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Abstract. We extend a result of Lopes and Thieullen [Sub-actions for Anosov flows.
Ergod. Th. & Dynam. Sys. 25(2) (2005), 605–628] on sub-actions for smooth Anosov
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arguments originally due to Croke and Dairbekov to prove a volume rigidity theorem for
some interesting locally CAT(−1) spaces, including quotients of Fuchsian buildings and
surface amalgams.
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1. Introduction
The classical Livšic theorem for a smooth, transitive Anosov flow {φt } states the following
[Liv71]: any Hölder function A that integrates to zero over each closed orbit for the flow
is itself a derivative. That is, there is a function V, smooth in the flow direction and still
Hölder, such that A(x) = d/dt |t=0V (φtx). (See, e.g., [KH95] for a proof and discussion.)
Equivalently, but also providing a formulation for this statement which does not require V
to be smooth in the flow direction,

∫ T
0 A(φtx) dx = V (φT x)− V (x).

This theorem has far-reaching consequences for these flows. One with a particular
connection to the present paper is that if two negatively curved Riemannian metrics on
the same compact manifold have the same marked length spectrum, then their geodesic
flows are conjugate. This is the starting point for Croke’s proof of marked length spectrum
rigidity for surfaces in [Cro90]. This rigidity result was proved independently by Otal in
[Ota90] using tools which will play an important role in the current paper.

A natural generalization of the Livšic theorem asks whether assuming that the periodic
integrals of A are all non-negative (or, with trivial modifications, non-positive) guarantees
a V whose derivative bounds A below. Lopes and Thieullen term such a V a ‘sub-action’ for
A and prove that whenever A is Hölder, a sub-action which is smooth in the flow direction
and still Hölder exists [LT05]. Independently and concurrently, Pollicott and Sharp proved
a similar theorem in [PS04]. The proof in [PS04] is simpler, but establishes less—they
do not obtain that the sub-action V is smooth in the flow direction or some of the more
detailed results on regularity provided by [LT05]. See [PS04] for a good survey of related
results in this area.

1.1. Statement of results. In this paper, we follow the approach of [LT05], applied
specifically to geodesic flow on a CAT(−1) space. This is a metric Anosov flow (or Smale
flow)—it satisfies the essential properties of an Anosov flow, abstracted from the smooth
setting to the general metric setting by Pollicott [Pol87] (see §2.3). This was proved in
[CLT20a], where the authors found a coding for the geodesic flow using carefully chosen
Poincaré sections. These sections turn out to be perfect candidates for the sections used in
the arguments of [LT05] (see §3). Our main theorem is the following.
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Sub-actions for geodesic flows on locally CAT(−1) spaces 3

MAIN THEOREM. Let (X, dX) be a locally CAT(−1) space with geodesic flow {gt }. Let
A : GX → R be Hölder. Then, there exists a map V : GX → R, called a sub-action, that
is Hölder, smooth in the flow direction, such that for any geodesic γ ∈ GX and every
T > 0, ∫ T

0
A ◦ gt (γ ) dt ≥ V ◦ gT (γ )− V (γ )+mT

for some constant m = m(A). Equivalently, for any γ ∈ GX,

A(γ ) = m+
(
d

dt

)∣∣∣∣
t=0
V (gt (γ ))+H(γ )

for some non-negative function H : GX → R≥0 that is smooth along the flow direction
and Hölder.

Remark 1.1. Theorem 1.1 can be generalized to the setting of metric Anosov flows that
satisfy an analog of Proposition 3.4. (See [Pol87] for the definition of these flows.)
Geodesic flows on CAT(−1) spaces are the natural first example of such flows; geodesic
flows for projective Anosov representations are another example of much recent interest
(see, for example, [BCLS15]). Proposition 3.4 guarantees the existence of Markov proper
families for the flow with, importantly, Lipschitz return time (see §3.1 for more details).
Reference [CLT20a] establishes these properties for both of these geodesic flows.

We turn to an application of the Main Theorem to the marked length spectrum in
§6. We prove a volume rigidity result for surface amalgams, which, roughly speaking,
are constructed by identifying finitely many compact surfaces with boundary along their
boundary components. For a more precise definition, we refer the reader to §6.1. Before
stating the volume rigidity result for surface amalgams, we introduce some terminology.

Definition 1.2. (Marked length spectrum) The marked length spectrum of a metric space
(X, g) is the class function

Lg : π1(X) → R+, [α] �→ inf
γ∈[α]

�g(γ )

which assigns to each free homotopy class [α] ∈ π1(X) the infimum of lengths in the
g-metric of curves in the class.

Note that in the case of CAT(−1) spaces, the marked length spectrum is simply a
length assignment to every closed geodesic in (X, g), as each homotopy class has a unique
geodesic representative.

Otal [Ota90] and Croke [Cro90] proved that for compact, negatively curved surfaces,
if Lg0 = Lg1 , then g0 and g1 are isometric, with the classical Livšic theorem playing a
role in Croke’s proof. Suppose instead that Lg0 ≤ Lg1 , that is, for every free homotopy
class [α] ∈ π1(X), infγ∈[α] �g0(γ ) ≤ infγ ′∈[α] �g1(γ

′). In the setting of negatively curved
surfaces, Croke and Dairbekov proved that such a marked length spectrum inequality
implies a corresponding inequality in volumes of the surface with respect to g0 and g1.
Furthermore, if the volumes are equal, then g0 and g1 are isometric [CD04]. The proof of
rigidity in the equality case crucially uses Lopes and Thieullen’s sub-action result. Having
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4 D. Constantine et al

extended that result to the CAT(−1) setting, we use Croke and Dairbekov’s idea as well as
some recent results on marked length spectrum rigidity for surface amalgams and similar
spaces to prove the following theorem.

VOLUME RIGIDITY COROLLARY. Let (X, g0) and (X, g1) be two simple, thick, nega-
tively curved surface amalgams satisfying certain smoothness conditions around the gluing
curves. Suppose Lg0 ≤ Lg1 . Then, Volg0(X) ≤ Volg1(X). Furthermore, if Volg0(X) =
Volg1(X), then (X, g0) and (X, g1) are isometric.

The fact that the sub-action V is smooth in the flow direction is used in the proof of the
Volume Rigidity Corollary. This provides some justification for our adoption of the more
complicated but slightly stronger proof strategy in [LT05].

1.2. An outline of the paper. In §2, we collect definitions and basic results about
CAT(−1) spaces, geodesic flow on such spaces, and it’s properties. We also prove some
basic geometric facts which will be used later in the paper.

In §3, we describe the construction of Poincaré sections for the geodesic flow which
allow us to ‘discretize’ the flow. We describe and prove some key properties of these
sections that will be useful for subsequent arguments.

The proof of the Main Theorem begins in earnest with §4. In this section, we follow the
arguments of [LT05] and solve the discretized version of the sub-action problem provided
by the Poincaré sections.

Section 5 continues in the steps of [LT05] to extend the solution of the discretized
problem to a sub-action for the flow. A careful inductive scheme allows one to make this
extension while ensuring the desired regularity of the sub-action.

Finally, in §6, we use the Main Theorem to prove the Volume Rigidity Corollary in its
full generality.

2. Preliminaries
2.1. Geodesics and geodesic flow. Let (X̃, d

X̃
) be a CAT(−1) space and � be a discrete

group of isometries of X̃ acting freely, properly discontinuously, and cocompactly. (Recall
that a group � acting on X by isometries is discrete if for every ball B = B(x, r) ⊂ X,
{g ∈ G : gB ∩ B �= ∅} is finite. See [BH99] for background on CAT(−1) spaces.) The
resulting quotient X = X̃/�, with the metric dX induced by d

X̃
, is a compact, locally

CAT(−1) space.
To study the geodesic flow on X, we need an analog of the unit tangent bundle

appropriate for this non-smooth setting which admits a unit-speed geodesic flow. This is
provided by the following definition.

Definition 2.1. The space of (unit-speed) geodesics of X̃ is

GX̃ := {γ̃ : R → X̃ : d
X̃
(γ̃ (s), γ̃ (t)) = |s − t |}.

The geodesic flow gt on GX̃ is given by gt γ̃ (s) = γ̃ (s + t) for any t ∈ R. Additionally,
GX = GX̃/� is the space of geodesics of X.

There are natural metrics on these spaces.
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Sub-actions for geodesic flows on locally CAT(−1) spaces 5

Definition 2.2. We equip GX̃ with the metric

d
GX̃
(γ̃1, γ̃2) :=

∫ ∞

−∞
d
X̃
(γ̃1(t), γ̃2(t))e

−2|t | dt ,

and GX with the metric

dGX(γ1, γ2) = min
γ̃1,γ̃2

∫ ∞

−∞
dX̃(γ̃1(t), γ̃2(t))e

−2|t | dt ,

where the minimum is taken over all lifts γ̃1 and γ̃2 of γ1 and γ2, respectively.

A straightforward computation shows that the geodesic flow is unit-speed with respect
to dGX. (This is the reason for the normalizing factor 2 in the exponent.) We record here a
few basic facts about dGX and its interaction with the geodesic flow.

LEMMA 2.3. [CLT20b, Lemma 2.8] For all γ1, γ2 ∈ GX, dX(γ1(0), γ2(0)) ≤
2dGX(γ1, γ2).

LEMMA 2.4. [CLT20a, Lemma 2.5] For any t and any γ1, γ2 ∈ GX, dGX(gtγ1, gtγ2) ≤
e2|t |dGX(γ1, γ2).

A central tool in the geometry of CAT(−1) spaces is the boundary at infinity.

Definition 2.5. The boundary at infinity ∂∞X̃ is the space of equivalence classes of
geodesic rays in X̃, where two rays c1, c2 : [0, ∞) → X̃ are equivalent if there exists
M ≥ 0 such that d

X̃
(c1(t), c2(t)) ≤ M for all t ≥ 0. For a geodesic γ̃ , we denote by

γ̃ (−∞) and γ̃ (+∞) its backward and forward endpoints at ∂∞X̃.

In CAT(−1) spaces, a pair {ξ , η} of distinct points on ∂∞X̃ uniquely determines an
unparameterized, unoriented geodesic. Once we specify an orientation and the time-0
point on the geodesic, we have a geodesic in GX̃. Therefore, GX̃ can be identified with
[(∂∞X̃ × ∂∞X̃)\�] × R, where � is the diagonal. For ease of notation, let ∂(2)∞ X̃ =
(∂∞X̃ × ∂∞X̃)\�.

2.2. Stable and unstable sets. Under the geodesic flow on a negatively curved manifold,
the unit tangent bundle admits foliations by stable and unstable manifolds which are
essential tools for studying the dynamics of these flows. In the CAT(−1) setting, we have
a purely geometric description of analogous stable and unstable sets. Below, we will note
that these are also analogous in their dynamical role.

Definition 2.6. Let p ∈ X̃, ξ ∈ ∂∞X̃, and γ̃ be the geodesic ray from p to ξ . The
Busemann function centered at ξ with basepoint p is defined as

Bp(−, ξ) : X̃ → R

q �→ lim
t→∞(dX̃(q, γ̃ (t))− t).
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6 D. Constantine et al

For convenience, given geodesic ray γ̃ (t), the Busemann function determined by γ̃ is the
Busemann function centered at γ̃ (+∞) with basepoint γ̃ (0):

Bγ̃ (−) := Bγ̃ (0)(−, γ̃ (+∞)).
The level sets for Bp(−, ξ) are horospheres.

Definition 2.7. Let γ̃ ∈ GX̃.
• The strong stable set through γ̃ is

Wss(γ̃ ) = {γ̃ ′ ∈ GX̃ : γ̃ ′(+∞) = γ̃ (+∞) and Bγ̃ (γ̃ ′(0)) = 0}.
• For δ > 0,

Wss
δ (γ̃ ) = {γ̃ ′ ∈ GX̃ : γ̃ ′(+∞) = γ̃ (+∞),

Bγ̃ (γ̃
′(0)) = 0, and d

GX̃
(γ̃ , γ̃ ′) < δ}.

• The weak stable set through γ̃ is

Wcs(γ̃ ) =
⋃
t∈R

gt (W
ss(γ̃ )).

• Similarly, the strong and weak unstable sets through γ̃ are

Wuu(γ̃ ) = {γ̃ ′ ∈ GX̃ : γ̃ ′(−∞) = γ̃ (−∞) and B−γ̃ (γ̃ ′(0)) = 0},

Wuu
δ (γ̃ ) = {γ̃ ′ ∈ GX̃ : γ̃ ′(+∞) = γ̃ (+∞),

B−γ̃ (γ̃ ′(0)) = 0, and d
GX̃
(γ̃ , γ̃ ′) < δ},

and

Wcu(γ̃ ) =
⋃
t∈R

gt (W
uu(γ̃ )).

(See Figure 1.)

The next lemma outlines some useful, standard properties of Busemann functions.

LEMMA 2.8. Let γ̃ ∈ GX̃.
(1) For any s ∈ R, Bgsγ̃ (−) = Bγ̃ (−)+ s, so the 0-level set for Bgsγ̃ (−) is the

(−s)-level set for Bγ̃ (−).
(2) If η̃ ∈ Wcs(γ̃ ), then for s1, s2 ∈ R, Bγ̃ (η̃(s1))− Bγ̃ (η̃(s2)) = s2 − s1.
(3) Bγ̃ (−) : X̃ → R is 1-Lipschitz.

Proof. Let q be any point in X̃. Then,

Bgsγ̃ (q) = lim
t→∞(dX̃(q, γ̃ (s + t))− t)

= lim
t ′→∞

(d
X̃
(q, γ̃ (t ′))− (t ′ − s))

= Bγ̃ (q)+ s,
which proves part (1).
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FIGURE 1. Here, γ̃ ′ ∈ Wuu(γ̃ ) and γ̃ ′′ ∈ Wss(γ̃ ). The 0-level sets of the Busemann functions are the dashed
circles.

Since η̃ ∈ Wcs(γ̃ ), gr η̃ ∈ Wss(γ̃ ) for some r ∈ R and for i ∈ {1, 2}, gsi η̃ ∈
Wss(gsi−r γ̃ ). Therefore, Bgsi−r γ̃ (η̃(si)) = 0. By part (1), this implies Bγ̃ (η̃(si)) = r − si ,
from which part (2) follows immediately.

