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Let M be an open Riemann surface and n > 3 be an integer. In this paper, we
establish some generic properties (in Baire category sense) in the space of all
conformal minimal immersions M — R"™ endowed with the compact-open topology,
pointing out that a generic such immersion is chaotic in many ways. For instance, we
show that a generic conformal minimal immersion u: M — R™ is non-proper, almost
proper, and g-complete with respect to any given Riemannian metric g in R™.
Further, its image u(M) is dense in R™ and disjoint from Q3 x R»~3, and has infinite
area, infinite total curvature, and unbounded curvature on every open set in R”. In
case n =3, we also prove that a generic conformal minimal immersion M — R3 has
infinite index of stability on every open set in R3.
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1. Introduction and main results

A set in a topological space X is residual (or comeagre) if it contains a countable
intersection of dense open sets. If X is completely metrizable (or, more generally,
a Baire space) then every residual set in X is dense.! A countable intersection of
residual sets is still residual, so residual sets in completely metrizable spaces are
considerably large. We say that a property of elements in a completely metrizable
space is generic, or that a generic element satisfies the property, if the property
holds on a residual subset (see, e.g. [9, Definition 8.5]). Thus, generic properties are
those enjoyed by almost all elements of the space in this precise topological sense.

Throughout the paper, n > 3 is an integer, M is an open Riemann surface,
and CMI(M,R™) denotes the space of all conformal minimal immersions M — R"
endowed with the compact-open topology. A sequence u; € CMI(M,R"), j € N,

IThis property characterizes Baire spaces. Every completely metrizable space is a Baire space
by the Baire Category Theorem; see, e.g. [15, Corollary 25.4, p. 186].
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converges in this topology to an immersion v € CMI(M,R") if and only if the
sequence of restrictions uj| x to any compact set K C M converges uniformly on
K to u|k (see, e.g. [7, Sec. VIL.2]). In this paper, we shall establish several generic
properties in CMI(M,R™). Some of them are somewhat surprising, and show that a
generic conformal minimal immersion M — R™ has a considerably wild asymptotic
behaviour. The following are some of the properties we are interested in. We denote
by | -| and dist(-, ) the standard Euclidean norm and distance in R™, respectively.

DEFINITION 1.1. (a) Given a Riemannian metric g in R™, an immersion u €
CMI(M,R™) is g-complete if the pull-back metric u*g induced on M by g via u is
complete in the classical sense: w oy has infinite g-length for every divergent path
v:[0,1) = M, that is, fol |(wo~)(t)|gdt = +00. The immersion u is complete if
it is ds®-complete, where ds® denotes the standard Euclidean metric in R™.

(b) A map between topological spaces is proper if inverse images of compact
subsets are compact. It is almost proper if the connected components of inverse
images of compact subsets are compact.

(c) Denote by D = {z € C: |z| < 1} the closed unit disc. For v € CMI(M,R")
and a conformal minimal immersion v : D — R™, we say that u rebuilds v if for
any €> 0 there are a smoothly bounded closed disc D in M and a biholomorphism
¢ : D — D such that |[uo p —v| < € everywhere on D. We shall say that u rebuilds
every conformal minimal disc if u rebuilds every conformal minimal immersion
D — R™ (compare with the notion of universal minimal surface in [10, Definition
41).

(d) For uw € CMI(M,R"™), we denote

DP(u) = {p € M: u"(u(p)) \ {p} # @} (1.1)

The immersion u is injective if and only if DP(u) = &. We say that u is densely
non-injective if DP(u) is a dense subset of M.

(e) Denote by Dy = {(p,p): p € M} C M x M the diagonal of M x M . For
u € CMI(M,R"™), let 0,,: M x M — R™ be the difference map given by

Uu(p,q) :u(p)iu(q)a p,qu.

We have that Dy C 0,,1(0), and u is injective if and only if Dy = o,1(0). We
say that u self-intersects nicely if 0 € R™ is a regular value of the restriction of
oy to M x M\ Dyy; i.e. d(ou) : TipgyM x M — R™ is surjective for all
(P.q) € 0, (0) \ D

Recall that a subset of a topological space is a Gy if it is a countable intersection
of open sets; so, dense Gj subsets are residual. For v € CMI(M,R"™) we denote
by K,: M — R and dA, the curvature function and area element of u, respec-
tively. Non-constant continuous functions R” — [0, +oo are called weight functions
on R™.

Here is the first result in this paper.

