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ABSTRACT

This article, based on a result of BORCH and an extension of BUHLMANN, gives
a complete characterization of Pareto optimal risk exchanges by a system of
differential equations linking the derivate of agents contributions to their risk
aversion coefficients.
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1. INTRODUCTION

This article extends a result of BUHLMANN (1984). Starting from BORCH'S
theorem (1960), BOHLMANN found a system of differential equations with a
Pareto optimal risk exchange as the solution. Here we are starting from these
differential equations and prove existence and uniqueness of a solution without
assuming any further condition. This solution depends on initial values which
satisfy a certain clearing condition. It will turn out that it can be identified in a
bijective way with the set of Pareto optimal risk exchanges.

2. MODEL

We consider a risk pool with n participants. Participant i (1 < i < n) is
characterized by

r, : initial wealth
Xj: initial risk (random variable defined on a probability space (Q, 91, P); we

assume that the expected values E[X,] exists)
M, : Bernoulli utility function (defined on R, increasing, strictly concave and

twice differentiable: u\ < 0, u" > 0)
Pi : absolute risk aversion (pf:= -u"\u\. Notice u\ > 0 and pt > 0 i.e. the

participants are risk averse; see PRATT (1964)).

By a risk pool we mean any formal mutual agreement among the n participants
n

to redistribute their total initial risk ^ X{.
;= i
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The intial risk vector X,

X:=(Xu...,Xn),

is called risk vector before exchange whereas a risk vector Y,

Y:={Yx,...,Yn),

defined on the same probability space (Q, <H, P) and satisfying the clearing
condition

n n

is denoted as risk vector after exchange or briefly as risk exchange.
Furthermore a risk exchange Y* : = (Y{*, ..., Y*) is called Pareto optimal if

there does not exist another risk exchange Y:= (Y{,..., Yn) with

E[Ui(r- F,*)] < E[Ui{r- Y,)] for all i

E\uto (/> - Yf)\ < E[Uio (>> - Y,-)] for at least one i°.

In the sequel we are interested in Pareto optimal risk exchanges.

REMARK. The motivation of a person for participating in a risk pool is to
improve his initial expected utility E[u(r — X)]. Therefore a risk exchange Y
has to satisfy the individual rationality condition

E[«,-(r,--X,)] <E[Ui(r,- Y,)] for all i

in addition to the pool condition of Pareto optimality. Unfortunately there are
many Pareto optimal risk exchanges violating this condition. In order to
preserve the beauty of the main result we drop the individual rationality
condition and deal in this article with general Pareto optimal risk exchanges.

In order to simplify our notation we introduce the shifted disutility functions v,

v,(x): = u,(r,-x) i = 1,.. . ,«. (v,' < 0, v," < 0)

With Wt we denote the range of the derivative of v,

Wi:={v'i(x)\xsR}.

3. MAIN RESULT

Now we show the existence of a bijective mapping between the set of Pareto
optimal risk exchanges and the set of solutions of a system of differential
equations satisfying a constrained boundary condition.
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THEOREM

n

Let w, w : = {wx, ..., wn) e R", be a vector with £ , wi ~ 0.
1=1

(i) Let (A) be the system of differential equations

1

25

(A)
Pi{r- F,

/= ! , . . . ,« .

There exists a uniquely defined solution Y(z) = (Yl(z),..., Yn(z)) of (A)
satisfying the boundary condition F,(0) = wt, i = 1,... ,«.

(ii) If Y(z) = (Yx(z),..., Yn(z)) is the solution of (A) with boundary condi-
tion 7,(0) = Wj, i = ! , . . . , « , then

1=1

is a Pareto optimal risk exchange.
(iii) If Y* : = ( Y ? , ..., Y*) is a Pareto optimal risk exchange then there exists

a solution Y{z) = (7j(z) , . . . , Yn{z)) of (A) satisfying a uniquely defined

boundary condition Yt (0) = w,- , / = 1,.. . ,«, ]T w, = 0, with

Xt almost surely.Y* = Y

PROOF

(i) Existence of a solution:

A / x
Let /* be the function fk (x): = 2_, (v/) ~' — with * : = (&i > • • • > ^«)̂

1=1 \ A:,-

A:,: = > 0. fk is a strictly decreasing and differentiable function defined

on W

W:= f]

with range IR. (see Lemma 1, Appendix). Furthermore fk (— 1) = 0. (see Proof
of Lemma 1, Appendix). We have

Y(z):= ( r , (z) , . . . , Yn{z)) with 7,.(z) = (v/) , / = ! , . . . ,« ,
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and kj: = , / = 1,...,«, is a solution of (A).

Uniqueness of the solution:

Let P(z) = (?i (z) , . . . , Yn (z)) be another solution of (A) satisfying the same
boundary condition. We define differentiable functions g,(z), / = 2 , . . . , n:

g,(z): = fc.vK^^-^v/Cf^z)), z e R .

We have g,(0) = 0 for all i and for the derivatives g,'(z), / = 2 , . . . ,« , we get

g\(z) = k.vi'ifdz)) TlW-kiVriUz)) Y,'(z)

, z e R .
1

Because the homogeneous linear differential equations

g'i(z) = £ i ^ , zeR, i =
^ 1

have only solutions of the form

r -
I n

Jo \-

1
dt \ , c,• e R, i = 2,...,ngt(z) = c,exp

we get together with g,(0) = 0: c, = 0 and therefore g,(z) = 0 for all z e R and
i = 2 , . . . , n.

