thin sheet
near to a plane wall. Steady equilibrium is possible for uniform sheets only if they are
deformable, and a set of possible equilibrium shapes is determined.

1. Introduction

The phenomenon of easy sliding of a light flat sheet over a plane surface is
familiar to all. A vivid demonstration is contained in the movie prepared by the
late Sir Geoffrey Taylor [4]. Taylor noted that impermeability of the sheet is
important, and demonstrated that a sheet with holes cannot slide. He included
this demonstration in a film that is otherwise devoted to low-Reynolds-number
fluid mechanics, and described the sliding phenomenon as an example of fluid
lubrication, in which viscosity is the most important fluid property.

Our purpose here is to analyse the alternative possibility that support for the
weight of a sliding sheet can come from conventional aerodynamic lift due to
circulation, even in the absence of viscosity. Any such tendency for lift develop-
ment is strongly augmented by ground effect, in situations like the present where
the distance from the ground is small compared to the horizontal dimensions of
the lifting surface.

The aerodynamics of lifting surfaces very close to the ground can be analysed
by a quite simple one-dimensional theory, perhaps first due to Strand, Royce and
Fujita [3], that was extended by Widnall and Barrows. [7] and, more recently, by
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the present author [5], [6]. This theory (in its steady non-linear form, [6]) predicts
a pressure distribution in the gap that varies as the negative inverse square of the
local gap width, and takes values comparable in magnitude over a large portion of
the sheet to the maximum possible (stagnation) pressure in an inviscid fluid.

Thus, a sufficiently light sheet can be supported aerodynamically. However
there is a difficulty for uniform rigid sheets in that the centre of aerodynamic
pressure is not in general located at the centre of the sheet. Hence, such a sheet
cannot be in equilibrium. The escape from this difficulty is to assume that the
sheet is flexible and responds to a distributed aerodynamic pressure by bending
slightly.

In the present work, we are able to solve such coupled aerodynamic-bending
problems for the equilibrium configurations. The solution is not unique, there
being in principle infinitely many shapes that the sheet can deform into, such that
the lift exactly supports the sheet's weight, and acts at its centre. The lowest-order
mode is symmetric about the centre, where its clearance is greatest. This mode
also has a much higher average clearance than all other modes, and would
presumably be the most likely mode for successful sliding, since its drag would be
less.

2. Problem formulation

The flow of interest is as sketched in Figure 1. Viewed in a frame of reference
fixed in the sheet, the flow is steady and two-dimensional, and has a uniform
stream U in the negative direction at infinity. The ground surface is the plane
y = 0, and the sheet is fixed at the position y = y(x). The fluid is assumed
inviscid and incompressible. The sheet is assumed to be of zero thickness (for
aerodynamic purposes) and to lie between x — 0 (trailing edge) and x — L
(leading edge), so having chord L. The clearance y(x) is assumed everywhere
small compared to L. This means that the slope or local angle of attack y'{x) is
everywhere small.

The sheet is also assumed to be flexible, allowing bending in response to the
aerodynamic pressures. Thus, we have to solve a coupled aerodynamic-elastic
problem in which the aerodynamic pressure is determined by the bending shape
functiony{x) which in turn is determined by the aerodynamic pressure.

The aerodynamic portion of this problem is a well-posed potential-flow prob-
lem, which could be attacked by the usual methods of theoretical aerodynamics.
Circulation is induced around the sheet by the requirement (the Kutta condition)
that the flow streamlines leave the trailing edge x = 0 of the sheet smoothly, and
this circulation is ultimately responsible for the lift that supports the sheet's
weight.
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Figure 1. Sketch of fixed sheets = y(x) in a steady stream t/.

However, the predominant feature of the present configuration is the presence
of the ground plane, which augments the lift by (in effect) contributions due to
images in that ground plane, of the apparent vortices above it. In the limit as
y/L -> 0, that augmentation becomes so great that a special asymptotic theory
applies, and predicts lift forces orders of magnitude greater than those for a
lifting surface without ground effect. This theory will now be described.

3. Aerodynamic detail

If u(x) is the velocity of the predominantly one-dimensional flow in the narrow
gap, between the plane y = 0 and the sheet y — y(x), then continuity demands
that u(x)y(x) is constant, and equal to its value at a specified value of x. We
choose as that specified position the trailing edge x = 0, writing h = y(0) for the
trailing-edge clearance.