Part (3) holds asBγ̃ is a limit of 1-Lipschitz functions. See also [BH99, II.8] for how this
fact follows naturally from a slightly different presentation of Busemann functions.

2.3. Metric Anosov flows. In [Pol87], Pollicott defines metric Anosov flows, generaliz-
ing the essential properties of Anosov flows to the non-smooth setting.

A continuous flow on a compact metric space is Anosov if, roughly speaking, it has
a topological local product structure which coheres with the dynamics of the flow in
a way which mimics the analogous structure for Anosov flows. Locally, Y looks like a
product—two nearby points can always be connected by a small step along a ‘stable’ set,
then a small step along an ‘unstable’ set, then a small move along the flow. This coheres
with the dynamics of the flow in that the ‘stable’ set is truly stable in the dynamical sense:
there are constants C, λ > 0 such that if x and y are nearby points on the same stable set,
then

d(φtx, φty) ≤ Ce−λtd(x, y) for t ≥ 0.

The corresponding expression for exponential contraction in backwards time holds for
pairs of nearby points on a common unstable set. (See [Pol87] or [CLT20a] for more
detail.)

Metric Anosov flows have many of the properties of Anosov flows. As a first example
(which we will use below), we have the following proposition.

PROPOSITION 2.9. [Bow73, Corollary 1.6] and [Pol87, Proposition 1] A metric Anosov
flow is expansive.

The flows we consider in this paper are metric Anosov.

https://doi.org/10.1017/etds.2025.10199 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10199


8 D. Constantine et al

THEOREM 2.10. [CLT20a, Theorem 3.4] For a compact, locally CAT(−1) space X, the
geodesic flow on GX is metric Anosov with λ = 1. Specifically, the strong stable and
unstable sets of Definition 2.7 are the stable and unstable sets for the Anosov flow. That is,
there exist small δ > 0 and C > 0 such that

d
GX̃
(gt γ̃ , gt γ̃ ′) ≤ Ce−t d

GX̃
(γ̃ , γ̃ ′) for t ≥ 0 and γ̃ ′ ∈ Wss

δ (γ̃ );

d
GX̃
(g−t γ̃ , g−t γ̃ ′) ≤ Ce−t d

GX̃
(γ̃ , γ̃ ′) for t ≥ 0 and γ̃ ′ ∈ Wuu

δ (γ̃ ).

2.4. Doubling and covering properties. In the proof of Theorem 1.1, we will need a
technical fact about the geometry of GX. We collect the necessary arguments leading to
that fact here.

Let (X, d) be a metric space. We introduce two useful properties of metric spaces.

Definition 2.11. An open set U ⊂ X with compact closure satisfies the doubling property
if there exists N1 ∈ N such that for all r > 0 and x ∈ U , the closed ball B(x, 2r) can be
covered by at most N1 balls of radius r.

Definition 2.12. An open set U ⊂ X with compact closure satisfies the packing property
if there exists N2 ∈ N such that for all r > 0 and x ∈ U , the maximum cardinality of an
r-separated subset of B(x, 2r) is less than or equal to N2.

One can prove that doubling implies packing (although the converse is not true).

LEMMA 2.13. If U satisfies the doubling property, then it also satisfies the packing
property.

Proof. Take an arbitrary x ∈ U and r > 0, and suppose B(x, 2r) can be covered by at
most N1 balls of radius r, and these balls can in turn be covered by N1 balls of radius
r/2. We thus have a covering {B(xi , r/2)}i∈I of U of cardinality at most N2

1 . Consider
a 2r-separated set S(2r) = {xi ∈ B(x, 2r) : d(xi , xj ) ≥ 2r for all i �= j}. Note that each
B(xi , r/2) can contain at most one element of S(2r); otherwise, if y1, y2 ∈ B(xi , r/2),
then d(y1, y2) ≤ r . Hence, U satisfies the packing property with N2 = N2

1 .

Now, let X be locally CAT(−1). Provided the double boundary ∂(2)∞ X̃ of X̃ satisfies the
doubling property, one can show an analogue of a technical lemma [LT05, Lemma 22].

LEMMA 2.14. Suppose that ∂(2)∞ X̃ satisfies the doubling property for some metric. Then
there exists a constant C depending only on X such that for every ε > 0 and every open
� ⊂ ∂

(2)∞ X̃ with� compact, there exists a finite cover {Bjk}j∈J ,1≤k≤C of� by ε-balls such
that for every fixed 1 ≤ k∗ ≤ C, the balls in {Bjk∗}j∈J are disjoint.

Proof. Let {xl}l∈L be a maximal set in � such that d(xl1 , xl2) ≥ 2ε. By maximality,⋃
l∈L B(xl , 2ε) covers �. By the doubling condition, we can cover each B(xl , 2ε) by

at most N1 ε-balls for some N1 depending only on �. For each l ∈ L, we choose
this collection minimally and use {B(ylm, ε)}m≤M(l) to denote the collection covering
B(xl , 2ε).
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Sub-actions for geodesic flows on locally CAT(−1) spaces 9

Note that if B(yl1m1 , ε) ∩ B(yl2m2 , ε) �= ∅, then d(xl1 , xl2) < 6ε. Indeed, if x ∈
B(yl1m1 , ε) ∩ B(yl2m2 , ε), then for i = 1, 2, we have that d(ylimi , xlimi ) ≤ 2ε and
d(x, ylimi ) < ε, so by the triangle inequality, d(xl1 , xl2) < 6ε.

We claim that for each l1,

#{yl2m2 : B(yl1m1 , ε) ∩ B(yl2m2 , ε) �= ∅} ≤ N1(#{xl2 : d(xl1 , xl2) < 6ε})
≤ N2

1N2 = N4
1 . (2.1)

The first inequality follows from the bound obtained above on d(xl1 , xl2) and the fact that
at most N1 of the ylimi terms are associated to each xli . For the second inequality, we
can cover B(xl1 , 6ε) by at most N1 balls of radius 3ε by doubling. Since the {xli } are
2ε-separated, by packing, at most N2 of the xl terms are in each of these balls.

We now use {B(ylm)}l∈L to construct a finite-valence dual graph � as follows:
• V (�) = {ylm}l∈L,1≤m≤M(l) (whereM(l) ≤ N1);
• E(�) = {[yl1m2 , yl2m2 ] : B(yl1m1 , ε) ∩ B(yl2m2 , ε) �= ∅}.

By equation (2.1), each vertex in V (�) has valence at most N4
1 . By Brooks’ theorem

([Bro41] or [Lov75]), � can be colored with at most C := N4
1 + 1 colors. Relabel the

set {ylm} to {yjk}, where k ∈ [1, C] indexes the colors in the coloring of V (�), and
j ∈ [1, J (k)] indexes the vertices colored with the kth color.

By definition of a coloring of a graph, for a fixed k∗, the set {yjk∗}1≤j≤J (k∗) is a totally
disconnected subgraph of �. Then, the balls in {B(yjk∗ , ε)}1≤j≤J (k∗) are pairwise disjoint,
as desired.

To use Lemma 2.14, we need a metric on ∂(2)∞ X̃ which is doubling. Recall that the
�∞product metric on the product X × Y of two metric spaces (X, dX) and (Y , dY ) is
defined by

dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.
The proof of the following is relatively straightforward.

LEMMA 2.15. The �∞ product metric space (X × Y , dX×Y ) is doubling if (X, dX) and
(Y , dY ) are doubling. More precisely, if M and N are the doubling constants of (X, dX)
and (Y , dY ), respectively, thenMN is the doubling constant of (X × Y , dX× Y ).

Recall that we can equip the boundary of a CAT(−1) space with a visual metric, which
we now define. First, if X is CAT(−1), given a choice of basepoint x0 ∈ X, we define the
Gromov product of ξ , η ∈ ∂∞X, which is denoted by (ξ .η)x0 :

(ξ .η)x0 = lim
xn→ξ
yn→η

1
2 (d(x0, xn)+ d(x0, yn)− d(xn, yn)).

Definition 2.16. (Visual metric for CAT(−1) spaces, [Bou95]) If X is a proper CAT(-1)
space, then we can define the visual metric to be

dx0(η, ξ) =
{
e−(ξ .η)x0 if ξ �= η,

0 otherwise.
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Although we do not delve into the definition of visual metrics for Gromov hyperbolic
spaces, in general, we remark that they exist (see [BH99, Ch. III.H]).

Recall that a metric space is proper if every closed ball is compact. We now show that
for a proper geodesic Gromov hyperbolic metric space X equipped with a discrete, cocom-
pact action (e.g., the CAT(−1) space X̃), ∂(2)∞ X̃ equipped with a (�∞) product of visual
metrics is doubling. To do so, we must define some stronger properties of metric spaces.

Definition 2.17. A metric space X is Ahlfors Q-regular if there exists a positive Borel
measure μ on X such that

C−1RQ ≤ μ(B(x, R)) ≤ CRQ,

where R ≤ diam(X) and C ≥ 1 is a constant independent of x and R.

While we defined doubling for metric spaces, we can also say a measure admitted by a
metric space is doubling.

Definition 2.18. A positive Borel measure μ on a metric space X is doubling if there exists
a constant C = C(μ) such that

μ(B(x, 2r)) ≤ Cμ(B(x, r)).

We now briefly prove a lemma that is usually assumed in the literature due to the
simplicity of the proof.

LEMMA 2.19. Any Ahlfors Q-regular metric space satisfies the doubling property.

Proof. We first note that if a metric space is Ahlfors Q-regular, then it admits a doubling
measure. Indeed, μ itself is a doubling measure; by the Ahlfors Q-regularity of X, we have

C−1RQ ≤ μ(B(x, R)) ≤ CRQ and C−12QRQ ≤ μ(B(x, 2R)) ≤ C2QRQ.

Thus, RQ ≤ Cμ(B(x, R)), so

μ(B(x, 2R)) ≤ C2QRQ ≤ 2QC2μ(B(x, R)).

Thus, μ is doubling with constant 2QC2. Finally, by [LS98], we have that a metric space
is doubling if and only if it admits a doubling measure.

This allows us to state the following theorem.

THEOREM 2.20. [Kle06, Theorem 3.3] If X is a proper, geodesic Gromov hyperbolic
metric space which admits a discrete, cocompact isometric action, then ∂∞X equipped
with a visual metric is Ahlfors Q-regular for some Q.

The original proof of Theorem 2.20 is actually due to Coornaert (see [Coo93,
Proposition 7.4]), who shows that any �-quasiconformal measure on ∂∞X with support
contained in the limit set of � is Ahlfors Q-regular, where � is a discrete, cocompact
isometric group action on X. In particular, if μ is any non-zero measure on ∂∞X, then μ
is �-quasiconformal (see [Coo93, Proposition 4.3]). As a consequence of Lemma 2.19, we
thus have the following corollary.
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COROLLARY 2.21. If X is a proper, geodesic Gromov hyperbolic metric space which
admits a discrete, cocompact isometric action, then ∂∞X equipped with a visual metric is
doubling.

Finally, we reach a key corollary.

COROLLARY 2.22. If X is a locally CAT(−1) space, then ∂(2)∞ (X̃) equipped with the �∞
product of two visual metrics is doubling.

Proof. Note that by properties of locally CAT(−1) spaces, X̃ is a proper geodesic
Gromov hyperbolic space that admits a discrete, cocompact isometric group action, so
by Theorem 2.20, ∂∞X̃ equipped with the visual metric is doubling. By Lemma 2.15,

(∂∞X̃ × ∂∞X̃) \� = ∂(2)∞ X̃

equipped with the �∞ product of two visual metrics is doubling.

3. Poincaré sections and symbolic codings for the geodesic flow
A key tool in [LT05]’s approach to the sub-actions problem is to introduce carefully
chosen Poincaré sections which discretize the geodesic flow, encoding it with a shift
space. We follow the same approach, using the work already done in [CLT20a] to produce
a particularly nice collection of sections which satisfies the main conditions needed in
[LT05]’s argument.

We begin by recalling the constructions and properties of these sections from
[CLT20a]. Then we check that the key properties needed in the main argument of this
paper hold for these sections.

3.1. Sections and Markov proper families. Again, let (Y , dY ) be a compact metric space
with a continuous metric Anosov flow {φt }. Assume that φt has no fixed points.

Definition 3.1. A Poincaré section (or simply section) is a closed subset D ⊂ Y such that
the map (y, t) �→ φty is a homeomorphism between D × [−τ ∗, τ ∗] and φ[−τ∗,τ∗]D for
some time τ ∗ > 0.

We will use the following notation related to sections.

Definition 3.2. Given a section D, we denote by IntφD the interior of D transverse to the
flow; that is,

IntφD = D ∩
⋂
ε>0

(φ(−ε,ε)D)◦.

Let ProjD : φ[−τ ,τ ]D → D be the projection map defined by ProjD(φty) = y.

Given a collection D = {D1, . . . , Dn} of disjoint sections, if
⋃n
i=1 φ(−α,0)IntφDi = Y ,

then any orbit of φt crosses an infinite sequence of sections. We let ψ be the first-return
map for this collection, and let τ be the first-return time for the collection, defined by
ψ(x) = φτ(x)x for all x ∈ ⋃n

i=1 Di .
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Any orbit of φt can be encoded by the bi-infinite sequence of sections it crosses. To
make this encoding useful, however, sections need to be chosen carefully. Bowen [Bow73]
and Pollicott [Pol87] provide a framework for doing this in the Anosov and metric Anosov
flow settings, respectively. Reference [CLT20a] further describes this process. The end
result is a Markov proper family.

Definition 3.3. Let B = {B1, . . . , Bn} and D = {D1, . . . , Dn} be collections of disjoint
sections. Here, (B, D) form a Markov proper family at scale α > 0 if they satisfy the
following properties:
(1) diam(Di) < α and Bi ⊂ Di for each i = 1, . . . , n;
(2)

⋃n
i=1 φ(−α,0)IntφBi = Y ;

(3) each Bi is a rectangle in Di (see [CLT20a, Definition 3.6] for details);
(4) B satisfies a Markov property (see [CLT20a, Definition 3.8] for details).

References [Bow73, CLT20a, Pol87] all discuss conditions under which Markov proper
families exist. Condition (3) does not play a role in the present paper, and we will work
with a weaker version of condition (4) (see Lemma 3.12 below). For our purposes, the key
result is the following.