D,q)

THEOREM 1.2. Let M be an open Riemann surface and n > 3 be an integer. Then
the space CMI(M,R"™) is completely metrizable and separable.
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Moreover, given a Riemannian metric g in R™, a conformal minimal disc v : D —
R™, a closed set @ # Z C R"™, a weight function p on R™, a properly immersed
submanifold A C R™ of codimension > 2, and a compact subset S C A with empty
(relative) interior, the following subspaces are dense G subsets of CMI(M,R™).

(i) The set of g-complete immersions.

(ii) The set of immersions rebuilding v.

(i1i) The set of immersions u with dist(u(M), Z) = 0.

(iv) The set of immersions u such that sup,; |K,|(p o u) = +oo.

(v) The set of immersions u such that [, |Ky,|(pou)dA, = +oc.

(vi) The set of immersions u such that [, (pou)dA, = +oc.
(vii) The set of immersions with range in R™\ S.
(viii) The set of immersions that self-intersect nicely.

Furthermore,
(iz) the set of almost proper immersions is residual in CMI(M,R™).

In particular, a generic conformal minimal immersion in CMI(M, R™) satisfies all
the properties in Theorem 1.2. Recall that a subspace of a completely metrizable
space is completely metrizable if and only if it is a Gg; see [15, Theorem 24.12,
p. 179]. Therefore, the subspaces in statements (i)—(viii) in Theorem 1.2 are com-
pletely metrizable. Observe that if a Riemannian metric g in R” is complete then
every almost proper immersion M — R" is g-complete, but this need not hold true
if g is not complete. In view of statement (iz) in the theorem, the main interest of
(i) is when the given metric g in R™ is not complete (for instance, if it decays fast at
infinity). Moreover, we do not know whether the set of almost proper immersions
in CMI(M,R"™) is a Gy subset.

Satisfying a given countable collection of generic properties in a completely
metrizable space is again a generic property. Therefore, the following corollary of
Theorem 1.2, which might be understood as the main result in this paper, holds.

COROLLARY 1.3. If M is an open Riemann surface and n > 3 is an integer, then
the following subspaces of CMI(M,R™) are dense Gs subsets.

(i) The set of immersions which are g;-complete for all j € N, where g;, j € N,
is any given sequence of Riemannian metrics in R™.
(i) The set of immersions rebuilding every conformal minimal disc.
(ii) The set of immersions with dense image.
(iv) The set of immersions u € CMI(M,R™) having dense image and unbounded
curvature on u~ () for every open set Q C R™.
(v) The set of immersions u € CMI(M,R"™) having dense image and infinite
total curvature on u=t(Q) for every open set Q C R™.
(vi) The set of immersions v € CMI(M,R™) having dense image and infinite
area on u~1(Q) for every open set Q C R™.
(vii) The set of immersions with range in R"\UJEN S; for any given sequence of
properly immersed submanifolds A; C R™ of codimension > 2 and meagre
subsets S5 C Aj, j € N.
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In particular, the intersection of all these subspaces is still a dense Gs subset.

The given metrics g; in Corollary 1.3(%) need not be complete, or conformal or
comparable to each other or to the standard Euclidean metric. Roughly speaking,
(i) shows that divergent paths in a generic minimal surface have an extremely wild
behavior, and hence such surfaces are complete in a very strong sense. In order to
obtain (7i) we shall use that the space CMI(D, R") (n > 3) of all conformal minimal
immersions D — R”, endowed with the compact-open topology, is separable; see
Claim 2.2. For the proof of statements (iii)—(vi) in Corollary 1.3 we take into
account that R™ is separable and second-countable. Concerning (vii), recall that a
set in a topological space X is meagre (or of first category) if its complement is
residual in X; i.e. if the set is contained in a countable union of closed sets with
empty interior. The family of all meagre sets in X is a o-ideal, that is, the empty set
is meagre in X and all subsets of a meagre set and all countable unions of meagre
sets in X are still meagre. A consequence of Corollary 1.3 (vii) is that, for any given
sequence of properly immersed submanifolds A; C R™, j € N, of codimension > 3,
the set of immersions in CMI(M,R") with range in R™ \ [,y 4 is a dense Gs.
In particular, u(M) N (Q* x R"3) = @ holds for a generic conformal minimal
immersion u : M — R™ (despite u(M) being generically dense in R™ by Corollary
1.3(ii1)).

In the same spirit as Corollary 1.3 (%v)—(vi), we shall also establish the following
result in dimension n = 3.

THEOREM 1.4. If M is an open Riemann surface, then the set of immersions
u € CMI(M,R3) having dense image and infinite index of stability on u=1(Q) for
every open set Q C R3 is a dense Gs subset.