In addition, we make use of the Kutta, or smooth-detachment, condition at the
trailing edge, to assert that the gap speed w(0) at that point is equal to the
free-stream speed U. This is an important assumption, of course, and applies only
to trailing edges that are locally very straight, that is, free from bends or flaps.
Matching procedures described in [5] and [6] can be used to justify this assump-
tion in the asymptotic limit as the clearance/chord ratio vanishes. In particular,
[6], a correction can be made when there do exist local bends or flaps near the
trailing edge, but we shall assume here that no such deviations occur.

Thus we have

u{x)y(x) = Uh. (3.1)
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Now, if p denotes the excess of pressure over the free-stream value, then
Bernoulli's equation states that, for an inviscid fluid of constant density p in
steady flow,

p/P + {q2 = \U\ (3.2)

where q is the fluid velocity magnitude. In the gap, q — u(x), because of the
predominantly one-dimensional character of the flow, and hence

p = {PU2-{pu2 = {pU2{\-h2/y2), (3.3)

upon use of the continuity equation (3.1).
Equation (3.3) is the fundamental aerodynamic result for steady ground-effect

flows. It shows that the gap pressure is an 0(1) multiple (1 — h2/y2) of the
stagnation pressure \pU2. The net lift is

F={pU2jL[\-h2/y2{x)}dx (3.4)
•'o

and the moment (leading edge up) about mid-chord is

M = \pU2\\\ - h2/y2(x)](x - L/2) dx. (3.5)
•'o

These results assume that pressure variations along the upper surface of the sheet
are negligible compared to the gap pressure.

An important special case is that of a flat plate at angle of attack a, where
y(x) =h + ax. (3.6)

The integrals in (3.4) and (3.5) can be evaluated easily; in particular, we find the
net lift

F={pU2La/(a + h/L). (3.7)

Note that for small angle of attack a, the lift is proportional to a, as is usual in
thin airfoil theory. However, "small" in the present context means small com-
pared to h/L, which is itself a very small quantity. More realistically, a is
expected to be comparable to h/L, and then (3.7) shows that the lift coefficient is
the ratio

aL _ Leading edge clearance—Trailing edge clearance , ,
h + aL Leading edge clearance ' ^ ' '

which takes its maximum value of unity when h = 0 (that is, trailing edge touches
ground), and tends to negative infinity as h + aL -» 0 (that is, leading edge
touches ground).

The corresponding expression for the moment M of a rigid flat plate at angle of
attack a is given in [6], together with a discussion of the static stability problem.
All we need note about that result at the present time is that M = 0 only if h — 0.
That is, unless the gap flow is completely stalled (and hence the pressure is
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uniform) the centre of pressure cannot lie at mid-chord. For positive lift (a > 0),
the centre of pressure is forward of mid-chord, approaching the ^-chord point as
a ^ O .

It is therefore apparent that a uniform rigid sheet cannot slide steadily (with
non-zero clearance everywhere) over a plane surface, with lift being provided by
aerodynamic forces alone. If the weight of the sheet is uniformly distributed, its
centre of gravity will be at mid-chord, and even if enough aerodynamic lift is
available to support that weight, there will still be a net moment tending to
increase the angle of attack. Of course, such a tendency will lead to a reduction in
the trailing-edge clearance h, and hence, ultimately, to a stalled gap flow. This
represents (in one sense) a desirable situation of maximum lift, acting at mid-chord.
Meanwhile, viscous effects would have played a significant role in the locally
restricted flow near the trailing edge, and, in particular, we must expect a
significant increase in drag.

The only alternative is that the sheet is allowed to deform under the action of
aerodynamic forces, and we now assume that this is possible. The deformations
must be such that the net moment M given by (3.5) is zero, so that the lift acts at
the mid-chord position of the centre of gravity. Certainly, there do exist bending
modes allowing a net positive lift, and having that property. In particular, all
modes that are symmetric about mid-chord necessarily have M = 0, and the lift is
positive if (for example) y(x) > h for all x ¥=• 0 and L. However, this is not the
only possibility; in particular, as we shall see, a nearly-rigid plate at an angle of
attack can be made to shift its centre of pressure to mid-chord, by distorting it in
a roughly anti-symmetric manner, to give greater clearance in the aft half of the
sheet.