PROPOSITION 3.4. [CLT20a, §4] Let X be a compact, locally CAT(−1) space. For
geodesic flow onGX, at any scale α > 0, there exist Markov proper families with Lipschitz
return time functions τ .

3.2. Markov codings and Markov proper families. In this section, let (R, S) be a
Markov proper family at scale α > 0 for a metric Anosov flow {φt } on Y. We discuss
how the sections index orbits as sequences in a subshift of finite type.

Definition 3.5. For a Markov proper family (R, S) for a metric Anosov flow, we define
the canonical coding space to be

� = �(R) =
{
θ ∈

∞∏
−∞

{1, . . . , n} : for all l, k ≥ 0,
l⋂

j=−k
ψ−j (IntφRθj ) �= ∅

}
.

In [Pol87, §2.3], the symbolic space �(R) is shown to be a shift of finite type. Let
σ : � → � be the associated left shift map.

Definition 3.6. For any θ ∈ �, we define the local stable and unstable sets of θ to be

Ws
loc(θ) := {y ∈ Intφ(Rθ0) : for all k ≥ 0, ψk(y) ∈ Rθk },

Wu
loc(θ) := {y ∈ Intφ(Rθ0) : for all k ≥ 0, ψ−k(y) ∈ Rθ−k }.

There is a canonically defined map π : �(R) → R given by

π(θ) = Ws
loc(θ) ∩Wu

loc(θ) =
∞⋂

j=−∞
ψ−j (Rθj ).
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Since the flow is expansive (Proposition 2.9), this intersection is a single point on Rθ0

and the map π is well defined. However, for any point y ∈ R, we have a canonical sequence
θy ∈ �(R) given by

θy = (. . . , θy−1 | θy0 , θy1 , . . .) where ψk(y) ∈ Rθyk .

Therefore, π(θy) = y.

3.3. Sections for flow onGX. In this section, we utilize attributes of the metric Anosov
flow to define the tools and verify the properties needed to construct a ‘discretized’
subaction. Let (X, dX) be a locally CAT(−1) space with geodesic flow {gt } which is metric
Anosov (Theorem 2.10).

Let � be the disjoint union of the rectangle sections {�i}i∈I in the Markov proper
family given by Proposition 3.4. Let ψ : � → � be the Poincaré return map and let
τ : � → (0, ∞) be the return time map with respect to the flow {gt }. While constructing
collections of sections at arbitrarily small scales is straightforward (see Proposition 3.4),
the key aspect of the next lemma is the ability to construct collections whose sections have
arbitrarily small diameters and such that the associated return time is bounded below by a
fixed constant, τ∗.

LEMMA 3.7. (Cf. [LT05, Lemma 6]) There exist constants α∗, τ∗, τ ∗ and a collection
of Poincaré sections �̃ = {�̃i}i∈I with diam �̃i ≤ α∗ such that for any α < α∗, we
can construct a collection of disjoint Poincaré sub-sections � = {�i}i∈I satisfying the
following properties:
(1) for all i ∈ I , �i ⊂ �̃i and diam�i ≤ α;
(2)

⋃
i∈I g(0,τ∗)Intg�i = GX;

(3) the return time τ associated to the sub-section � is ≥ τ∗.

Proof. We first start with any collection of Poincaré sections �̂ = {�̂i}i∈Î , given by
the collection B in Proposition 3.4, and suppose the associated return time is bounded
below and above by t∗ and t∗, respectively. Note that t∗ > 0 since the sections in �̂
are disjoint and closed. By definition, the (0, t∗)-flow boxes g(0,t∗)Intg�̂i of �̂i cover
GX; that is, GX = ⋃

i∈I g(0,t∗)Intg�̂i . Choose α∗ small enough that 2α∗ < t∗ and the
(0, t∗ − 2α∗)-flow boxes of �̂′

i still cover GX, where

�̂′
i = {γ ∈ �̂i : d(γ , GX\�̂i) > 2α∗}.

We want to apply Lemma 2.14 to �̂′
i , but must take some care, as that lemma is proven

on ∂(2)∞ X̃. Consider a lift�∗ of �̂′
i toGX̃. SinceGX̃ ∼= ∂

(2)∞ X̃ × R,�∗ projects to a subset
�∗∞ of ∂(2)∞ X̃ by forgetting the flow coordinate. Apply Lemma 2.14 (with covering constant
C) to �∗∞. Then, remembering the flow coordinate associated to �∗, we project the results
of Lemma 2.14 back to �∗ and then project down to GX.

The result is as follows. Given any α < α∗, we can cover each �̂′
i with sets

{Bijk}j∈J , 1≤k≤C in such a way that for fixed i, k, the sets {Bijk}j∈J are pairwise disjoint,
and (using Lemma 2.4) such that for any t ∈ [0, α∗], diam gtBijk < α. We note here that
in the proof of Lemma 2.14, the sets Bijk are ε-balls with respect to the �∞ product of

https://doi.org/10.1017/etds.2025.10199 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10199


14 D. Constantine et al

FIGURE 2. A visual aid for the proof of Lemma 3.7. Note that the stack associated to �ijk is covered by the flow
boxes for �i′jk . Here, C = 3.

visual metrics. It is not hard to see that by taking ε small enough, we can ensure that the
resulting sets have dGX-diameter as small as we need.

We then ‘stack’ C copies of �̂i along the flow, letting

�̃ijk = g(k/C)α∗�̂i and �ijk = g(k/C)α∗Bijk .

Note that by the choice of α∗, �ijk ⊂ �̃ijk . Let τ denote the return time associated to the
sections � = {�ijk}i,j ,k .

By design, for fixed i, {�ijk}k,j are pairwise disjoint, but additionally, since the
maximum height of the stack is α∗ < (t∗/2), no two stacks intersect; therefore, {�ijk}i,j ,k

are all pairwise disjoint. Also, by construction, τ is at least α∗/C =: τ∗. Finally, we note
that the longest τ can be is the sum of the maximum return time for �̂′ and the maximum
stack height; that is, τ < (t∗ − 2α∗)+ α∗ = t∗ − α∗ =: τ ∗, and so the (0, τ ∗)-flow boxes
for � cover GX: ⋃

i,j ,k

g(0,τ∗)Intg�ijk ⊃
⋃
i

g(0,t∗−2α∗)Intg�̂′
i = GX.

Importantly, we note that τ∗ and τ ∗ are independent of the size α of the sections � (see
Figure 2).

From now on, we fix the sections �̃ with fixed associated constants α∗, τ∗, τ ∗ given by
Lemma 3.7; in particular, diam �̃i ≤ α∗ and its associated return time τ̃ is bounded below
and above by the fixed constants τ∗ and τ ∗, respectively. By Lemma 3.7, we will be able
to choose subsections � such that diam�i = α is arbitrarily small, while its associated
return time τ preserves the same bounds.

Definition 3.8. Let i, j ∈ I . We say i → j is a simple transition if there exists γ ∈ �i
such that ψ(γ ) ∈ �j . Let

dom(ψ̃ij ) = dom(τ̃ij ) := {γ ∈ �̃i : gt (γ ) ∈ �̃j for some t ∈ (0, τ ∗)}.
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We define the extended first return time τ̃ij and first return map ψ̃ij for the simple transition
i → j as follows: for γ ∈ dom(ψ̃ij ) = dom(τ̃ij ),

τ̃ij (γ ) = inf{t ∈ (0, τ ∗) : gtγ ∈ �̃j },

ψ̃ij (γ ) = gτ̃ij (γ )γ .

In particular, using Lemma 3.7, we choose α to be small enough that �i ⊆ dom(ψ̃ij )
and �j ⊆ range(ψ̃ij ) for any simple transition i → j .

Note that for any canonical sequence θ ∈ �(�) (see Definition 3.5), we have θk →
θk+1 is a simple transition for each k ∈ Z. Indeed, ψ(ψk(π(θ))) = ψk+1(π(θ)) ∈ �θk+1 .
We now extend the canonical coding space �(�) to allow for double-sided sequences of
simple transitions.

Definition 3.9. A pseudo-orbit is a double-sided sequence of simple transitions. Let � be
the extended coding space of pseudo-orbits,

� = {ω = (. . . , ω−1 | ω0, ω1, . . .) : ωk → ωk+1 is a simple transition for all k}.
It is immediate from its definition that� is also a sub-shift of finite type, and we denote

by σ : � → � the associated left shift map. Note that � ⊂ �. For each ω ∈ �, define

ψ̃ω = ψ̃ω0ω1 : �ω0 → �̃ω1 ,

τ̃ω = τ̃ω0ω1 ,

and, on the domain where the composition is well defined,

ψ̃kω = ψ̃σ k−1(ω) ◦ · · · ◦ ψ̃ω.

As before, we define the local stable and unstable sets of a pseudo-orbit ω ∈ �. These
are where the composition ψ̃kω is well defined for all positive (respectively, negative) k.

Definition 3.10. For any ω ∈ �, we define the local stable and unstable sets of ω to be

Ws
loc(ω) := {γ ∈ Intφ(�ω0) : for all k ≥ 0, ψ̃kω(γ ) ∈ �ωk },

Wu
loc(ω) := {γ ∈ Intφ(�ω0) : for all k ≥ 0, ψ̃−k

ω (γ ) ∈ �ω−k }.
For any ω, ω′ ∈ � with ω0 = ω′

0, Ws
loc(ω) intersects Wu

loc(ω
′) at a unique point. This

is due to the fact that α can be made arbitrarily small and Bowen’s shadowing lemma:
consider the sequence formed by concatenating the past of ω′ with the future of ω: ζ =
(. . . , ω′−2, ω′−1 | ω0, ω1, . . .). By definition, for each j, ζj → ζj+1, so there exists γj ∈
�ζj such that ψζ (γj ) ∈ �ζj+1 . This (γj )j∈Z is a pseudo-orbit and by Bowen’s shadowing
lemma, there exists a unique element γ whose true orbit (ψζ (γ ))j∈Z shadows (γj )j∈Z.
Therefore, {γ } = Ws

loc(ω) ∩Wu
loc(ω

′).

Definition 3.11. For any ω, ω′ ∈ � with ω0 = ω′
0, we denote the unique point in the

intersectionWs
loc(ω) ∩Wu

loc(ω
′) by [ω, ω′]. We denote [ω, ω] by π(ω).
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We now demonstrate that ψ̃ω satisfies a property that is related to and resembles the
Markov property (Definition 3.3).

LEMMA 3.12. (Markov property for ψ̃ω) ψ̃ω stabilizes the local stable set:

ψ̃ω(W
s
loc(ω)) ⊂ Ws

loc(σ (ω)),

and ψ̃−1
ω stabilizes the local unstable set:

ψ̃−1
ω (Wu

loc(ω)) ⊂ Wu
loc(σ

−1(ω)).

Consequently, ψ̃ω(π(ω)) = π(σ(ω)).

Proof. Let γ ∈ Ws
loc(ω). Then, for any k ≥ 0,

ψ̃kσ(ω)(ψ̃ω(γ )) = ψ̃k+1
ω (γ ) ∈ �ωk+1 = �(σ(ω))k ,

so ψ̃ω(γ ) ∈ Ws
loc(σ (ω)). Similarly, let γ ∈ Wu

loc(ω). Then, for any k ≥ 0,

ψ̃−k
σ−1(ω)

(ψ̃−1
ω (γ )) = ψ̃−(k+1)

ω (γ ) ∈ �ω−(k+1) = �(σ−1(ω))−k ,

so ψ̃−1
ω (γ ) ∈ Wu

loc(σ
−1(ω)).

3.4. Exponential contraction. Exponential contraction along Ws
loc(θ) under the return

map ψ for any θ ∈ � plays an essential role in later proofs. We will prove our contraction
result (an analog for our situation of [LT05, Lemma 8(iii)]) for the simple first return map
ψ associated to the collection� if sections constructed above. We note that the result holds
for the ‘return map with instructions’ ψ̃ω since ψ̃ω is at any point ψk for an appropriate k.

LEMMA 3.13. Let γ , γ ′ ∈ Ws
loc(ω) for some ω ∈ � and let ψ be the first return map for

the collection of sections �. Then, there exists a constant C > 0 (independent of γ , γ ′, ω)
such that for all k > 0,

dGX(ψ
kγ , ψkγ ′) < Ce−kτ∗dGX(γ , γ ′).

Similarly, if γ , γ ′ ∈ Wu
loc(ω), for all k > 0,

dGX(ψ
−kγ , ψ−kγ ′) < Ce−kτ∗dGX(γ , γ ′).

Remark 3.14. For comparison with [LT05] in this and subsequent lemmas, recall that
λ = 1 for geodesic flow on a CAT(−1) space.

For this proof, we will need a sublemma. Consider the following setup (for the stable
half of the proof). Suppose that γ , γ ′ ∈ Ws

loc(ω) ⊂ �i and that ψkγ , ψkγ ′ ∈ �j . Since
γ , γ ′ ∈ Ws

loc(ω), γ
′ is on the weak-stable leaf through γ and hence for some r1, gr1γ

′ ∈
Wss(γ ). Similarly, as ψkγ , ψkγ ′ ∈ Ws

loc(σ
kω), for some r2, gr2ψ

kγ ′ ∈ Wss(ψkγ ). (See
Figure 3.)

SUBLEMMA 3.15. We have |r1| ≤ 2dGX(γ , γ ′) and |r2| ≤ 2dGX(ψkγ , gr2ψ
kγ ′).
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FIGURE 3. The geometric setup for Lemma 3.13.

Proof. We prove the sublemma for r1; the proof for r2 is the same.
Note, since the strong stable set Wss(γ ) is determined by values of

Bγ(0)(−, γ (+∞)), |r1| = Bγ(0)(γ
′(0), γ (+∞)). Busemann functions are 1-Lipschitz,

so Bγ(0)(γ ′(0), γ (+∞)) ≤ dX(γ (0), γ ′(0)). Therefore (using Lemma 2.3),

|r1| ≤ dX(γ (0), γ ′(0)) ≤ 2dGX(γ , γ ′),

as desired.

Proof of Lemma 3.13. We prove the result only for the local stable sets, the proof for the
unstable sets being essentially the same. As usual, we lift to the CAT(−1) universal cover
to make our geometric arguments.