This means

kt v/ (?,(z)) = kx v{ (f! (z)) for all z e R and / = 2, . . . , «.
n

Because 2] f/(z) = 1 for all ze R it follows together with the boundary

n

condition that 2_, ?i(z) = z f°r a^ ze R.
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Because F(z) and Y(z) satisfy both the equations (**) of Lemma 2 (see
Appendix) we conclude by uniqueness of the solution that

?{z) = Y(z) for all z e R .

(ii) Y(z):= ( r , ( z ) , . . . , Yn(z)) with y,(z) = (v,')-1

and kj: = , /= 1 , . . . , n, is the unique solution of (A)

satisfying the boundary condition Yt(0) = w,,, i = 1 , . . . , n. Because this solu-
tion satisfies (**) of Lemma 2, (see Appendix), it follows from BORCH'S

theorem (see BORCH, (1960))that F(E A",) is a Pareto optimal risk exchange.

(iii) It follows from BORCHS theorem (see BORCH, (1960) ) that there are
strictly positive constants kt, i — 1,... ,«, with

^/v/(^/*) = ^i v i ' (^*) almost surely for i = 2,...,«.

Let (o e Q be an element of Q for which the condition of BORCH is satisfied, k
the vector k : = (klt ...,kn) and/f t the function as defined above. Becausefk(x)
is defined for x : = k\ v[ (Y? (co))

(condition of BORCH)

it follows analogously to Lemma 1, (see Appendix), that fk is defined on some
interval (a, b) with range R. Therefore (/*)~'(0) exists. We define the vector
w = (w , , . . . , wn) by

(/)"'(0) i = ! , . . . , « .

The unique solution Y(z) = (K, (z ) , . . . , Yn(z)) of (A) with boundary condi-
tion Yf(O) = w,, i = 1 , . . . , n, satisfies the equations (**) of Lemma 2, i.e.

Yj(z) = z for all z e R

A;,v/(r,(z)) = A:, v1'(r1(z)) for i = 2,...,« and all z e R .

We conclude by uniqueness of the solution that

,= i
( \

£ Xt almost surely .
/
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REMARK: Because — I/A:, is possibly not in the range of v,' we cannot

define w, by w,: = (v/)"
- 1

QED

4. EXAMPLE

We assume that the participants are using exponential utility functions, i.e.
Pt(x) = a, for all xeR and i = 1,... ,«, where /?, denotes the absolute risk
aversion of participant i. In this case the system of differential equations (A)
becomes very simple

1

(A) Y,'(z) = ^
" 1

I-
We therefore have

" 1

I 1
7=i a,-

where the /?,'s satisfy the clearing condition

For further examples, e.g. for utility functions of the HARA-type, see
LIENHARD, (1986).

APPENDIX

To conclude the two technical lemmas already used in the proof of the main
Theorem are discussed.

LEMMA 1

n

Let w, w : = (wx,..., wn) e R", be a vector with 2^ w, = 0
i = l

1

and k, k : = (fc, , . . . , kn) e R" the vector with kt: = > 0 .
v,' (w,)
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is a strictly decreasing and differentiable

W:= f]
1 = 1

Then/*(*): = g (v/)"1

function defined on W

with range R.

PROOF

Obviously W is an open interval. W is not empty because it contains — 1.

= / (v/) ~ (v/ (w,-)) = X, w, = 0 .
kj I /=i 1=1

We denote by (a,, Z>,-) the open interval Wt and by (a, b) that of W. We have

a = a, A:, for at least one i

and therefore

lim /4(JC)= lim £ (v/) '

Analoguously we get

> lim (v/)
x>a

- 1

lim fk(x) = - o o .

It follows that the continuous function fk has range R. Obviously fk is
differentiable on W with derivative

fiix) = X - -
i = 1 K,

1
< 0. QED

LEMMA 2

Let w,w.= (H>, , . . . , wn) e R", be a vector with ^ vv, = 0

and A:, A:: = (A, , . . . , kn) e R" the vector with kt: = > 0 .

Furthermore let (*) and (**) respectively denote the system of equations (in
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(**)
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/ =

1=1

Yi(z) = z for all zeIR

(r , (z)) = A:1v1'(F1(z)) for I = 2 , . . . , / I .

Then Y{z):= {Y,{z),..., Fn(z))with r,(z) = (v/)"1 1 1 ,i = l , . . . ,n ,

is the unique solution of (*) resp. (**). The functions Yt{z), i = 1,...,«, are
strictly increasing and differentiable. They satisfy F, (0) = w,- for / = ! , . . . , « .

PROOF

From Lemma 1 it follows that ( A ) " 1 exists and is defined on IR. Therefore
F(z) is well defined, strictly increasing and differentiable. By inverting
equation (*) we see that Y{z) is a solution and even the unique solution of (*).
Obviously Y(z) is also a solution of (**).

Note that

for i = 2 , . . . . / i .

= w,- (see proof of Lemma 1).

Furthermore

r,(0) = (v/)"1 - ( - l )

Let Y(z):= ( f i ( z ) , . . . , fn(z)) be another solution of (**). Then we have

2 =
1=1

= A (*i v,' ( Y, (z))) = / , (*, v/ ( f, (z))) .

But the solution of (*) is unique, so we have Y(z) = Y(z) for all z e IR. This
completes the proof.

QED
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