We now analyze the bending of deformable sheets in detail.

4. Bending modes

The sheet is now assumed to be a flexible thin shell, with flexural rigidity

D= — , (4.1)
12(1 - a 2 ) V '

where E is Young's modulus, t the sheet's thickness, and o Poisson's ratio. In
steady equilibrium with shape y = y(x), the equations of thin shell theory
(Donnell [2]) state that

£ *£]=,«>-..
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where w is the sheet's weight per unit area, and p(x) the net (upward) force per
unit area due to fluid effects. We assume that the sheet is uniform in all
properties, that is, that D and w are constant, and that/?(x) can be equated with
the gap pressure given by equation (3.3).

Thus, the equation of equilibrium is

Dyiv = (\pUl - w) - {{pU2h2)y-2. (4.3)

This is a non-linear ordinary differential equation of the 4th order. It must be
solved subject to the 4 free-end conditions

/ ' = / " = 0 at x = 0 and L, (4.4)

and an apparent 5 th boundary condition, namely

y(0) = h. (4.5)

However, h is itself an unknown; hence the combined system (4.3)-(4.5) is
properly set as a 4th-order boundary-value problem, with h to be determined as
part of that problem.

It is immediately clear that no solution exists if w > \pU2. Mathematically,
this means that the expression on the right of (4.3) is everywhere negative; if
y'v < 0, y'" cannot vanish at both x = 0 and x = L. Physically, of course, \pU2

is the maximum attainable aerodynamic pressure, and aerodynamics alone cannot
support the weight of a sheet with w > jpU2.

At the other extreme, if w is very small compared to \pU2, aerodynamic forces
are ample to support the weight, and little bending is needed. This corresponds
to the linear ground-effect theory of Widnall and Barrows [7]. Thus, when w «
jpU2, y — h and the non-linear equation (4.3) can be linearized (y~2 = h'2 —
2h'3(y — h)) to give

Dyiv - (PU2/h)y =-w- pU2. (4.6)

The general solution of (4.6) can be written down at once in terms of trigonomet-
ric and hyperbolic functions of kx, where

k* = pU2/{Dh). (4.7)

In particular,

y -h - (hw/(pU2))[\ - {{coskx + cosh A:*) + /?(sin kx + sinh A:*)],

(4.8)

satisfies y = h and y" = y'" = 0 at x = 0, for any constant /?. The condition
y" = y'" = o at x = L is satisfied if

cos kL = sech kL, (4.9)
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a transcendental equation from which an infinite set of eigenvalues for kL may be
obtained, namely

kL = 4.730.., 7.853.., 10.996.., ..= AT,, K2, K3,... (4.10)

In fact, beyond the 2nd, these eigenvalues are to 3 decimal places indistinguish-
able from odd multiples of IT/2, since sech kL — 0.

For each eigenvalue kL — Kn, n — 0,1,2,..., above, the corresponding value
of )3 = /?„ may be determined. In fact, the solution (4.8) may then be re-written in
such a way as to demonstrate a symmetry property that is in any case evident
from the nature of the linearized problem. That is, the even eigenvalues n = 0,1 , . . .
generate solutions that are symmetric about the mid-chord position x = L/2, with
y(L/2 — x) = y(L/2 + x) while the odd eigenvalues generate exactly antisym-
metric modes, wi th/(L/2 — x) = y'(L/2 + x).

The eigenvalues for kL generate corresponding eigenvalues for the trailing-edge
clearance h, that is,

h = pU2/(Dk4) = {pU2L*/D)K;\ (4.11)

Note that, as n -> oo, Kn -» oo and h -> 0 very rapidly, because of the inverse 4th
power. That is, as is to be expected physically, complex modes of bending, with
many maxima and minima, are less efficient in generating lift, and hence the
whole sheet must be closer to the ground to support its weight. Such modes are
therefore more influenced by viscous effects and in particular will suffer a greater
drag penalty.