We continue with the setup and notation illustrated in Figure 3. Let τ , τ ′ be such that
gτ γ = ψkγ and gτ ′γ ′ = ψkγ ′. Note that by construction of�, τ , τ ′ ≥ kτ∗. Since gτ maps
Wss(γ ) toWss(ψkγ ), we see that gr2ψγ

′ = gτgr1γ
′ and so τ ′ = τ + (r1 − r2).

By the triangle inequality,

dGX(γ , gr1γ
′) ≤ dGX(γ , γ ′)+ |r1|,

dGX(ψ
kγ , ψkγ ′) ≤ dGX(ψkγ , gr2ψ

kγ ′)+ |r2|.
Since gt is a metric Anosov flow with λ = 1, for some uniform C1 > 0,

dGX(ψ
kγ , gr2ψ

kγ ′) ≤ C1e
−kτ∗dGX(γ , gr1γ

′).

Combining these inequalities gives

dGX(ψ
kγ , ψkγ ′) ≤ dGX(ψkγ , gr2ψ

kγ ′)+ |r2|
≤ C1e

−kτ∗dGX(γ , gr1γ
′)+ |r2|

≤ C1e
−kτ∗[dGX(γ , γ ′)+ |r1|] + |r2|.

Then, using Sublemma 3.15,

dGX(ψ
kγ , ψkγ ′) ≤ C1e

−kτ∗[dGX(γ , γ ′)+ 2dGX(γ , γ ′)] + 2dGX(ψkγ , gr2ψ
kγ ′)
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≤ 3C1e
−kτ∗dGX(γ , γ ′)+ 2C1e

−kλτ∗dGX(γ , gr1γ
′)

≤ 3C1e
−kτ∗dGX(γ , γ ′)+ 2C1e

−kτ∗[dGX(γ , γ ′)+ r1]

≤ 3C1e
−kτ∗dGX(γ , γ ′)+ 2C1e

−kτ∗[dGX(γ , γ ′)+ 2dGX(γ , γ ′)]
= 9C1e

−kτ∗dGX(γ , γ ′),

as desired.

We also have the following analog of [LT05, Lemma 8(iv)] which gives very rough
upper and lower bounds on the distance between two points under iterates of our return
map ψ̃ .

LEMMA 3.16. There exist constants K∗ and �s∗ < 0 < �u∗ such that the following holds.
Suppose that x, y ∈ �i and that i = i0 → · · · → in is a chain of simple transitions so that
ψ̃n := ψ̃in−1in ◦ · · · ◦ ψ̃i0i1 exists at x and y. Then,

(K∗)−1 exp(n�s∗)dGX(x, y) ≤ dGX(ψ̃nx, ψ̃ny) ≤ K∗ exp(n�u∗)dGX(x, y).

Proof. Say ψ̃nx = gtx and ψ̃ny = gt ′y. Note that t ≤ nτ ∗ and that |t − t ′| is the
difference in first return times for x and y and under flow from �i to �in .

By triangle inequality,

dGX(ψ̃
nx, ψ̃ny) ≤ dGX(gtx, gty)+ |t − t ′|.

By Lemma 2.4 and the Lipschitz behavior of return times given by Proposition 3.4,

dGX(ψ̃
nx, ψ̃ny) ≤ e2t dGX(x, y)+KdGX(x, y)

≤ (K + 1) exp((2τ ∗)n)dGX(x, y).

To prove the other bound, we can simply reverse the direction of the flow: x = g−t ψ̃x
and y = g−t ′ψ̃y. Applying the same argument, we get

dGX(x, y) ≤ (K + 1) exp((2τ ∗)n)dGX(ψ̃nx, ψ̃ny),

which completes the proof.

We now prove two lemmas that will be useful in proving that the discretized subaction
is Hölder in §4.

LEMMA 3.17. There exists δ > 0 depending only on � such that for any i ∈ I and any
γ , γ ′ ∈ �i , if dGX(γ , γ ′) < δ, then there exists a simple transition i → j and m, n ≥ 1
such that

ψm(γ ) ∈ �j , ψn(γ ′) ∈ �j .

Furthermore, the first return times from �i to �j satisfy

m−1∑
k=0

τ ◦ ψk(γ ) < τ ∗,
n−1∑
k=0

τ ◦ ψk(γ ′) < τ ∗.

https://doi.org/10.1017/etds.2025.10199 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10199


Sub-actions for geodesic flows on locally CAT(−1) spaces 19

Proof. Let Ui = g(0,τ∗)�i . For any simple transition i → j , let

�ij = {η ∈ �i : gt (η) ∈ �j for some t ∈ (0, τ ∗)}
and let tj : �ij → (0, τ ∗) be the time such that gtj (η)η ∈ �j . Note that when η ∈ �ij ,
φn(η) ∈ �j for some n ≥ 1 and tj (η) = ∑n−1

k=0 τ ◦ ψk(η). Therefore, showing that
γ , γ ′ ∈ �ij will prove the lemma.

Since τ ∗ is the maximum return time, the sets {�ij }j cover �i , which is compact.
Therefore, we can find a Lebesgue number δ > 0 for the cover {�ij }j . If γ ′ is contained
in the δ-ball around γ , then there exists j ∈ I such that the ball is contained in �ij . In
particular, γ , γ ′ ∈ �ij .

In the following, �u∗ and K∗ are constants given by Lemma 3.16.

LEMMA 3.18. Suppose γ , γ ′ ∈ �i . For any N ≥ 1, if dGX(γ , γ ′) < (δ/K∗)e−N�u∗ , then
there exist ω, ω′ ∈ � such that π(ω) = γ , π(ω′) = γ ′ and their first N + 1 symbols
coincide: ω0 = ω′

0, . . . , ωN = ω′
N .

Proof. Let γ0 = γ and γ ′
0 = γ ′ ∈ �i . By Lemma 3.17, since dGX(γ0, γ ′

0) < δ, there exists
m1, n1 and i1 ∈ I such that

γ1 = ψm1(γ0), γ ′
1 = ψn1(γ ′

0) ∈ �i1 .

By Lemma 3.16,

dGX(γ1, γ ′
1) ≤ K∗e�u∗dGX(γ0, γ ′

0) < K
∗e�u∗ δ

K∗ e
−N�u∗ = δe−(N−1)�u∗ < δ,

so we can apply Lemma 3.17 again. We repeat this construction N times to find two
sequences (m1, m2, . . . , mN) and (n1, . . . , nN) such that for each 0 ≤ l ≤ N ,

γl = ψm1+···+ml (γ ) and γ ′
l = ψn1+···+nl (γ ′)

belong to the same section �il with dGX(γl , γ ′
l ) < δ.

Let θγ , θγ
′ ∈ �(�) be the canonical sequences associated to γ and γ ′, respectively,

and let

m = m1 + · · · +mN , n = n1 + · · · + nN .

Define

ω = (. . . , θγ−2, θγ−1 | i0, i1, . . . , iN , θγm+1, θγm+2, . . .),

ω′ = (. . . , θγ
′

−2, θγ
′

−1 | i0, i1, . . . , iN , θγ
′

n+1, θγ
′

n+2, . . .).

By construction, ψ̃kω(γ ) ∈ �ωk and ψ̃k
ω′(γ ′) ∈ �ω′

k
for all k ∈ Z, so γ = π(ω) and

γ ′ = π(ω′), and they coincide in the first N + 1 times, as desired.

4. A sub-action for the discretized system
Let A : GX → R be Hölder and define its minimal average by

m(A) = inf
{∫

A dμ | μ ∈ M1(GX, gt )
}

,
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where M1(GX, gt ) denotes the set of all gt -invariant probability measures on GX. We
define the discretized observable A : � → R by

A(γ ) =
∫ τ(γ )

0
(A−m(A)) ◦ gt (γ ) dt . (4.1)

The goal of this section is to construct a discretized sub-action V for A.

PROPOSITION 4.1. There exist sections � and a globally Hölder function V : � → R
such that

A(γ ) ≥ V ◦ ψ(γ )− V(γ ) for all γ ∈ �.

As in [LT05], we first extend A : � → R to the space�×�. To that end, we introduce
the following notation. Define

D = {(ω,γ ) ∈ �×� : γ ∈ �ω0}
ψ̃ : D → �×�
(ω, γ ) �→ (σ (ω), ψ̃ω(γ ))

to be the first return map ‘with instructions’ and let τ̃ be the associated first return time
τ̃ (ω, γ ) := τ̃ω(γ ). We also extend the discretized A to�×� (or, more precisely, to D) by

Ã(ω, γ ) =
∫ τ̃ (ω,γ )

0
(A−m(A)) ◦ gt (γ ) dt .

Recall that for γ ∈ �, its canonical pseudo-orbit θγ ∈ �(�) given by

θγ = (. . . , θ−1 | θ0, θ1, . . .) where ψk(γ ) ∈ �θk
satisfies π(θγ ) = γ . Define

θ̃ : � → �×�
γ �→ (θγ , γ ).

Then, we note that

θ̃ ◦ ψ = ψ̃ ◦ θ̃ .

Since τ̃ (θγ , γ ) = τ(γ ), we note that Ã is an extension of A:

Ã ◦ θ̃ = A.

Definition 4.2. For ω ∈ � and η ∈ Ws
loc(ω), define

bs(ω, η) = Bπ(ω)(η(0)),

ws(ω, η) = gbs(ω,η)η,

�s(ω, η) =
∑
n≥0

(Ã ◦ ψ̃n(ω, η)− Ã ◦ ψ̃n(ω, π(ω))).

Here, �s(ω, η) is often called the stable cocycle. Note that bs(ω, η) is 1-Lipschitz in the
distance between the basepoints of η and π(ω) and so goes to zero as this distance goes to
zero.
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FIGURE 4. An illustration of some of the definitions from Definition 4.2. Note that η ∈ Ws
loc(ω) so η̃ ∈

Wcs(π̃(ω)).

Remark 4.3. In the definition above, we are abusing notation slightly: it should be
understood that Bπ(ω)(η(0)) is in fact Bπ̃(ω)(η̃(0)), where π̃(ω) is a fixed lift of π(ω) to
the CAT(−1) universal cover and η̃ ∈ Wcs(π̃(ω)) is the lift of η that has the same endpoint
at infinity π̃(ω)(+∞) (see Figure 4).

LEMMA 4.4. Let ω ∈ �.
(i) The map Ws

loc(ω) → Wss(π(ω)) given by η �→ ws(ω, η) is a parameterization of
Wss(π(ω)).

(ii) The stable cocycle �s(ω, η) admits the equivalent form

�s(ω, η) =
∫ ∞

0
(A ◦ gtws(ω, η)− A ◦ gtπ(ω)) dt

−
∫ bs(ω,η)

0
(A−m(A)) ◦ gtη dt .

In particular, bs(ω, η),Ws
loc(ω), and �s(ω, η) depend on ω ∈ � only via π(ω).

Proof. For part (i), note that η ∈ Wcs(π(ω)), so using Lemma 2.8(2),

Bπ(ω)(w
s(ω, η)(0)) = Bπ(ω)(η(b

s(ω, η)))

= Bπ(ω)(η(0))+ (0 − bs(ω, η))

= 0.
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Therefore, ws(ω, η) ∈ Wss(π(ω)). Conversely, any point on Wss(π(ω)) is of the form
gs(η) for some η ∈ �ω0 and small s. Since they are on the same stable leaf, ω is a valid set
of forward instructions that η can take. Therefore, η ∈ Ws

loc(ω).
To prove part (ii), we first establish the following sublemma.

SUBLEMMA 4.5. For η ∈ Ws
loc(ω), the cocycle equation

bs(ω, η)+ τn(π(ω)) = bs(σnω, ψ̃nω(η))+ τn(η) (4.2)

holds, where τn(−) = ∑n−1
k=0 τ ◦ ψ̃kω(−).

Proof of sublemma. Using Lemma 2.8(1) and (2),

bs(ω, η)− bs(σnω, ψ̃nω(η)) = Bπ(ω)(η(0))− Bπ(σn(ω))((ψ̃nωη)(0))
= Bπ(ω)(η(0))− Bgτn(π(ω))π(ω)((ψ̃nωη)(0))
= Bπ(ω)(η(0))− [Bπ(ω)((ψ̃nωη)(0))+ τn(π(ω))]
= τn(η)− τn(π(ω)).

The proof of part (ii) then follows that of [LT05, Proposition 12(iii)] verbatim. To
summarize, one considers the difference of partial sums approximating �s(ω, η):

N∑
n=0

Ã ◦ ψ̃n(ω, η)−
N∑
n=0

Ã ◦ ψ̃n(ω, π(ω)).

These are the integrals of A−m(A) over orbit segments, specifically the time [0, τN(η)]
segment of η and the [0, τN(π(ω))] segment of π(ω), respectively. Large portions of these
segments lie on common stable leaves, specifically the time [0, τN(π(ω))] segments of
π(ω) and ws(ω, η). Grouping these contributions in a single integral, and recording the
contributions of the non-overlapping segments at the beginning and end with the help of
equation (4.2), the difference of the partial sums is∫ bs(ω,η)

0
(A−m(A)) ◦ gtη dt +

∫ τN (π(ω))

0
(A ◦ gtws(ω, η)− A ◦ gtπ(ω)) dt

−
∫ τN (π(ω))

τN (π(ω))−bs(σNω,ψ̃Nω (η))
(A−m(A)) ◦ gtws(ω, η) dt .

As N → ∞, the distance between the basepoints of σNω and ψ̃Nω (η) goes to zero, so
bs(σNω, ψ̃Nω (η)) → 0, giving the result.

Finally, if π(ω) = π(ω′), then by definition, for any η ∈ Ws
loc(ω) ∩Ws

loc(ω
′),

bs(ω, η) = bs(ω′, η). Then, part (i) gives us that Ws
loc(ω) = Ws

loc(ω
′), and part (ii) gives

us that �s(ω, η) = �s(ω′, η).

We now define a discretized sub-action Ṽ on the space �. Let SnÃ = ∑n−1
k=0 Ã ◦ ψ̃k be

the Birkhoff sum of Ã.
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Definition 4.6. For any ω ∈ �, define

Ṽ(ω) = inf{SnÃ ◦ ψ̃−n(ζ , [ω, ζ ])+�s(ω, [ω, ζ ]) | n ≥ 0, ζ ∈ �, ζ0 = ω0}.
First, we prove the following lemma.

LEMMA 4.7. For any ω ∈ �, Ṽ(ω) is finite.