Recall that the index of stability of an immersion u € CMI(M,R?) is the index
of its Jacobi operator A, — 2K, where A, is the Laplace operator of u*(ds?); see,
e.g. [12, Sec. 2.8] for a brief introduction to stability of minimal surfaces.

The set of proper conformal minimal immersions in CMI(M,R™) is known to
be dense (see [3, Theorem 7.1] or [5, Theorem 3.10.3]), but it fails to be residual.
Indeed, since a conformal minimal immersion M — R™ with dense image is not
proper, the following is an immediate consequence of Corollary 1.3 (44i).

COROLLARY 1.5. Let M be an open Riemann surface and n > 3 be an integer.
Then the set of proper conformal minimal immersions is meagre in CMI(M,R™).

Recall that meagre sets in a completely metrizable space have empty interior.
So, in a certain topological sense, the meagre sets in such a space can be considered
small and even negligible. In particular, a set in a completely metrizable space
cannot be both meagre and residual.

The following result is a consequence of Theorem 1.2(ii) and (viii), and the fact
that conformal minimal immersions M — R™, n = 3,4, rebuilding every conformal
minimal disc are densely non-injective (see Definition 1.1 (d) and Claim 3.1). Recall
that an immersion u € CMI(M,R*) has simple double points if for any p,q € M,
p # q, with u(p) = u(q), the tangent planes du,(T,M) and dug(T,M) intersect
only at 0 € R*, and there are no triple intersections.
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COROLLARY 1.6. Let M be an open Riemann surface. Then the following hold.

(i) If n > 5 then the set of injective immersions is a dense Ggs set in
CMI(M, R™).

(ii) The set of immersions u € CMI(M,R*) with simple double points is a
dense G subset, and the set of those u such that, in addition, DP(u) is a
countable dense set in M is residual CMI(M,R*).

(iii) A generic immersion u € CMI(M,R3) satisfies that DP(u) is a dense
countable union of properly immersed real curves in M.

The subspaces of CMI(M,R™) in Corollary 1.3(%i) and Theorem 1.2(iz) are
known to be dense; see [1, Theorem 1.1] and [3, Theorem 7.1] (see also [5, Theorem
3.9.1 and 3.10.3]). The subspace in Theorem 1.2(i) is also known to be dense in
CMI(M,R"™) when g is the standard Euclidean metric ds? in R™ (see [5, Theorem
3.9.1 4)]); it is not difficult to modify the proof in the mentioned source to make it
work for an arbitrary metric g in R™, though. The proofs of these density results
follow from some intricate lemmas that are recursively applied in involved induc-
tive procedures. Our method of proof of Theorem 1.2 is much simpler, relying on
a single application of the same lemmas together with the Baire category theorem,
so without requiring of any induction, and gives the stronger result that the con-
cerned subspaces are not only dense but residual in CMI(M,R™). The fact that
the subspaces in Corollary 1.3, apart from the one in (%), and Theorem 1.4 are
dense in CMI(M,R"™) is new; in fact, the referred subspaces were not known to be
nonempty until now.

In conclusion, it is safe to claim that the shape of almost all minimal surfaces in
Euclidean space is extremely complicated.

2. Proof of Theorem 1.2

Throughout the proof we let

o#tKieK,e---C|JK;=M, (2.1)
JEN
be an exhaustion of M by smoothly bounded Runge compact domains.?

Let us first prove the first assertion in the theorem.

Claim 2.1. Let M be an open Riemann surface and n > 3 be an integer. Then the
space CMI(M,R™) is completely metrizable.

Proof. Denote by C(M,R™) the space of all continuous maps M — R™ endowed
with the compact-open topology. Since M is hemicompact® and R™ is complete

2A compact set K in an open Riemann surface M is Runge (or holomorphically convez) if M\ K
has no relatively compact connected components in M. It is customary to call a nonempty set in
a topological space a compact domain if it is compact and is the closure of a connected open set.
Lacking a better term, in this paper we also refer to the union of finitely many mutually disjoint
compact domains as a compact domain.