We now turn to the fully non-linear problem, specified by equation (4.3). It is
interesting to note that the symmetric linearized solutions for n — 0,2,4,... will
generalize to (exactly) symmetric non-linear solutions. That is, the non-linear
problem possesses solutions satisfying y(L/2 — x) = y(L/2 + x). However, the
non-linear problem is not invariant under the transformation y'(L/2 — x) =
y'(L/2 + x), and hence we cannot expect any (exactly) antisymmetric modes,
although there must be modes which become anti-symmetric in the limit as
w -> 0.

5. Numerical method and computed solutions

The non-linear boundary-value problem (4.3)-(4.5) can be converted, in part,
to an initial-value problem as follows. First perform a scaling, writing

y(x) = hY(kx), (5.1)

where k is as defined in (4.7). Then Y — Y(X) satisfies

2d-^ = \-W-Y-\ (5.2)
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where

W=W/({PV2). (5.3)

Equation (5.2) is to be solved for fixed W where 0 < W < 1, subject to

Y = 1, Y" = Y" = 0 at X = 0, (5.4)

and

Y" = Y" = 0atX = kL. (5.5)

For numerical purposes, we augment the set of conditions (5.4) at X = 0 by the
slope condition

r(o) = Y, (5-6)
where y is an unknown constant. The initial-value problem corresponding to (5.2)
subject to (5.4), (5.6), has a unique solution for any y. Such a solution can be
obtained easily by various algorithms, such as the Runge-Kutta method. Our task
is thus to solve a family of such initial-value problems for various y, and to seek a
particular value of y such that (5.5) is satisfied at some value of X = Kn > 0.

For the even modes n — 0,2,..., this computational task can be reduced by
using the symmetry property. That is, instead of continuing the computation to
X = Kn we can stop at a pont X = \Kn where Y = Y" = 0. However, to
generate the remaining (nearly-antisymmetric) modes n = 1,3,..., we must com-
pute over a large range, until (5.5) is satisfied.

In practice, it is only necessary to examine the zeros of the second derivative
Y", as y varies. Rolle's theorem guarantees that there is a zero of Y'" between any
two successive zeros of Y", so that any point where Y" and Y'" vanish simulta-
neously must be a point where two zeros of Y" coalesce. Hence, if we plot zeros
of Y" against y, the required solutions correspond to values of y where that plot is
vertical.

A typical such plot is shown as Figure 2, for W — 0.5. Note that the relevant
values of y lie in a very narrow range, in which many turning points appear to
occur. Accuracy is ultimately lost as X increases, so that it is not possible to say
from the numerical values that an infinite number of turning points (and hence
an infinite number of eigenvalues) exist, but it seems likely that this is so. In any
case, we are only really interested in the first few eigenvalues. Figure 2 shows 3
turning points, at Ko = 6.1, AT, = 10.3 and K2 - 14.2, for W = 0.5.

Figure 3 shows the shape of the n = 0 mode, for various values of W. Since h is
a quantity determined by the solution process, it is inappropriate to plot Y = y/h
itself, as this does not demonstrate the variation in the absolute height of the
sheet. An absolute measure of the sheet's height in any mode is

y = yD/(PU2L4) = YKn-\
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Figure 2. Example of graphical solution of boundary-value problem. Plot of zero of Y"(X) (that is, a
computed value of X = K such that Y"( K) = 0), against y = Y'(0), at W = 0.5. Turning points where
dy/dK = 0 yield the required eigenvalues K = Kn, 3 of which are shown here.

and this is plotted against x/L in Figure 3, for n = 0. The horizontal line at
W — 0 corresponds to the linearized solution with w = 0, that is, has 7 = 1 ,
y = ATo4 = 0.00200. For W = 0.1, the linearized solution (4.7) predicts the shape
of the sheet quite accurately, the main non-linear effect being an increase in the
eigenvalue Ko from 4.73 to 4.90, and hence a corresponding reduction in the
trailing-edge height h.

As W increases (that is, the sheet becomes heavier) it must fly closer to the
ground in order to provide enough aerodynamic force to support its weight, and,
in the limit as W -» 1, the sheet lies flat on the ground. As we have seen, no
solution is possible for W > 1. At intermediate values of W, bending occurs, and,
for n = 0, such bending is symmetric about mid-chord.
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Figure 3. Sheet configuration in the first symmetric mode n = 0, for various values of the weight
parameter W.