Proof. Write τ̃n = τ̃n(ψ̃
−n(ζ , [ω, ζ ])) and η = g−τ̃n[ω, ζ ]. By definition,

SnÃ ◦ ψ̃−n(ζ , [ω, ζ ]) =
∫ τ̃n

0
(A−m(A)) ◦ gtη dt .

By [CLT20b, Lemma 4.5], geodesic flows on locally CAT(−1) spaces satisfy the weak
periodic orbit closing property (see [CLT20b, Definition 4.4]). Applying this to the orbit
segment g[0,τ̃n]η, there exists a closed geodesic γ with period T satisfying |T − τ̃n| ≤ M1

such that

max{dGX(gsγ , gsη) : s ∈ [0, τ̃n]} < ε.
Here, M1 depends only on ε. (In [CLT20b], only an upper bound on T was of interest,
but the lower bound follows from the same proof.) By [CLT20b, Proposition 4.3], after
choosing ε sufficiently small and using the fact that A is Hölder, there is some uniformM2

such that ∣∣∣∣∫ τ̃n

0
A ◦ gtη dt −

∫ τ̃n

0
A ◦ gtγ dt

∣∣∣∣ ≤ M2.

Therefore, ∣∣∣∣∫ τ̃n

0
A ◦ gtη dt −

∫ T

0
A ◦ gtγ dt

∣∣∣∣ ≤ M2 +M1‖A‖∞.

By the definition of m(A),
∫ T

0 A ◦ gtγ dt ≥ Tm(A). Therefore (with ± depending on the
sign of m(A)),

SnÃ ◦ ψ̃−n(ζ , [ω, ζ ]) ≥
∫ T

0
A ◦ gtγ dt − (M2 +M1‖A‖∞)−m(A)(T ±M1)

≥ Tm(A)− (M2 +M1‖A‖∞)− Tm(A)±M1m(A)

= −(M2 +M1‖A‖∞)±M1m(A),

giving a uniform lower bound.
By part (ii) of Lemma 4.4,

�s(ω, [ω, ζ ]) =
∫ ∞

0
(A ◦ gtws(ω, [ω, η])− A ◦ gtπ(ω)) dt

−
∫ bs(ω,[ω,η])

0
(A−m(A)) ◦ gt [ω, η] dt .

Since they both belong to �ω0 , dGX(π(ω), [ω, η]) < diam�ω0 < α
∗. As Busemann

functions are 1-Lipschitz, |bs(ω, [ω, η])| < α∗, so the second integral is bounded by
(‖A‖∞ −m(A))α∗. Furthermore, since ws(ω, [ω, η]) = gbs(ω,[ω,η])[ω, η], the distance
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between the stably related gtπ(ω) and gtws(ω, [ω, η]) is bounded by 2α∗ at t = 0 and
goes to zero exponentially fast as t → ∞. Applying [CLT20b] again (this time in the
limiting case where the shadowing interval is half-infinite), we can uniformly bound the
first integral, proving that Ṽ(ω) is finite.

The next proposition will allow us to complete the goal of this section.

PROPOSITION 4.8. For any ω ∈ �, define Ṽ(ω, π(ω)) := Ṽ(ω), extending Ṽ to a function
on graph(π) ⊂ D ⊂ �×�.

(i) With the notational convention above, Ã ≥ Ṽ ◦ ψ̃ − Ṽ on graph(π).
(ii) There exists V : � → R such that Ṽ(ω) = V ◦ π(ω) for all ω ∈ �.

(iii) V : � → R is globally Hölder.

Before proving Proposition 4.8, we see that Proposition 4.1 then follows easily from it.

Proof of Proposition 4.1. We get the Hölder map V from Proposition 4.8, which
satisfies Ṽ ◦ θ̃ (γ ) = Ṽ(θγ ) = V ◦ π(θγ ) = V(γ ), so that Ṽ ◦ θ̃ = V . Since we also have
Ã ◦ θ̃ = A and θ̃ ◦ ψ = ψ̃ ◦ θ̃ , we obtain

A(γ ) = Ã ◦ θ̃ (γ ) ≥ Ṽ ◦ ψ̃(θ̃ (γ ))− Ṽ(θ̃ (γ ))
= Ṽ ◦ θ̃ ◦ ψ(γ )− V(γ )
= V(ψ(γ ))− V(γ ).

Proof of Proposition 4.8. Fix ω ∈ � and let ζ ∈ � such that ζ0 = ω0. Let

ξ = (. . . , ζ−2, ζ−1 | ω0, ω1, ω2, . . .).

Then, π(ξ) = [ω, ζ ] and since Ã(−, π(ζ )) depends only on the forward encoding of −,

Ã(ξ , π(ξ)) = Ã(ω, π(ξ)).

Then,

SnÃ ◦ ψ̃−n(ξ , [ω, ζ ])+�s(ω, [ω, ζ ])+ Ã(ω, π(ω))

= SnÃ ◦ ψ̃−n(ξ , π(ξ))+ [Ã(ω, [ω, ζ ])− Ã(ω, π(ω))

+�s(σ(ω), π ◦ σ(ξ))] + Ã(ω, π(ω))

= SnÃ ◦ ψ̃−n(ξ , π(ξ))+ Ã(ξ , π(ξ))+�s(σ(ω), π ◦ σ(ξ))
= Sn+1Ã ◦ ψ̃−(n+1)(σ (ξ), π ◦ σ(ξ))+�s(σ(ω), π ◦ σ(ξ)).

By the Markov property, π ◦ σ(ξ) ∈ Ws
loc(σ (ω)), so we obtain

Ṽ(ω, π(ω))+ Ã(ω, π(ω)) ≥ Ṽ ◦ ψ̃(ω, π(ω))

or, equivalently,

Ṽ(ω)+ Ã(ω, π(ω)) ≥ Ṽ ◦ σ(ω).
For part (ii), let ω, ω′ ∈ � with ω0 = ω′

0 and π(ω) = π(ω′). For any ζ with
ω0 = ζ0 = ω′

0, we have [ω, ζ ] = [ω′, ζ ] so SnÃ ◦ ψ̃−n(ζ , [ω, ζ ]) = SnÃ ◦ ψ̃−n(ζ , [ω′, ζ ]).
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Also, by Lemma 4.4, �s(ω, [ω, ζ ]) = �s(ω′, [ω′, ζ ]). By definition of Ṽ , we then have
Ṽ(ω) = Ṽ(ω′). Therefore, Ṽ(ω) depends on ω actually only via its unique point π(ω); so
we can define a map V : � → R by

V(π(ω)) := Ṽ(ω).
For part (iii), let γ , γ ′ ∈ �. In the following, the constants K∗ and �s∗ = −2τ ∗ < 0 <
2τ ∗ = �u∗ are from Lemma 3.16, the constants C, λs∗ := −τ∗ < 0 < τ∗ =: λu∗ are from
Lemma 3.13, and the constant δ is from Lemma 3.18.

Since the problems for being Hölder show up at small scales, we assume dGX(γ , γ ′) <
(δ/K∗). Let N = N(γ , γ ′) be the unique positive integer satisfying

δ

K∗ e
−(N+1)(�u∗−λs∗) ≤ dGX(γ , γ ′) ≤ δ

K∗ e
−N(�u∗−λs∗).

By Lemma 3.18, there exist pseudo-orbits ω, ω′ such that π(ω) = γ , π(ω′) = γ ′, and
their first N + 1 symbols coincide: ω0 = ω′

0, . . . , ωN = ω′
N .

Let n ≥ 0, ζ ∈ � with ζ0 = ω0 = ω′
0, and let η = [ω, ζ ], η′ = [ω′, ζ ]. Since η and η′

are in the stable sets of ω and ω′, respectively, we may assert that ζ is encoded so that
η and η′ hit exactly the same N + 1 sections: ζl = ωl(= ω′

l) for all l = 0, . . . , N . Since
taking an infimum of

[SnÃ ◦ ψ̃−n(ζ , η)+�s(ω, η)] − [SnÃ ◦ ψ̃−n(ζ , η′)+�s(ω, η′)] (4.3)

over all n ≥ 0 and all such ζ gives us Ṽ(ω)− Ṽ(ω′) = V(γ )− V(γ ′), we want to bound
the magnitude of the expression in equation (4.3) above in terms of dGX(γ , γ ′).

We use the following notation:

γn = ψ̃nω(γ ); γ ′
n = ψ̃nω(γ

′); ηn = ψ̃nω(η), η′
n = ψ̃nω(η

′).

The definition of N gives us

N + 1 ≥ 1
�u∗ − λs∗

ln
(

δ

K∗dGX(γ , γ ′)

)
,

which gives us

eNλ
s∗ ≤ K0(δ)dGX(γ , γ ′)β , e−Nλu∗ ≤ L0(δ)dGX(γ , γ ′)−β (4.4)

for some constants K0(δ) := e−λs∗(K∗/δ)β , L0(δ) := eλ
u∗ (K∗/δ)−β , and

β := −(λs∗/�u∗ − λs∗) ∈ (0, 1). Since γ , η ∈ Ws
loc(ω) and γ ′, η′ ∈ Ws

loc(ω′), assuming
diam(�) ≤ 1,

dGX(ηN , γN) ≤ CeNλs∗ , dGX(η
′
N , γ ′

N) ≤ CeNλs∗ . (4.5)

By Lemma 3.16 and equation (4.4),

dGX(γN , γ ′
N) ≤ δeNλs∗ . (4.6)

We also obtain from equations (4.5), (4.6) and (4.4) (and assuming δ ≤ C),

dGX(γN , γ ′
N), dGX(ηN , η′

N), dGX(γN , ηN), dGX(γ ′
N , η′

N) ≤ M0dGX(γ , γ ′)β , (4.7)

whereM0 = 3CK0.
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Even though A is highly discontinuous, for any given ω ∈ �, the map Ã(ω, γ ) is
Hölder continuous in γ , since Ã only considers pairs (ω, γ ) such that γ can follow the
orbits for which ω gives instructions. Therefore, we have a Hölder constant Holdα(Ã) =
supγ ,γ ′∈�,ω∈�{|Ã(ω, γ )− Ã(ω, γ ′)|/d(γ , γ ′)α}, where α is the exponent constant from
the Hölder conditions of A and τ̃ .

We now split the expression in equation (4.3) into a sum of five parts:

(4.3)1 = SnÃ−n(ζ , η)− SnÃ−n(ζ , η′),

(4.3)2 =
N−1∑
k=0

[Ã ◦ ψ̃k(ω, η)− Ã ◦ ψ̃k(ω′, η′)],

(4.3)3 =
N−1∑
k=0

[Ã ◦ ψ̃k(ω′, γ ′)− Ã ◦ ψ̃k(ω, γ )],

(4.3)4 =
∑
k≥N

[Ã ◦ ψ̃k(ω, η)− Ã ◦ ψ̃k(ω, γ )],

(4.3)5 =
∑
k≥N

[Ã ◦ ψ̃k(ω′, η′)− Ã ◦ ψ̃k(ω′, γ ′)].

The sum of the first two terms can be rewritten over the first (n+N) backward iterates of
ηN and η′

N :

|(4.3)1 + (4.3)2| = |Sn+N Ã ◦ ψ̃−(n+N)(σN(ζ ), ηN)− Sn+N Ã ◦ ψ̃−(n+N)(σN(ζ ), η′
N)|

=
∣∣∣∣ n+N∑
k=1

(Ã ◦ ψ̃k−n−N(σN(ζ ), ηN)− Ã ◦ ψ̃k−n−N(σN(ζ ), η′
N))

∣∣∣∣.
It can then be estimated as follows:

|(4.3)1 + (4.3)2| ≤
n+N∑
k=1

Holdα(Ã) dGX(ψ̃k−n−N(σN(ζ ), ηN), ψ̃k−n−N(σN(ζ ), η′
N)
α

≤ Holdα(Ã)
n+N∑
k=1

|Ce−kλu∗dGX(ηN , η′
N)|α (by Lemma 3.13)

≤ Holdα(Ã)
∞∑
k=1

|Ce−kλu∗ |αMαβ

0 dGX(γ , γ ′)αβ

= K2(δ) dGX(γ , γ ′)αβ .

For the third term, we use ωk = ω′
k for 0 ≤ k ≤ N so that by Lemma 3.16 and equa-

tion (4.4),

dGX(γk , γ ′
k) ≤ K∗ek�u∗dGX(γ , γ ′)

≤ K∗ek�u∗ δ
K∗ e

−N(�u∗−λs∗)

= δee
−(N−k)�u∗

eNλ
s∗eNλ

s∗

≤ δee−(N−k)�u∗
eNλ

s∗K0(δ)dGX(γ , γ ′)β .
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Then, we have an estimate for the third term as follows:

|(4.3)3| ≤
N−1∑
k=0

Holdα(Ã)dGX(γk , γ ′
k)
α)

≤
N−1∑
k=0

Holdα(Ã)(δee−(N−k)�u∗
eNλ

s∗K0(δ)dGX(γ , γ ′)β)α

≤ Holdα(Ã)(δK0(δ))
α

∞∑
l=1

e−l�u∗dGX(γ , γ ′)αβ

= K3(δ)dGX(γ , γ ′)αβ .

Now, since γ , η ∈ Ws
loc(ω) and γ ′, η′ ∈ Ws

loc(ω
′), using Lemma 3.16 and equation (4.7),

the fourth term can be estimated as follows:

|(4.3)4| ≤ Holdα(Ã)
∑
k≥N

dGX(ηk , γk)α

= Holdα(Ã)
∞∑
k=0

dGX(ηN+k , γN+k)α

≤ Holdα(Ã)
∞∑
k=0

(Cekλ
s∗dGX(ηN , γN))α

≤ Holdα(Ã)Cα
∞∑
k=0

ekλ
s∗α(M0(δ)dGX(γ , γ ′)β)α

= K4(δ)dGX(γ , γ ′)αβ .

Similarly, using γ ′, η′ and ω′ in place of γ , η and ω above, we obtain an estimate for the
fifth term:

|(4.3)5| ≤ K4(δ)dGX(γ , γ ′)αβ .

Therefore,

|V(γ )− V(γ ′)| ≤ (K2 +K3 +K4 +K4)dGX(γ , γ ′)αβ ,

as desired.