3 A topological space X is hemicompact if there is a countable family of compact sets in X such
that every compact set in X is contained in one of those in the family.
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with the Euclidean metric, we have that C(M,R™) is completely metrizable (see
Arens [6]; see also, e.g. [11, p. 100]). Recall that a map u = (u1,...,u,) : M = R"
lies in CMI(M,R"™) if and only if  is a harmonic map and its complex derivative Ju
(i.e. the (1,0)-part of the exterior derivative du of u) satisfies >, (du;)?> = 0 and
Ou # 0 everywhere on M (see, e.g. [5, Theorem 2.3.1]). Denote by CHM(M,R"™)
the subspace of C(M,R™) consisting of all harmonic maps u : M — R™ satisfying
S (Ou;)? = 0 everywhere on M. By Harnack’s theorem CHM (M, R™) is a closed
subspace of C(M,R™), hence CHM (M, R"™) is completely metrizable as well. Recall
now that a subspace of a completely metrizable space is completely metrizable if
and only if it is a Gs set (see, e.g. [15, Theorem 24.12, p. 179] or [8, Theorems
4.3.23 and 4.3.24, p. 274]). Since

CMI(M,R") = {u € CHM(M,R"): Qu(p) # 0 for all p € M}

is a subspace of CHM(M,R"™), to complete the proof it remains to see that
CMI(M,R") is a G5 set in CHM(M,R"); i.e. it can be written as a countable
intersection of open sets. For that, it is then clear that CMI(M,R") = ;.4 Uj,
where

U;j = {ue CHM(M,R"): du(p) #0for all p € K;}, jeN.

see (2.1).) To finish, just note that U; 1s an open subset in , or a
2.1).) To finish, j hat Uj i b in CHM(M,R"™) fi 11
j € N by Cauchy estimates. d

Claim 2.2. Let M be an open Riemann surface, K be a smoothly bounded compact
domain in M, and n > 3 an integer. Then the space CMI(K,R™) of all conformal
minimal immersions K — R™ (i.e. extending as conformal minimal immersion to
an unspecified open neighborhood of K ), endowed with the compact-open topology,
is separable. The same holds for CMI(M,R™).

Proof. Let C(K,R™) denote the space of all continuous maps K — R" endowed
with the compact-open topology. Since K is compact Hausdorff and R™ is a metric
space, this topology coincides with the metric topology of the maximum norm
(see, e.g. [7, Theorem 2.12, p. 440]). Note that C(K,R™) is separable by Riesz’s
Theorem; see, e.g. [14, p. 251], and take into account that the product of finitely
many separable metric spaces is separable. Since every subspace of a separable
metric space is separable (see e.g. [14, Proposition 26, p. 204] or [15, 16G.1]), we
have that CMI(K,R"™) C C(K,R") is separable too.

For the second assertion, note that CMI(K;,R™) is separable for all j € N
(see (2.1)). Since the Runge theorem for conformal minimal immersions in [5,
Theorem 3.6.1] (see Theorem 2.4 below) enables us to uniformly approximate every
element in CMI(K;, R™) by a sequence in CMI(M, R™), the latter space is separable
as well. g

We shall next focus on statements (4)—(vi). Their proofs follow a common logical
pattern using the following immediate consequence of the Baire Category Theorem.
For a compact topological space K and a continuous map f: K — R™ we denote

by [|fllx = max{[f(p)|: p € K}
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Claim 2.3. Let M be an open Riemann surface and n > 3 be an integer. Let E be
a family of compact subsets of M and F: CMI(M,R™) x E — [0, 400] be a function
satisfying the following conditions:

(A) F(-,C): CMI(M,R"™) — [0, +00] is continuous for all C' € E, where [0, +00]
has the topology of the extended real line.
(B) For every i € N the set

A; = {u € CMI(M,R"): sup F(u,-) > i}, (2.2)

is dense in CMI(M,R™), that is, for any u € CMI(M,R™), any compact set
K C M, and any €> 0, there exists 4 € A; with ||t — ul||x < €.

Then the set [);cn Ai is a dense Gs subset in CMI(M,R™).

Proof. By the continuity of F(-,C), the set AY = {u € CMI(M,R"): F(u,C) > i}
is open in CMI(M,R"™) for all C € E and i € N, and so is Ay = Upecp AS for
all ¢ € N. Since CMI(M,RR"™) is completely metrizable by Claim 2.1 and A; is also
dense in CMI(M,R™), the Baire Category Theorem ensures that (,c A; is a dense
G5 subset in CMI(M,R™). O

In order to establish each of the statements, we shall consider a pair (E, F) as in
Claim 2.3 such that (),.y Ai equals the set we are dealing with. Condition (A) in
the claim will always be clear, either trivially or from a straightforward application
of the Cauchy estimates, and we will not discuss it (except when proving statement
(i), serving to exemplify how the Cauchy estimates are used). Thus, the proof
reduces to check condition (B). For this, we shall use the following Runge theorem
for conformal minimal immersions (see [3, Theorem 5.3] or [5, Theorem 3.6.1]),
together with further results in the recently developed theory of approximation for
minimal surfaces.