Figure 4 shows corresponding results for the first odd mode n = 1. This mode
is almost antisymmetric about the mid-chord point. The sheet possesses a
non-zero average angle of attack, and this mode can be thought of as a distortion
of a rigid plate at an angle of attack. The main component of this distortion is an
increased clearance in the aft half, that increases the local lift there, and hence
shifts the centre of pressure back to mid-chord.

Note the factor of 10 difference in the scale of the vertical height between
Figures 3 and 4. The general size of the clearance is reduced in going from mode 0
to mode 1 by a factor of 8 or more for all values of W, and, when W is close to 1,
the clearance is very small indeed, for all modes higher than n — 0. Thus,
attention can be confined to the n = 0 mode in practice, as this is the only likely
low-drag configuration.

For any given mode, at fixed speed U and weight w, the height of the sheet is
inversely proportional to the flexural rigidity D. That is, an almost-rigid sheet
must fly at a very low height. As we have noted, a completely rigid sheet could
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Figure 4. Sheet configuration in the first nearly-anti-symmetric mode n = 1, for various values of the
weight parameter W. Note factor of 10 vertical scale reduction from Figure 3.

only be supported by a uniform stagnation pressure obtained by causing its
trailing edge height to vanish.

At the other extreme, the apparent conclusion is that, as the rigidity tends to
zero, the height tends to infinity. Although this result only applies over a limited
range such that the clearance/chord ratio remains small, it does suggest that
highly flexible sheets should be capable of sliding further, their greater flying
height reducing the drag. In practice, however, sheets that are too flexible do not
slide well because they are hard to get started.
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6. Conclusion

The results presented here demonstrate the theoretical feasibility of purely
aerodynamic support of sufficiently light flexible uniform sheets, in steady
motion very close to a plane surface. The condition w < \p\J2 quantifies the
degree of lightness. The main effect of the flexibility D is to determine the overall
height at which the sheet flies. A stiffer sheet must gain its necessary lift by flying
closer to the ground, while bending less.

Nothing in the present work should be interpreted as an assertion that heavy or
non-flexible sheets cannot slide at all. Sheets with w > jpU2 cannot derive
sufficient lift aerodynamically for steady motion. There are then two possibilities
for apparent easy sliding. Firstly, the motion could be unsteady, but long-lasting,
for a range of values of U not too much below (2w/p)1/2. The sheet then
decelerates and descends slowly, while flying in an air-supported low-drag config-
uration. This unsteady explanation would also be needed to account for sliding of
completely non-flexible sheets, even if w < jpU2. In any case, the whole concept
of steady sliding is at best an approximation, since drag forces are continually
slowing the sheet down.

The second possibility is that of conventional viscous air lubrication. The gap
flow would then be nearly of a fully-developed Couette nature, with a substan-
tially linear profile, and a pressure that is determined by the small extent of
non-uniformity of the gap, via Reynolds' equation [1]. In principle, such a
bearing-type pressure has no limit at all, so that arbitrarily-heavy sheets can be
supported. However, for free sliding, the drag in such a mode is bound to be
much higher than that for pure aerodynamic support.

It should be noted that the same requirement for flexibility occurs for viscous
support, in that the centre of pressure is not in general located at mid-chord, for a
bearing surface that is flat. In contrast to the aerodynamic case, however, the
pressure distribution is biased toward the narrowest part of the gap, that is,
toward the rear half of a rigid sheet at positive angle of attack. Again, the
conclusion must be that a non-flexible free sheet cannot slide steadily in pure
lubrication flow. The opposite nature of the aerodynamic and viscous asymme-
tries does suggest, however, that in a suitable interpolating regime, the centre of
pressure may lie at mid-chord, and work is continuing on this extension of the
present analysis.

Another desirable extension of the present work would be to study the stability
of the equilibrium configurations determined here. That is, all that has been
demonstrated here is that certain modes of steady motion do exist. These modes
could be unstable. Indeed, it is clear that attempts to propel very thin sheets are
often thwarted by an instability in which the leading edge rises rapidly. The

https://doi.org/10.1017/S0334270000000345 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000345


113] Sliding flexible sheets 415

possibility therefore exists that stability is possible only for sufficiently stiff
sheets.
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