5. Proof of the main theorem
With Proposition 4.1, we have solved a discretized version of the sub-action problem.
Recall that we have a collection of sections �, and a globally Hölder function V : � → R
such that

A(γ ) ≥ V ◦ ψ(γ )− V(γ ) for all γ ∈ �,

where ψ is the first-return map for �. To prove Theorem 1.1, we will prove the following
proposition.
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PROPOSITION 5.1. There is a collection of Poincaré subsections�′ ⊂ � (with first-return
map ψ ′ and first-return time τ ′) and a function H ′ : GX → R≥0 which is globally Hölder
and smooth in the flow direction satisfying the following integrability condition:∫ τ ′(γ )

0
(A−m(A)) ◦ gt (γ ) dt − (V ◦ ψ ′(γ )− V(γ )) =

∫ τ ′(γ )

0
H ′ ◦ gt (γ ) dt

for all γ ∈ �′.

Proposition 5.1 proves Theorem 1.1 as follows.

Proof of Theorem 1.1. Given �′ and γ ∈ GX, let T ′(γ ) = inf{t ≥ 0 : g−t γ ∈ �′}. Note
that t is small, bounded by the scale of the Markov proper family from which �′ is
constructed (see Definition 3.3). Then, given H ′, define

V (γ ) = V ◦ g−T ′(γ )(γ )+
∫ 0

−T ′(γ )
(A−m(A)−H ′) ◦ gtγ dt .

First, we note that if γ1 ∈ �′ and γ1 = ψ ′(γ2), then T ′(γ1) = 0 and so, using the
definition of V and the integrability condition given in Proposition 5.1, we get

V (γ1) = V(γ1) = V(γ2)+
∫ τ ′(γ2)

0
(A−m(A)−H ′) ◦ gtγ2 dt .

With this, we have the following well-defined expression for V:

V (γ ) = V ◦ g−T γ +
∫ 0

−T
(A−m(A)−H ′) ◦ gtγ dt (5.1)

for all γ and any T such that g−T (γ ) ∈ �′ or, indeed, in �. Fix any such T for a given γ .
Then,

V (gtγ ) = V ◦ g−(T+t)gt (γ )+
∫ 0

−(T+t)
(A−m(A)−H ′) ◦ gsgt (γ ) ds

= V ◦ g−T (γ )+
∫ T+t

0
(A−m(A)−H ′) ◦ gsg−T (γ ) ds.

Taking d/dt |t=0 of this expression, we get

d

dt
|t=0V (gtγ ) = (A−m(A)−H ′)(γ ).

Re-arranging terms, this gives the second statement of Theorem 1.1 with H ′ as the H
required in that theorem. Integrating this equation over any geodesic segment yields the
first statement of Theorem 1.1.

For the regularity statements, we work with equation (5.1). Here, V is Hölder on �. On
an open set around any γ ∈ �′, we can choose T as a function of γ so that g−T γ belongs
to a single section in �. Using the fact that for the sections we are using, constructed via
the methods of [CLT20a], the return map under the flow to a section is Hölder [CLT20a,
Proposition 4.9], g−T γ is Hölder in γ . Finally, A is Hölder by assumption andH ′ is Hölder
by Proposition 5.1, so V is globally Hölder. Along orbits of the flow, V is differentiable,
with the expression for the derivative given above.
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5.1. Constructing subsections. To prove Proposition 5.1, following the ideas of [LT05],
we will construct a nested sequence of Poincaré sections. The following lemma is a basic
tool necessary in these arguments.

LEMMA 5.2. (Cf. [LT05, Lemma 15]) Given a collection of sections � as in Lemma 3.7,
there exists a collection of subsections �′ such that:

(i) �
′
i ⊂ �i;

(ii) {U ′
i := g(0,τ∗)�′

i} cover GX;
(iii) for all i, j , if Ui ∩�j �= ∅, then U ′

i ∩�′
j �= ∅.

Proof. Since it is a Poincaré section, {Ui := g(0,τ∗)�i } is a finite open cover of GX. Let ε
be a Lebesgue covering number for {Ui}.

Using the fact that gt is continuous, given ε, there exists δ(ε) > 0 such that whenever
dGX(γ1, γ2) < δ and t ∈ [0, τ ∗], dGX(gt (γ1), gt (γ2)) < ε.

For each i, let �′
i := {γ ∈ �i : dGX(γ1, (

⋃
t∈(−α,α) gt�i)

c) > δ(ε)/2}. That is, we
‘shrink’ �i by δ(ε)/2. Clearly part (i) is satisfied. For part (ii), let γ3 ∈ GX. For some
i, Bε(γ3) ⊂ Ui since ε is a Lebesgue number for the covering {Ui}. Write γ3 = gtγ1 for
(γ1, t) ∈ �i × (0, τ ∗). Suppose that γ1 /∈ �′

i . Then, there is some γ2 /∈ ⋃
t∈(−α,α) gt�i

such that dGX(γ1, γ2) < δ/2. By the choice of δ, dGX(γ3, gtγ2) < ε, implying that
Bε(γ3) � Ui , which is a contradiction. This proves part (ii).

For part (iii), if Ui ∩�j �= ∅, there exists an εij > 0 and γ3 ∈ �j such that Bεij (γ3) ⊂
Ui ∩ ⋃

t∈(−α,α) gt�j . By the same argument used for part (ii), if we form �′
i and �′

j by
shrinking�i and�j by less than εij and less than δ(εij /2), then γ3 ∈ U ′

i ∩�′
j . Therefore,

if we shrink all our �i by min{δ(ε)/2, δ(εij )/2, εij }, part (iii) is satisfied along with
part (ii).

Below, let�′ be a subsection of� as in Lemma 5.2. Let τ ′ and ψ ′ be the corresponding
first-return time and first-return map. For γ ∈ �′, define

H′(γ ) :=
∫ τ ′(γ )

0
(A−m(A)) ◦ gtγ dt − (V ◦ ψ ′(γ )− V(γ )).

By Proposition 4.1, H′ ≥ 0. To prove Proposition 5.1, we need to extend H′ to a function
H ′ which is defined on all of GX.

5.2. A smoothing function. A key element in the proof of Proposition 5.1 is the
‘smoothing function’ h provided by Lemma 5.5, which is stated later in this section. This
function will allow us to take the values of H, currently concentrated on the section � and
smooth them out over orbits of the geodesic flow.

We first prove the key lemma necessary for the proof of Lemma 5.5.

LEMMA 5.3. As before, let Ui = g(−α,0)Intg(�i) ∩ (⋃n
j=1 g(−δ,δ)(�j ))c. Then, for every

Ui , there exists a non-negative function hi : GX → R≥0 such that:
(1) Ui ⊆ supp(hi) ⊆ GX \ (⋃n

j=1 g(−δ,δ)�j );
(2) hi is Lipschitz continuous;
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(3) hi is smooth in the flow direction;
(4) for all γ such that Br(γ ) ⊂ Ui = Wi ,

∫ τ(γ )
0 (hi ◦ gt )(γ ) dt ≥ C(r) for some con-

stant C(r) depending only on r.

We now specify our input functions.
Let U be a cover for a metric space X. Recall that a cover U has multiplicity at most

k ≥ 0 if any x ∈ X belongs to at most k members of U . With these definitions in mind, we
consider the following proposition.

PROPOSITION 5.4. [DG07, Proposition 4.1] Let U be a cover of a metric space X with
multiplicity at most k + 1 (where k ≥ 0) and Lebesgue number L > 0. For U ∈ U , define

ϕU(x) = d(x, X \ U)∑
V∈U

d(x, X \ V ) .

Then, {ϕU }U∈U is a partition of unity on X subordinated to the cover U . Moreover, each
ϕU satisfies, for all x, y ∈ X,

|ϕU(x)− ϕU(y)| ≤ 2k + 3
L

d(x, y).

Furthermore, the family (ϕU )U∈U satisfies, for all x, y ∈ X,∑
U∈U

|ϕU(x)− ϕU(y)| ≤ (2k + 2)(2k + 3)
L

d(x, y).

Proof of Lemma 5.3. Let ψ : R → R be a bump function supported on the interval
(−ε, ε) with the property that

∫ ε
−ε ψ(γ ) dx = 1, where ε << δ. LetWi = g(−α,0)IntBi ∩

(
⋃n
j=1 g(−δ−ε,δ+ε)Bj )c. Let us denote ϕWi from Proposition 5.4 as ϕi . Given γ ∈ GX, we

define the function,

hi(γ ) := ((ϕi ◦ gt )(γ ) ∗ ψ)(0) =
∫
R

(ϕi ◦ g−t )(γ )ψ(t) dt =
∫
R

(ϕi ◦ gt )(γ )ψ(−t) dt .

Note that the two integrals are equal by symmetry of convolution.
(1) Support of hi. First, observe that since supp(ψ) = (−ε, ε), it follows that

hi(γ ) =
∫
R

(ϕi ◦ g−t )(γ )ψ(t) dt =
∫ ε

−ε
(ϕi ◦ gt )(γ )ψ(−t) dt .

Let γ ∈ Ui . Then, there exists some union of non-empty open intervals U that includes
an open interval around 0 such that (ϕi ◦ g−t )(γ ) �= 0 for all t ∈ U . As a result,

hi(γ ) =
∫
U∩(−ε,ε)

(ϕi ◦ g−t )(γ )ψ(t) dt > 0.

This shows that γ ∈ supp(hi), so Ui ⊆ supp(hi).
If γ ∈ ⋃n

j=1 g(−δ,δ)Bj , then for t ∈ (−ε, ε), gt (γ ) ∈ ⋃n
j=1 g(−δ−ε,δ+ε)Bj , which is

not in the support of ϕi . Thus,

hi(γ ) =
∫ ε

−ε
(ϕi ◦ g−t )(γ )ψ(t) dt = 0.
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(2) Lipschitz continuity. Let γ1, γ2 ∈ GX. Assuming that γ1 and γ2 are chosen so that
supp(ψ) ∩ supp((ϕi ◦ g−t )(γ1)− (ϕi ◦ g−t )(γ2)) is non-empty (otherwise, the inequality
is trivial), then for some T > ε,

|hi(γ1)− hi(γ2)| =
∣∣∣∣ ∫

R

(ϕi ◦ g−t )(γ1)ψ(t)− (ϕi ◦ g−t )(γ2)ψ(t) dt

∣∣∣∣
=

∣∣∣∣∫
R

(ϕi ◦ gt )(γ1)ψ(−t)− (ϕi ◦ gt )(γ2)ψ(−t) dt
∣∣∣∣

≤
∫
R

|((ϕi ◦ gt )(γ1)− (ϕi ◦ gt )(γ2))ψ(−t)| dt

≤
∫
R

(
2K + 3
L

)
dGX(gt (γ1), gt (γ2))|ψ(−t)| dt (Proposition 5.4)

≤
(

2K + 3
L

)
e2T dGX(γ1, γ2)

∫
R

|ψ(−t)| dt (Lemma 2.4)

=
(

2K + 3
L

)
e2T dGX(γ1, γ2).

We now explain our choice of T > 0. Notice that since we are integrating over a subset
of supp(ψ) = (−ε, ε), it follows that any T > ε will suffice.

(3) Smoothness along the flow direction. First, we show that hi is smooth along the flow
direction. To do so, we show the infinite differentiability of the function (for any s ∈ R,
not just s = 0):

((ϕi ◦ gt )(γ ) ∗ ψ)(s) =
∫
R

(ϕi ◦ gt )(γ )ψ(s − t) dt .

The proof proceeds similarly to the classical case. Recall that

∂

∂s
((ϕi ◦ gt )(γ ) ∗ ψ)(s) = lim

h→0

((ϕi ◦ gt ) ∗ ψ)(γ , s + h)− ((ϕi ◦ gt ) ∗ ψ)(γ , s)
h

= lim
h→0

∫
R

(ϕi ◦ gt )(γ )
(
ψ(s + h− t)− ψ(s − t)

h

)
dt .

The next step is to apply the dominated convergence theorem. Since ψ is smooth
with compact support, all the derivatives of ψ are bounded, so we can set M > 0 to be
some number such that d/dt |ψ(t)| ≤ M . We claim that M(ϕi ◦ gt )(γ ) is an appropriate
dominating function. Note that it suffices to show (ϕi ◦ gt )(γ ) is integrable. Suppose
γ /∈ Wi . Then,∫ ∞

−∞
|(ϕi ◦ gt )(γ )| dt ≤

∫ α

−α
|(ϕi ◦ gt )(γ )− ϕi(γ )︸ ︷︷ ︸

0

| dt

≤
∫ α

−α
2K + 3
L

dGX̃(gt (γ ), γ ) dt (Proposition 5.4)

=
∫ α

−α
(2K + 3)t

L
dt < ∞.

Otherwise, if γ ∈ Wi , then simply replace ϕi(γ ) with (ϕi ◦ g−2α)(γ ) = 0, for example,
so t in the last line will be replaced with t + 2α, in which case the integral is still finite.
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This allows us to finish showing the derivative exists:

∂

∂s
((ϕi ◦ gt )(γ ) ∗ ψ)(s) =

∫
R

(ϕi ◦ gt )(γ )ψ ′(s − t) dt .

By induction, we have that

∂n((ϕi ◦ gt )(γ ) ∗ ψ)
∂s

(s) =
∫
R

(ϕi ◦ gt )(γ )∂
n

∂s
ψ(s − t) dt .

Thus, for any s ∈ R, ((ϕi ◦ gt ) ∗ ψ)(γ , s) is smooth.
(4) Boundedness of the integral. It remains to bound

∫ τ(γ )
0 (hi ◦ gt )(γ ) dt below under

the condition that Br(γ ) ⊂ Ui = Wi .
Recall that U = {g(−α,0)Bi \ (⋃n

j=1 g(−δ−ε,δ+ε)Bj )}ni=1. Note that D0 := maxγ∈GX∑
U∈U d(γ , GX \ U) exists as the sum is finite and the diameter of GX is finite.
Then, we have∫ τ(γ )

0
hi(γ ) ds

=
∫ τ(γ )

0

∫
R

(ϕi ◦ g−t ◦ gs)(γ )ψ(t) dt ds

=
∫ τ(γ )

0

∫
R

(ϕi ◦ gs−t )(γ )ψ(t) dt ds =
∫ τ(γ )

0

∫
R

(ϕi ◦ gt )(γ )ψ(s − t) dt ds

≥
∫ τ∗

0
(ϕi ◦ gt )(γ )

∫ t+ε

t−ε
ψ(s − t) dt ds ≥

∫ ε

0
(ϕi ◦ gt )(γ )

∫ t+ε

t−ε
ψ(s − t) dt ds

≥
∫ ε

0
(ϕi ◦ gt )(γ )

∫ ε

−ε
ψ(u) du dt =

∫ ε

0
(ϕi ◦ gt )(γ ) dt

≥
∫ ε

0

dGγ (gt (γ ), GX \Wi)
D0

dt .