THEOREM 2.4. Let M be an open Riemann surface, K C M be a Runge compact
set, andu : K — R™ (n > 3) be a conformal minimal immersion (on a neighborhood
of K in M ). Then, for any €> 0 there is & € CMI(M,R™) such that |G — u| < €
everywhere on K.

Let us now proceed to prove items (i) to (iz) in Theorem 1.2. This shall complete
the proof of the theorem.

Proof of (i). Let g be a Riemannian metric in R™. Fix a point py € f(l, consider
the family of compact sets E = {bKj: j € N} (see (2.1)), and set

F(u,C) = distl (po, C) for every u € CMI(M,R") and C € E,

where dist{ denotes the distance on M associated to the pull-back metric u*g. Let
C =bK; € E, u e CMI(M,R"), and p> 0. The Cauchy estimates (relying on the
fact that the uniform convergence on a compact set of harmonic or holomorphic
functions implies the one of all their derivatives) guarantee the existence of a num-
ber o >0 with the following property: for any v € CMI(M,R") with ||v —ul|x, < o
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the metric v*g is so close to u*g on K; that |distd(po, C') — disty (po, C)| < p. This
proves Claim 2.3 (A).

Let ¢ € N and fix u, K, and € as in Claim 2.3 (B). Choose C' = bK; € E, where
7 € N is so large that K C Io(j, and fix a number § >0 to be specified later. By
[2, Lemma 4.1] (see also [5, Lemma 7.3.1]) there is a conformal minimal immersion
@ : K; — R™ such that |4 — ul|x, < ¢/2 and disty(po, C) > 0, where dist, denotes
the distance function on M associated to the metric 4*ds? induced on M via @
by the standard Euclidean metric ds? in R™. Since ds? and the given metric g are
comparable in the compact set {z € R": dist(z, u(K;)) < €} C R™, we can choose
0 >0 so large that

dist? (po, C) > i. (2.3)

Next, by Theorem 2.4 we can approximate @ uniformly on K; by immersions o €
CMI(M,R") with ||@ — 4|k, < €/2, and hence ||& — u|x < e. Moreover, if the
approximation of & by 4 on Kj is close enough then, by (2.3) and Cauchy estimates,
we can also ensure that dist2(po,C) > i, and hence @ € A;; see (2.2). This shows
(B) and completes the proof in view of Claim 2.3; note that [,. A; equals the set

of g-complete immersions in CMI(M, R"™). O
Proof of (ii). Let v : D — R™ be a conformal minimal immersion
(on a neighborhood of D in C), consider the family E = {D C

M : D smoothly bounded closed disc}, and for each D € E denote by Lp the set
of all biholomorphisms D — D. Set

F(u,D) = sup !

—————— € (0,400] forue CMI(M,R") and D € E.
pecp luop —vlly

Let ¢ € N and fix u, K, and € as in Claim 2.3 (B). We assume without loss of
generality that K C M is Runge, and pick D € F with KN D =@ and ¢ € Lp.
Since KUD is Runge, by Theorem 2.4 there is & € CMI(M, R™) such that [d—u| < €
on K and | —vop~l| < 1/i on D, hence @ € A; (see (2.2)), proving (B). Thus,
Claim 2.3 ensures that the set (1,cy A;, which equals the one of conformal minimal
immersions M — R™ rebuilding v, is a dense G subset in CMI(M,R™). O

Proof of (#ii)-(vi). Let @ # Z C R™ be a closed set and p: R" — R be a weight
function. Let E = {K;: j € N} (see (2.1)), and for each 3 < [ < 6 define the
function F;: CMI(M,R™) x E — [0, +0oc] given by

1
dist(u(C), Z)
sup | KCo|(p o u) ifl=4

c

Filw0) = /ucu|(pou)dAu it1=5
(

pou)dA, ifl=6.

ifl=3

c

Let ¢ € N and fix u, K, and € as in Claim 2.3 (B). We assume without loss of
generality that K C M is Runge. Let j € N be so large that K C K; € E and take
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a smoothly bounded closed disc D C K11 \ K. Let B C R™ be an open ball and
d >0 such that p|z > d. By Theorem 2.4 applied to a suitable extension of u|g; to
K;UD, for each | € {3,4,5,6} there is 4! € CMI(M,R") such that |i' —u| < € on
K, @!(D) C B provided that 4 <[ < 6, and

dist(@®(D), Z) < 1/i, sup|K(a*)| > i/6,
D

/ |K(a5)|dAgs > i/9, Area(a6(D)):/ dAgs > /6.
D D

For cases | = 5,6, use that the open ball B contains complete bounded minimal
discs [13], having infinite total curvature and area. Since p|z > § and @'(D) C B,
4 <1 < 6, this shows that @' € Al = {u € CMI(M,R"): supy Fi(u, ) > i} and
hence Al is dense in CMI(M,R™) for all i € N and 3 < I < 6. Thus, [),cy Al is
a dense Gs in CMI(M,R") for each [ by Claim 2.3. Since these are the sets in
(#1)—(vi), the proof is done. O