To complete the argument, we simply need to bound
∫ ε

0 dGX(gt (γ ), GX \Wi) below.
Since Br(γ ) ∈ Wi , and the geodesic flow is unit speed for dGX,

d(gtγ , GX \Wi) ≥ r − |t | for t ∈ [−r , r].
Consider two cases.
Case I: r > ε.∫ ε

0
dGX(gtγ , GX \Wi) dt ≥

∫ ε

0
r − |t | dt = rε − ε2

2
>
ε2

2
.

Case II: r ≤ ε. ∫ ε

0
dGX(gtγ , GX \Wi) dt ≥

∫ r

0
r − |t | dt = r2

2
.

Letting C(r) = min{ε2/2, r2/2} > 0, we have the desired result.

We are now ready to prove Lemma 5.5.
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LEMMA 5.5. There exists a globally Lipschitz continuous, smooth along orbits,
non-negative function h : GX → R≥0 that is null in a neighborhood of

⋃n
j=1 �j such

that for all γ ∈ GX, ∫ τ(γ )

0
h ◦ gt (γ ) dt ≥ C

for some constant C > 0.

Proof. We prove the lemma assuming Lemma 5.3. Let N = GX \ (⋃n
j=1 g(−δ,δ)�j ),

where δ � τ∗. From Definition 3.3, we know

N =
( n⋃
i=1

g(−α,0)Intg(�i)
)

∩
( n⋃
j=1

g(−δ,δ)�j
)c

=
n⋃
i=1

(
g(−α,0)Intg(�i) ∩

( n⋃
j=1

g(−δ,δ)(�j )
)c)

.

Set Ui =: g(−α,0)Intg(�i) ∩
( ⋃n

j=1 g(−δ,δ)(�j )
)c. By Lemma 5.3, there exists some

hi : GX → R≥0 whose support contains Ui and is contained in N that is smooth in
the flow direction and Lipschitz continuous. Let h = ∑n

i=1 hi . It is smooth in the flow
direction, Lipschitz continuous, and null on a neighborhood of

⋃n
j=1 �j .

Note that U = {Ui} forms an open cover of the compact space GX. Let ρ > 0 be
a Lebesgue number for this cover. Then, for every γ ∈ GX, there is some i such that
Bρ(γ ) ⊂ Ui . Applying part (4) of Lemma 5.3, we find that∫ τ(γ )

0
h ◦ gt (γ ) dt ≥

∫ τ(γ )

0
hi ◦ gt (γ ) dt ≥ C(ρ) > 0.

Here, C(ρ) depends only on ρ, and hence only on the geometry of the sections, not on γ ,
so it can serve as the constant C.

5.3. Inductive extension. To extend the discretized sub-action, we will need to augment
the concept of simple transitions.

Definition 5.6. Let i, j ∈ I . We say i ⇒ j is a multiple transition if there exist γ ∈ �i
and n ≥ 1 such that ψn(γ ) ∈ �j and τij (γ ) = ∑n−1

k=0 τ ◦ ψk(γ ) < τ ∗. The rank of the
multiple transition i ⇒ j is the largest n ≥ 1 such that there exists a chain i = i0 → i1 →
· · · → in = j of simple transitions of length n starting at i and ending at j.

Lopes and Thieullen demonstrated (see [LT05, Lemma 17]) that if we can
make the diameter α of the subsections � ⊂ �̃ sufficiently small—as permitted by
Lemma 3.7—then the rank of any multiple transition is bounded above by 2τ ∗/τ∗. This
allows us to sensibly define N as the maximum rank of any multiple transition for {�i}.

To extend H to the function H ′ specified in Proposition 5.1, we follow the inductive
scheme of [LT05]. The reason for this inductive argument is ensuring the regularity ofH ′.
Extending H to a flow box based on an individual �i is straightforward (see Lemma 5.7
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FIGURE 5. An illustration of the flow boxes U1
ijk and B1

ij .

below). However, when two of these flow boxes overlap, ensuring regularity of the resulting
extension requires care.

We begin by defining sets used in the construction. Let i ⇒ j be a rank n transition.
Using Lemma 5.2, let {�ki }i for k = 0, . . . , N be a sequence of Poincaré sections such
that for all i, �0

i = �i and �k+1
i ⊂ �̄k+1

i ⊂ �ki for k = 0, . . . N − 1. Let �kij = {γ ∈
�ki : ψij (γ ) ∈ �kj }. The flow box of rank n and size k for i ⇒ j is

Bkij = {gtγ : γ ∈ �kij , 0 ≤ t ≤ τij (γ )}.
Let

�nijk = {γ ∈ �nij : gtγ ∈ �nk for some 0 ≤ t ≤ τij (γ )}
and

Unijk = {gtγ : γ ∈ �nijk , 0 ≤ t ≤ τij (n)}.
These are the points in �kij (and corresponding partial flow box) which hit �nk between �i
and �j (see Figure 5). Note that

Unijk = {gtγ : γ ∈ �nijk , 0 ≤ t ≤ τik(γ )}
∪ {gtγ : γ ∈ �nijk , τik(γ ) ≤ t ≤ τij (γ )}

is the union of two partial flow boxes each of rank less than n.
Let

Un =
⋃

rank(i⇒j)≤n
Bnij

be the union of all flow boxes of size n and rank ≤ n. Note that UN = GX.
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We now inductively build Hn on Un; HN will be the H ′ asked for in Proposition 5.1.
For γ ∈ �0

ij , let

Hij (γ ) :=
∫ τ 0

ij (γ )

0
(A−m(A)) ◦ gtγ dt − (V ◦ ψ0

ij (γ )− V(γ )).

Since Hij is a sum of H ◦ ψk , it is non-negative. Let i ⇒ j be a multiple transition of any
rank. On the flow box B0

ij , define H 0
ij by

H 0
ij ◦ gt (γ ) = Hij (γ ) h ◦ gt (γ )∫ τij (γ )

0 h ◦ gt (γ ) dt
for all γ ∈ �0

ij , where h is the function provided by Lemma 5.5.

LEMMA 5.7. H 0
ij is Lipschitz, smooth in the flow direction, null in a neighborhood of⋃n

j=1 �j , and satisfies

Hij (γ ) =
∫ τij (γ )

0
H 0
ij ◦ gt (γ ) dt

for all γ ∈ �0
ij .

Proof. The proof follows from the properties of h provided by Lemma 5.5, the fact that
τij is Lipschitz, and straightforward direct computation.

The core idea of the construction of H ′ is in the definition of H 0
ij . However, {H 0

ij } do
not jointly define a well-defined function, as there is no reason for them to agree on the
overlaps of the {B0

ij }. Even if this issue is fixed, at the transitions between flow boxes, there
is no reason for a function patched together from {H 0

ij } to satisfy the necessary regularity
conditions. The inductive construction of [LT05] is designed to fix these issues.

Definition 5.8. Let H 1 :
⋃

rank(i→j)=1 B
1
ij → R by H 1|B1

ij
= H 0

ij .

The only overlaps between the sets {B1
ij : rank(i → j) = 1} occur on

⋃
i �i . Since h is

zero in a neighborhood of this set,H 1 is well defined. It satisfies the integrability condition
and regularity conditions thanks to Lemma 5.7.

Now suppose that Hn : Un → R, satisfying the integrability and regularity conditions
have been defined. Write Hnij for the restriction of Hn to Bnij .

To define Hn+1, suppose rank(i ⇒ j) = n+ 1. For all k such that �nijk �= ∅, as noted
above, Unijk is a union of two partial flow boxes, each of rank ≤ n. Hence, Hn is
already defined on these partial flow boxes. Therefore, on the partial flow box {gtγ :
γ ∈ ⋃

k �
n
ijk , 0 ≤ t ≤ τij (γ )}, Hn provides a well-defined function Hnij satisfying the

integrability and regularity conditions.
On {gtγ : γ ∈ �nij \ ⋃

k �
n
ijk , 0 ≤ t ≤ τij (γ )}, we have only H 0

ij . We glue these two
functions together with a partition of unity. Let p, q : �ni → [0, 1] be Lipschitz functions

such that p + q = 1 on �n+1
ij and so that
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supp(p) ⊂
⋃
k

�n+1
ijk

supp(q) ⊂ �nij \
⋃
k

�n+1
ijk .

Define Hn+1
ij on Bn+1

ij by

Hn+1
ij (gtγ ) = p(γ )Hnij (gtγ )+ q(γ )H 0

ij (gtγ ).

Then, Hn+1 : Un+1 → R is well defined by setting Hn+1|
Bn+1
ij

= Hn+1
ij . It is straightfor-

ward to check that it satisfies the integrability condition given that Hnij , H 0
ij do and that

p + q = 1 on �n+1
ij . The regularity follows from the regularity of Hnij and H 0

ij , and the
fact that p and q are Lipschitz. This finishes the proof of Proposition 5.1.

6. Volume rigidity
In the following section, we will show a more general version of the Volume Rigidity
Corollary stated in the introduction.

6.1. Surface amalgams. The following definition is adapted from [Laf07, Definition
2.3], which instead uses the terminology two-dimensional P-manifolds.

Definition 6.1. (Negatively curved surface amalgams) A compact metric space X is a
negatively curved surface amalgam if there exists a closed subset Y ⊂ X (the gluing curves
of X) that satisfies the following:
(1) each connected component of Y is homeomorphic to S1;
(2) the closure of each connected component of X − Y is homeomorphic to a compact

surface with boundary endowed with a negatively curved (Riemannian) metric, and
the homeomorphism takes the component of X − Y to the interior of a surface with
boundary. We will call each X − Y a chamber in X;

(3) there exists a negatively curved metric on each chamber which coincides with the
original metric.

If Y forms a totally geodesic subspace of X consisting of disjoint simple closed curves,
we say that X is simple. If each connected component of Y (gluing curve) is attached to at
least three distinct boundary components of chambers, then we say X is thick. Like Lafont
in [Laf07], we will only be considering simple, thick, negatively curved surface amalgams,
as doing so ensures the surface amalgam is locally CAT(−1) (see Figure 6).

We will equip a simple, thick negatively curved surface amalgam X with a metric
in a class we denote as M≤, following the notation from [CL19]. Roughly speaking,
metrics in M≤ are piecewise Riemannian metrics with an additional condition that limits
pathological behavior around the gluing curves of X. More precisely, we say g ∈ M≤ if g
satisfies the following properties:
(1) each chamber of C ⊂ X is equipped with a negatively curved Riemannian metric

with sectional curvature bounded above by −1 so that C has geodesic boundary
components;
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FIGURE 6. An example of a simple, thick surface amalgam with four chambers.

(2) the restrictions of g to the chambers of X are ‘compatible’ in the sense that if two
boundary components b1 and b2 of two (possibly the same) chambers C1 and C2 are
both attached to a gluing curve γ ⊂ X, then the gluing maps b1 ↪→ γ and b2 ↪→ γ

are isometries (in particular, we do not allow circle maps of degree two;
(3) for any two boundary components b1 ∈ C1 and b2 ∈ C2, the restriction of g to

Nb1

⋃
b1∼b2

Nb2 is a negatively curved smooth Riemannian metric with sectional
curvature bounded above by −1, where Nb1 and Nb2 are ε-neighborhoods around b1

and b2, respectively, for some ε > 0.
We impose the third condition to ensure that we can exploit previous marked length

spectrum rigidity results for surfaces which, in particular, require Riemannian negatively
curved metrics with at most a finite number of cone singularities. We now discuss some
properties of M≤ that will be useful in the proof of Theorem 6.6.

Remark 6.2. If (X, g) is a negatively curved surface amalgam where g ∈ M≤, then (X, g)
is locally CAT(−1).

Indeed, suppose X is equipped with a metric g ∈ M≤ and C ⊂ X is a chamber in
X. Recall a generalization of the Cartan–Hadamard theorem which states that a smooth
Riemannian manifold M has sectional curvature ≤ κ if and only if M is locally CAT(κ)
(see [BH99, Theorem 1A.6]). As a result, the restriction of g to C is locally CAT(−1) since
C is endowed with a negatively curved metric with sectional curvature bounded above
by −1. If κ ∈ R, and X1 and X2 are locally CAT(κ) spaces glued isometrically along a
convex, complete metric subspace A ⊂ X1 ∩X2, then X1 �A X2 is locally CAT(κ) (see
[BH99, Theorem 2.11.1]). As a result, a negatively curved surface amalgam (X, g) with
locally CAT(−1) chambers will also be locally CAT(−1), as claimed.

6.2. Volume rigidity. Let G X̃ be the set of unparameterized, unoriented geodesics in X̃.
A geodesic current on (X, g) is a π1-invariant Radon measure on G X̃.

There are two especially important examples of geodesic currents. We will assume, for
simplicity, that (X, g) is locally CAT(−1). Furthermore, we assume there is a well-defined
notion of transversality in G X̃. If (X, g) is a negatively curved surface, there is a natural
such notion since ∂∞X̃ is a circle. For other settings, transversality must be defined with
more care; for examples, see [CL19, §6] and [Wu23, §2.4.1].
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First, given a homotopy class [α] ∈ π1(X) with geodesic representative α, there is a
counting current associated with α that assigns to each Borel set E ⊂ G X̃ the measure

μα(E) = |E ∩ {̃α}|,
where {̃α} denotes the set of lifts of α to X̃. We follow convention and, with abuse of
notation, write α := μα , which makes clear the fact that the collection of closed geodesics
of (X, g) embeds naturally into the space of geodesic currents.

Second, there is a Liouville current which, roughly speaking, captures lengths of closed
geodesics. There is no general definition of a Liouville current; rather, the Liouville current
should capture important properties, which we state in Assumption 6.3. Before stating the
assumption, we need to introduce the notion of intersection numbers.