Proof of (vii). Let A C R™ be a properly immersed submanifold of codimension
> 2 and S C A be a compact subset with empty interior. By Claim 2.1 and the
Baire category theorem, it suffices to prove that the set

0, = {u € CMI(M,R™): u(K;)N S = @},

(see (2.1)) is open and dense in CMI(M,R™) for every i € N; observe that © =
Nien ©: equals the set of immersions in CMI(M, R™) with range in R™\ S. Indeed,
the openness is clear by compactness of K; and S. For the density, fix ¢ € N and
choose an immersion u € CMI(M,R"), a compact set K C M, and a number
e>0. Since ©; D O; for all j > 4, we can assume that ¢ € N is so large that
K C K;. An inspection of the proof of the general position theorem in [5, Theorem
3.4.1] shows that there is a conformal minimal immersion 4 : K; — R™ such that
| — ul|x, < €/3, @ intersects A C R™ transversely, and 4(bK;) N A = &; see [5,
p. 145] and recall that dim A < n — 2. In particular, the set 4(K;) N A is finite,
and hence so is 4(K;)N.S. Since S C A is compact and has empty relative interior,
post-composing @ with a suitable small translation in R™ we can obtain a conformal
minimal immersion 4’ : K; — R™ such that ||4' — 4|k, < €/3 and ¢/(K;) NS = @.
Finally, Theorem 2.4 allows to approximate 4’ uniformly on K; by an immersion
@ € CMI(M,R") with ||& — @/||k, < €/3, and hence ||& — u| g, < e. Taking into
account that both K; and S are compact, if the approximation of 4’ by @ on Kj is
close enough then @(K;) NS = &, and hence @ € ©;. This completes the proof. [

Proof of (viii). For each i € N choose an open neighborhood A; of the diagonal
Dy of M x M such that A; D Ajyq, i € N, and [,y A; = Dyy. For every i € N
denote by ©; the set of those immersions u € CMI(M,R™) such that d(oy)p,q) :
T(p,q)M x M — R™ is surjective for all (p, ¢) € o, 1(0)N(K; x K;)\ Ay; see Definition
1.1 (e) and (2.1). By Claim 2.1 and the Baire category theorem, it suffices to
prove that the set ©; is open and dense in CMI(M,R") for every i € N; observe
that © = (),.y ©: equals the set of immersions in CMI(A/,R™) that self-intersect
nicely. To check that ©; is open, just observe that for a given v € ©; the Cauchy
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estimates give a number € >0 such that d(cga)(p,q) is surjective for all (p,q) €
o7 (0) N (K; x K;)\ A; and all & € CMI(M,R"™) with |i —u| < € on K, ;. For the
density, given v € CMI(M,R"), a Runge compact set K C M with K; C K, and a
number € > 0, an inspection of the proof of [5, Theorem 3.4.1] provides a conformal
minimal immersion @: K — R™ such that [ —u| < € on K and d(04)p,q) is
surjective for all (p,q) € o '(0) N (K; x K;)\ A;. By Theorem 2.4 we may assume
that & € CMI(M,R™), hence ©); is dense. O

Proof of (iz). Let E = {bKj;: j € N} (see (2.1)) and set

Fu,C) = igf|u| € 10,+00) for every u € CMI(M,R") and C € E.

The function F(-,C) : CMI(M,R") — [0, +0o0) is continuous for each C' € E. Let
1 € N and fix u, K, and € as in Claim 2.3 (B). Let j € N be so large that K C f(j
and choose a smoothly bounded compact domain K’ C M such that K ¢ K’ C K i
and K'is a strong deformation retract of K. Up to post-composing v with a small
translation in R™, assume without loss of generality that |u| > 0 everywhere on
bK'. By [5, Lemma 3.11.1] (see also [3, Lemma 7.2]), there is a conformal minimal
immersion @ : K; — R™ such that ||& — u| g < € and infyg, |4] > 4. Further, by
Theorem 2.4 we may assume that @ € CMI(M,R"), and hence @ lies in the set A;
given in (2.2). Thus, A; is dense in CMI(M,R™) and Claim 2.3 ensures that

() Ai = {u € CMI(M,R"): Vi € N 3j € N such that inf u| > i},
ieN I

is a dense G5 subset in CMI(M,R™). To complete the proof, note that every immer-
sion u € [,y Ai is almost proper. Indeed, for any such u there is a strictly
increasing sequence {ny}ren C N such that limy_ o infix,, [u| = +oo. Thus,
given a number r >0, we have that u=!({z € R": |z| < r}) N bK,, = @ for every
large enough k£ € N. Since K,, € Ky, € --- C ey Kn, = M is an exhaus-
tion of M by compact domains, it turns out that every connected component of
ul({z € R": |z| < r}) is compact, proving that u : M — R™ is an almost proper
map and completing the proof. O

3. Proof of the corollaries and Theorem 1.4, and further remarks

Proof of Corollary 1.3. Statements (i), (iii), and (vii) follow straightforwardly from
Theorem 1.2 (i), (i), and (vii), the Baire category theorem, and the fact that a
countable intersection of Gs sets is again a Gs. Indeed, for (iii) use that a subset
W C R™ is dense if and only if dist(W, {¢}) = 0 for all ¢ € Q", and for (vii) that
every meagre set in A; C R™ is contained in a countable union of compact sets
with empty interior.

To prove (ii) recall that the space CMI(D, R") of all conformal minimal immer-
sions C D D — R”, endowed with the compact-open topology, is separable by Claim
2.2. Let D = {fi € CMI(D,R"): i € N} be a dense countable subset of CMI(D, R"),
and note that the set ¥ = {u € CMI(M,R"™) : u rebuilds f; for all ¢« € N} equals
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the set of immersions in CMI(M,R"™) rebuilding every conformal minimal disc,
while Theorem 1.2(%i) shows that ¥ is a dense G set in CMI(M,R™).

Let us check (iv); the proofs of (v) and (vi) follow analogously and we leave the
details out. Let {B; C R™: j € N} be a sequence of open balls being a countable
basis of the Euclidean topology in R™. For each j € N let p; : R®™ — R be a weight
function on R™ with the support supp(p;) € Bj, 0 < p; < 1, and pj|B; =1 for
some ball B} € B;. By Theorem 1.2(7v) and the Baire category theorem, the set
X of all immersions v € CMI(M,R™) such that sup,, |K,|(p; o u) = +oo for all
j € N is a dense G5 subset. To finish, let us show that X equals the set Y of
all immersions v € CMI(M,R™) having dense image and unbounded curvature on
u~1(Q) for every open set Q C R". Indeed, if u € X and 2 C R"™ is open, there is
j € Nsuch that B; C €. Since sup,, | K, |(pjou) = +o00 and supp(p;) C B;, we have
that @ # w~1(B;) C u~1(Q). This implies that u has dense image. Furthermore,
since 0 < p; <1 it turns out that

sup |K,|> sup [Ku|(pjou)> sup [Ku|(pjou)=sup|K,|(pjou)=+oo,
u=1(Q) u=1(Q) u=1(B;) M

which implies that v € Y. On the other hand, if u € Y and j € N then u_l(Bé) #+ O,
and since p;| B; = 1 we infer that

sup |[Ky|(pjou) = sup [Ku|(pjou)> sup |K,|(pjou)= sup [K,|=+o0,
M u=1(B;) u=1(BY) u=1(B)

where the last equality holds since u € Y and B; is open in R™. This proves that
u € X and concludes the proof. O

Proof of Theorem 1.4. Let M be an open Riemann surface and B C R? be an open
ball. Reasoning as in the proof of Corollary 1.3 (iv), it suffices to show that the set
X of all immersions u € CMI(M,R3) with u=1(B) # @ and having infinite index
of stability on u~!(B) is a dense G subset. For this, take an exhaustion K;,jeN,
of M as in (2.1), and for each i € N set

A; = {u € CMI(M,R?): supZp(u,j) > i},
JEN

where Zg(u,j) is the index of stability of w on f(j Nu~1(B), that is to say, the
supremum of the stability index of u|x among all the smoothly bounded compact
domains K C f(j Nu~1(B). Since the function Zp(-,j) : CMI(M,R?) — R takes its
values in Z and is lower semicontinuous by Cauchy estimates, we have that A; is
open for all ¢ € N. Observe there are conformal minimal discs D — B with index
of stability as big as desired (e.g. pieces of suitable helicoids with axes intersecting
B), and hence an analogous argument to that in the proof of Theorem 1.2 (ii1)—(vi)
shows that A; is dense for all i € N. Since X = [,y Ay, the Baire category theorem
completes the proof in view of Claim 2.1. O