In the case of negatively curved Riemannian surfaces, the geometric intersection
number of two closed geodesics (viewed as geodesic currents) extends to a symmetric,
bilinear form (see [Bon86, Proposition 4.5]), the intersection number of two geodesic
currents. Explicitly, given two geodesic currents μ, ν, one can define the intersection
number of μ and ν as

i(μ, ν) =
∫
DGX

dμ× dν,

where DGX is the set of all pairs of transversally intersecting geodesics in GX.
A straightforward computation shows that for two counting currents [α] and [β], i(α, β)

is exactly their geometric intersection number. Metric-independent generalizations of
intersection numbers can be found for compact quotients of certain Fuchsian buildings
(see [CL19]) and surface amalgams (see [Wu23]).

We now state a few requirements for the Liouville current necessary for the proof of
Theorem 6.6.

Assumption 6.3. Let (X, g) be a locally CAT(−1) metric space with a well-defined notion
of transversality, a well-defined intersection number function, as well as a Liouville current
�g , e.g. a geodesic current that satisfies the following two properties:
(1) i(α, �g) = Cα�g(α) = CαLg([α]);
(2) i(�g , �g) = Kπ Volg(X),
where Cα and K are two positive real constants.

Assumption 6.3 holds in the case of negatively curved Riemannian surfaces (see
[Ota90]), and for negatively curved surfaces with large angle cone points as in [HP97].
In this case (and with Otal’s choice of scale factor), Cα = 1 for all α and K = 1

2 . A
Liouville measure, a flow-invariant Radon measure on oriented unit-speed geodesics, is
defined for non-positively curved orbihedra in [BB95], which is used in [CL19, Wu23]
for quotients of Fuchsian buildings and surface amalgams. Both sets of authors choose to
scale the Liouville current, viewed as a measure on unoriented unit-speed geodesics, to
match the scale factor of the Liouville measure defined in [BB95]. However, if one scales
the Liouville measure from [BB95] with a factor of 1

2 to match the scale factor in [Ota90],
one can see that for the cases of surface amalgams and quotients of Fuchsian buildings,
Cα = 2 and K = 1, given that α is not a branching geodesic or gluing curve. (We remark
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that the original factor K = 4 from [CL19] should be K = 2 and has been calculated
without the scale factor of 1

2 ). So Assumption 6.3 is satisfied.
We also require the intersection pairing to satisfy a specific form of continuity.

Assumption 6.4. (Weak continuity of the intersection number function) Given g and g′,
two metrics on X, and a sequence of currents (μk)k∈N on X such that μk → �g with
respect to the weak-∗ topology, i(μk , �g′) → i(�g , �g′).

In the case of closed non-positively curved surfaces (with or without cone points), the
intersection number given in [Bon86] is continuous everywhere and thus automatically
satisfies Assumption 6.4. In the cases of compact quotients of certain Fuchsian buildings
and surface amalgams, the intersection number functions are not continuous everywhere
(see [CL19, Lemma 10.2]). However, by [CL19, Proposition 10.1], they satisfy Assump-
tion 6.4; the proof follows verbatim in the case of surface amalgams.

Finally, to prove Theorem 6.6, we need one final assumption about the Liouville current.

Assumption 6.5. (X, g) is equipped with a Liouville current that is realized as the weak-∗
limit of scalar multiples of counting currents anαn with Cαn = 2K .

In the cases of negatively curved closed surfaces (with or without cone points), quotients
of Fuchsian buildings from [CL19], and surface amalgams from [Wu23], the following
property is satisfied: scalar multiples of counting currents are dense in the space of all
geodesic currents equipped with the weak-∗ topology. One can see this in a number of
different ways.

Bonahon proves this statement in the setting of Gromov hyperbolic spaces in [Bon91,
Theorem 7]. While he works with Cayley graphs of Gromov hyperbolic groups, his
argument mainly relies on the existence of a free, cocompact, properly discontinuous,
isometric action on the space as well as properties of quasigeodesics in CAT(−1) and
Gromov hyperbolic spaces.

Alternately, as noted in [Bon88, Proposition 2], this statement follows from [Sig74,
Theorem 1] or [Sig72, Theorem 1], which only use the weak specification property of
the geodesic flow. Weak specification holds for geodesic flow on any compact, locally
CAT(−1) space [CLT20b, Theorem A]. Sigmund’s density proof uses weak-specification
to approximate the Liouville measure with measures supported on closed geodesics.
In Fuchsian buildings and surface amalgams, the only α for which Cα �= 2K are the
branching geodesics or gluing curves. These are proper, closed subsets in GX and it is
easy to see from the definition of the Liouville measure developed by [BB95, CL19,
Wu23] that such geodesics have zero Liouville measure. Therefore, any such geodesics
can be omitted from the approximating sequence (anαn) → �g obtained via Sigmund’s
argument. Therefore, the examples we are interested in satisfy Assumption 6.5.

Recall that a class of CAT(−1) metrics M is marked length spectrum rigid if whenever
(X, g1) and (X, g2) (where g1, g2 ∈ M) have the same marked length spectrum, (X, g1)

and (X, g2) are isometric. There are some well-documented classes of marked length
spectrum rigid metrics. Negatively curved Riemannian metrics on surfaces are known to
be marked length spectrum rigid due to [Cro90, Ota90]. Due to [CL19], certain classes of
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piecewise negatively curved Riemannian metrics, including piecewise hyperbolic metrics,
on compact quotients of Fuchsian buildings are marked length spectrum rigid. Piecewise
negatively curved Riemannian metrics satisfying certain smoothness conditions on simple,
thick surface amalgams are also marked length spectrum rigid due to [Wu23]. Marked
length spectrum rigidity is a key tool in proving volume rigidity; thus, we will state it as
an additional assumption.

Recall also from §1 that given a metric g on a metric space (X, g), Lg denotes the
marked length length spectrum of (X, g). We are now ready to state and prove our volume
rigidity result, which is a generalization of the Volume Rigidity Corollary stated in the
introduction.

THEOREM 6.6. (Volume rigidity) Let (X, g0) and (X, g1) be two locally CAT(−1) spaces
satisfying Assumptions 6.3, 6.4, and 6.5. Furthermore, suppose g0 and g1 belong to a class
of marked length spectrum rigid metrics. Let Lg0 ≤ Lg1 . Then, Volg0(X) ≤ Volg1(X).
Furthermore, if Volg0 = Volg1 , then (X, g0) and (X, g1) are isometric.

Proof. There exists a π1(X)-equivariant homeomorphism� : (GX̃, g̃0) → (GX̃, g̃1). Let
�∗�g1 be the pullback of �g1 under � so that �∗�g1 is a geodesic current of (X, g0).
(Technically, we are using the homeomorphism induced by� on unoriented, unparameter-
ized geodesics.) By Assumption 6.3(1) and the hypothesis, for any [α] ∈ π1(X),

i(α, �g0) = CαLg0([α]) ≤ CαLg1([α])

= i(α, �g1) = i(�∗α, �∗�g1) = i(α, �∗�g1).

Using the fact that the Liouville current is realized as a limit of counting currents
(Assumption 6.5) and the continuity of i(−, −) at the Liouville current (Assumption 6.4),

i(�g0 , �g0) ≤ i(�g0 , �∗�g1).

Finally, using the symmetry of the intersection form, another application of Assump-
tion 6.5, and Assumption 6.3(2),

KπVolg0 = i(�g0 , �g0) ≤ i(�g0 , �∗�g1) ≤ i(�∗�g1 , �∗�g1) = KπVolg1

and we get the desired volume inequality. Note that the condition on C and K in
Assumption 6.5 is not necessary for this part of the proof.

Now, suppose there is a volume equality: Volg0 = Volg1 . Then, in particular, we have
the following equality:

i(�g0 , �∗�g1) = KπVolg0 . (6.1)

Let g0
t and g1

t be the geodesic flows on (GX, g0) and (GX, g1), respectively. Let
F : (GX, g0) → (GX, g1) be an orbit equivalence of these flows. Then, there exists a
reparameterization map T : (GX, g0)× R → R such that we have

F(g0
t (γ )) = g1

T (γ ,t)(F (γ )).

By the general stability theory (see [KH95, Ch. 19]), the orbit equivalence F (and
consequently T) can be chosen to be Hölder continuous. The key requirements for this
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are the existence of stable and unstable foliations (Theorem 2.10) for the flow, and the
Lipschitz continuity of the geodesic flows (Lemma 2.4).

Since T (γ , s + 1) = T (γ , s)+ T (g0
s (γ ), 1) for any [α] ∈ π1(S) if we denote L :=

Lg0([α]), then ∫ L

0
T (g0

s (α), 1) ds =
∫ L

0
T (α, s + 1)− T (α, s) ds

=
∫ 1

0
T (α, L+ s)− T (α, s) ds

= T (g0
L(α), L)

= T (α, L) = Lg1([α])

= 1
Cα
i(α, �∗�g1).

Therefore, for any [α] ∈ π1(X),

i(α, �∗�g1) = Cα

∫ Lg0 ([α])

0
T (g0

s (α), 1) ds. (6.2)

We now want to interpret the right-hand side of the above equation as an integral over
GX with respect to a geodesic-flow invariant measure. This requires some care.

As before, let ∂(2)∞ X̃ = (∂∞X̃ × ∂∞X̃) \� be the set of distinct, ordered pairs of points
in ∂∞X̃. This set specifies the oriented, unparameterized geodesics in X̃ and there is a
natural 2-to-1 map  : ∂(2)∞ X̃ → G X̃ sending (ξ , η) �→ {ξ , η} mapping to the unoriented,
unparameterized geodesics G X̃. For any measure μ on ∂(2)∞ X̃, the push-forward  ∗μ is
a measure on G X̃ defined by  ∗μ(A) = μ( −1A). If μ is �-invariant, so is  ∗μ, and
hence it is a current.

Let �̃g be the measure on ∂(2)∞ X̃ defined in local coordinates along a geodesic segment
exactly as the Liouville current is. For instance, on a surface, its expression would be
1
2 | sin θ | dθ dx, where θ ∈ [0, 2π ], with a corresponding expressions for a Fuchsian
building or surface amalgam as described in [Wu23] or [CL19] (up to the choice of scale
factor 1

2 ). Note that since this measure is defined on the space of oriented geodesics, the
angular coordinate must run over [0, 2π ] instead of its domain for G X̃, [0, π ].

Since  is 2-to-1,

 ∗�̃g = sin θ dθ dx = 2�g ,

(where now θ ∈ [0, π ]). If α ∈ π1(X), then (again abusing notation a bit) let α be
the measure on ∂(2)∞ X̃ given by the counting measure on oriented lifts of the geodesic
representative of α, with the orientation induced by α—namely oriented from the repelling
to the attracting endpoint of (the correct conjugate of) α for its action on ∂∞X̃. Then,
 ∗α = α, where, on the right-hand side of this expression, α is the counting measure on
unoriented lifts of α. This equation holds because each unoriented lift of α has exactly
one pre-image under  in the support of α as a measure on ∂(2)∞ X̃, namely the same lift
oriented according to the action of (the correct conjugate of) α.
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Under Assumption 6.5, we can take a sequence anαn → �̃g0 in the weak-∗ topology
for measures on ∂(2)∞ X̃ for an ∈ R+, αn ∈ π1(X), and Cαn = 2K . Using the notes of the
previous paragraph,

 ∗(anαn) = anαn →  ∗�̃g0 = 2�g0

in the weak-∗ topology for geodesic currents.
Consider the measure �̃g0 × dt on ∂(2)∞ X̃ × R ∼= GX̃. In [Bon91, (A3)], Bonahon

examines this measure in its local coordinates and shows that it is 1
2λg , where λg is the

Liouville measure. Returning to equation (6.2), using continuity of the intersection pairing
at a Liouville current, the fact that when anαn → �̃g0 , anαn → 2�g0 , and the continuity
of T, we get

2i(�g0 , �∗�g1) = lim
n→∞ Cαnan

∫ Lg0 ([αn])

0
T (g0

s (αn), 1) ds

= 2K lim
n→∞

∫
GX∼=(∂(2)X̃×R)/�

T (g0
t (γ ), 1)d(anαn) dt

= 2K
∫
GX

T (γ , 1) d�̃g0 dt

= 2K
2

∫
GX

T (γ , 1) dλg0 .

Therefore,

i(�g0 , �∗�g1) = K

2

∫
GX

T (γ , 1) dλg0 . (6.3)

Using equations (6.3) and (6.1),∫
GX

(T (γ , 1)− 1) dλg0 = 2
K
i(�g0 , �∗�g1)− 2πVolg0

= 2
K
KπVolg0 − 2πVolg0 = 0. (6.4)

We now use the Main Theorem with A : GX → R defined as A(γ ) := T (γ , 1)− 1.
We first claim that the integral of A along any closed geodesic α is zero. By the Main
Theorem, we have a sub-action V : GX → R that is smooth in the flow direction such that

A(γ ) = m+
(
d

dt

)∣∣∣∣
t=0
V (g0

t (γ ))+H(γ ).

Note that H is a non-negative function. Moreover, by the marked length spectrum

inequality assumption, for any closed geodesic α,
∫ Lg0 ([α])

0 T (g0
s (α), 1)− 1 ds ≥ 0, so

using Sigmund’s theorem [Sig72, Theorem 1], we get that the minimal average m of A is
also non-negative; indeed by equation (6.4), it is 0. Therefore, using the Lie derivative
notation LXV (γ ) := (d/dt)|t=0V (g

0
t (γ )), we have A ≥ LXV . Together with equation

(6.4), this gives

0 ≤
∫
GX

(
A(γ )− LXV (γ )

)
dλg0 =

∫
GX

A(γ ) dλg0 = 0,
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and hence that A(γ ) = LXV (γ ). For any closed geodesic α,∫ �g0 (α)

0
T (g0

t (α), 1)− 1 dt =
∫ �g0 (α)

0
A(g0

t (α)) dt =
∫ �g0 (α)

0
LXV (g

0
t (α)) dt = 0,

as claimed. Now, for any free homotopy class [α] ∈ π1(X),

Lg0([α]) =
∫ �g0 (α)

0
1 dt =

∫ �g0 (α)

0
T (g0

t (α), 1) dt = Lg1([α]).

Finally, by our assumption, marked length spectrum rigidity for the class of metrics
containing (X, gi), g0 and g1 are isometric.
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