Proof of Corollary 1.6. Ttem (i) follows trivially from Theorem 1.2 (wiii), since a
conformal minimal immersion M — R", n > 5, self-intersects nicely if and only if
it is injective. The first part of (ii) follows from [5, Theorem 3.4.1(c)] and the ideas
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in the proof of Theorem 1.2 (viii). Note that if u € CMI(M, R*) has simple double
points and K C M is compact then the set {p € K: u=!(u(p)) N K # @} is finite,
hence DP(u) is countable. Likewise, if v € CMI(M, R3) self-intersects nicely then
the set {p € K: u™'(u(p)) N K # @} is a countable union of regular curves and
boundary points. The proof of items (4i) and (74) is then completed by Corollary
1.3 (ii) and the following claim; see Definition 1.1.

Claim 3.1. If M is an open Riemann surface and n € {3,4}, then every immersion
in CMI(M,R"™) rebuilding every conformal minimal disc is densely non-injective.

To prove the claim, assume that v € CMI(M,R") rebuilds every conformal
minimal disc and choose a smoothly bounded, relatively compact, open disc V- C M.
We need to prove that VNDP(u) # @; see (1.1). So, pick p € V and let f : D — R"
be a conformal minimal immersion such that f(D) is a planar round disc in an
affine 2-plane in R",

f(0) = u(p), (3.1)

and duy, (T, M) + dfo(ToD) = R™; recall that n < 4. Up to replacing V by a smaller
neighborhood of p, we can assume that

dug (T, M) + df.(T.D) =R"™ for all ¢ € Vand z € D, (3.2)

take into account that df,(T.D) = dfy(TpD) for all z € D. Since u approaches every
conformal minimal disc, it turns out that for any € > 0 there are a smoothly bounded
closed disc D in M and a biholomorphism ¢ : D — D such that |[uo ¢ — f5 <,
and thus |[u — f o p~1||p < € as well. Since n € {3,4}, conditions (3.1) and (3.2)
ensure that u(V) Nu(D) # @ and V N D = & whenever that € >0 is sufficiently
small, and hence V N DP(u) # @. This shows that DP(u) is dense in M. O

REMARK 3.2. Let M be an open Riemann surface and n > 3 be an integer.

(A) Let p: Hi(M,Z) — R"™ be a group homomorphism and CMI,(M,R") C
CMI(M,R"™) be the subspace of conformal minimal immersions with the flux map
p (see [5, Definition 2.3.2]). A very minor modification of the proofs shows that all
the results in this paper also hold with CMI, (A, R™) in place of CMI(M, R™).

(B) Let X = (A,v,7) where A C M is a closed discrete subset, v is a confor-
mal minimal immersion from a neighborhood of A into R™, and r : A — Z, =
{0,1,2,...} is a map, and denote by CMIx(M,R™) the subspace of CMI(M,R")
consisting of those immersions agreeing with v to order at least r(p) at every point
p € A. A very minor modification of the proofs shows that all the results in this
paper also hold with CMIx (M, R™) in place of CMI(M,R™). In the cases of Theorem
1.2(vii), Corollary 1.3 (vii), and Corollary 1.6, the prescription of values X must be
compatible with the theses.

(C) If p and N are as in (A) and (B) respectively, then the analogous results hold
for the subspace CMI, (M, R™) N CMIx(M,R"™).

(D) Let R be a compact bordered Riemann surface, and assume that R appears
recurrently in M, meaning that for any Runge compact set K C M there is
a smoothly bounded compact domain L C M \ K being biholomorphic to R
such that K U L is Runge. Arguing as in the proofs of Theorem 1.2(4) and
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Corollary 1.3(7i), one can see that the subspace CMIz(M,R™) C CMI(M,R") of
immersions rebuilding every conformal minimal immersion R — R" is residual
(cf. Definition 1.1(c)). Likewise, if R;, j € N, is a sequence of compact bordered
Riemann surfaces appearing recurrently in M, then jen CMIg, (M,R"™) is still
residual in CMI(M,R"™).

REMARK 3.3. The results in this paper also hold in the non-orientable frame-
work. Indeed, let N be an open non-orientable surface furnished with a conformal
structure, and denote by CMI(N,R™) the space of conformal minimal immersions
N — R"™ endowed with the compact-open topology. Combining the methods of
proof in this paper with the results in [4], one can see that the analogues of Theorem
1.2 and its corollaries, as well as those in Remark 3.2, are valid for CMI(N,R"™).
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