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Oscillations of a heated solid surface in an oncoming fluid flow can increase heat transfer
from the solid to the fluid. Previous studies have investigated the resulting heat transfer
enhancement for the case of a circular cylinder undergoing translational or rotational
motions. Another common geometry, the flat plate, has not been studied as thoroughly.
The flat plate sheds larger and stronger vortices that are sensitive to the plate’s direction of
oscillation. To study the effect of these vortices on heat transfer enhancement, we conduct
two-dimensional numerical simulations to compute the heat transfer from a flat plate
with different orientations and oscillation directions in an oncoming flow with Reynolds
number 100. We consider plates with fixed temperature and fixed heat flux, and find large
heat transfer enhancement in both cases. We investigate the effects of the plate orientation
angle and the plate oscillation direction, velocity, amplitude and frequency, and find that
the plate oscillation velocity and direction have the strongest effects on global heat transfer.
The other parameters mainly affect the local heat transfer distributions through shed
vorticity distributions. We also discuss the input power needed for the oscillating-plate
system and the resulting Pareto optimal cases.

Key words: vortex dynamics, vortex interactions, convection

1. Introduction
Many studies have considered how oscillations of a heated solid surface in an oncoming
fluid flow can increase heat transfer from the solid to the fluid. Motions of the boundary
alter the flow patterns from the scale of the viscous boundary layer to the larger scale of the
outer flow. Previous experimental and computational studies have quantified the resulting
heat transfer enhancement for the case of a circular cylinder undergoing translational or
rotational oscillations in a two-dimensional cross-flow (Saxena & Laird 1978; Fu & Tong
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2002; Mittal & Al-Mdallal 2018). Typically, significant local heat transfer improvement is
observed at the rear part of the cylinder due to the vortex wake.

After the circular cylinder, perhaps the next most common geometry is the flat plate.
When a flat plate is held normal to a flow, the flow transitions from steady flow to
von Kármán vortex shedding at a lower Reynolds number (Re) than a circular cylinder
(Thompson et al. 2014), and undergoes a more complex series of wake transitions as Re
increases. The flat plate also sheds stronger and larger vortices into the wake. Unlike the
circular cylinder, the flat plate lacks rotational symmetry and the vortex-shedding patterns
change with the plate’s orientation in the flow. At a moderate Reynolds number of O(100),
different plate orientations may lead to a steady, periodic or non-periodic flow (Taira &
Colonius 2009). Oscillating the plate adds new features to the flow. How these different
flow patterns influence heat transfer is the focus of the present study.

Heat transfer by oscillating thin plates has important applications in the biological
world. Elephants’ ears are thin surfaces that hold large networks of blood vessels, and ear
flapping was speculated to make a large contribution to thermoregulation (Sikes 1971).
Koffi et al. (2014, 2017) studied the enhancement of heat transfer due to oscillations
in computational and experimental models of elephant ears, characterised vortical flow
structures and noted an additional heat transfer enhancement in a flexible model relative
to a rigid one. Bats vary the blood flow to their wings for thermoregulation, and the
constraints of this process affect bats’ survival in cold climates (Reeder & Cowles 1951;
Rubalcaba et al. 2022). Heat transfer may have also played a role in the evolution of insect
wings (Douglas 1981; Kingsolver & Koehl 1985). Heat stress is a major factor in plant
survival and reproductive success (Jagadish, Way & Sharkey 2021). Many studies have
considered the effect of wind-induced oscillations on the cooling of plant leaves, both
with and without water evaporation at the leaf surface (Schuepp 1972; Murphy & Knoerr
1977; Roden & Pearcy 1993; Vogel 2009). In this work we focus on heat transfer under
prescribed oscillations, but there is also a large body of work on heat transfer when the
body motion results from fluid–structure interaction; Mittal & Bhardwaj (2022) reviewed
the application of immersed boundary methods in this area.

A model problem that resembles these biological situations was recently studied by
Rahman & Tafti (2020a). They computed the heat transfer enhancement due to sinusoidal
oscillations of a heated flat plate with a fixed temperature in an oncoming flow using a two-
dimensional (2-D) formulation. The plate was aligned with the oncoming flow direction
and oscillated transversely, with a fixed Reynolds number of 100 based on the oncoming
flow speed. They varied the plate oscillation amplitude and frequency and computed the
Nusselt number averaged over a time interval [T , 2T ], where T ranged from 8 to 16
oscillation periods. They identified the ‘plunge velocity’, i.e. the product of dimensionless
amplitude and frequency of the oscillation, as a key parameter for controlling the average
Nusselt number. The average Nusselt number increased monotonically with the plunge
velocity as it varied from 0.25, close to the limit of no oscillation (a static plate),
to 4, a rapid oscillation. When the oscillation amplitude and frequency were varied
simultaneously while keeping their product (the plunge velocity) fixed, there was a smaller
variation in the average Nusselt number.

In this paper we study the same system and Reynolds number (ReU ) as Rahman &
Tafti (2020a) in two dimensions but we now consider the full range of plate orientations
and oscillation directions relative to the oncoming flow velocity (see figure 1), instead
of just a streamwise orientation and transverse oscillation direction. Also, we consider a
fixed-heat-flux boundary condition in addition to the fixed-plate-temperature condition
considered by Rahman & Tafti (2020a). They focused on the effect of plunge velocity and
did not discuss the details of the flow and temperature fields. By contrast, our work aims
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Figure 1. Schematic of the plate orientation and oscillation direction (angle α) and the background flow
direction (angle γ ).

to relate the heat transfer enhancement to the flow patterns. We still consider the plunge
velocity, now generalised as the ‘oscillation velocity’ (A/|U∞|, defined in equation (2.3)
below) which differs from the plunge velocity by a factor of π . Since the flow is typically
chaotic and difficult to characterise at high oscillation velocities (Rahman & Tafti 2020a),
we study cases with relatively low A/|U∞| (= 0.2 and 0.3) where the flow computation is
more tractable while the heat transfer enhancement is significant. Additionally, we detail
how the parameters, particularly the newly added oncoming flow direction γ and the plate
oscillation direction α, influence the global and local heat transfer. An important result
is that the global and local heat transfer typically improve as we move from in-plane to
transverse oscillations, i.e. as α increases from 0◦ to 90◦. The oncoming flow direction
γ and the oscillatory frequency (assuming fixed oscillation velocity) have noticeable but
generally weaker effects on the global heat transfer. They strongly alter the flows and
spatial distributions of heat transfer quantities, but when taking an average over the plate,
these variations are reduced to a surprising extent.

We also note that, in the present study, the Reynolds number based on the oncoming
flow speed is 100, but the instantaneous Reynolds number based on the relative velocity
between the oscillating plate and the flow can exceed 200 in some cases. Previous studies
showed that the flow behind a plate is intrinsically three-dimensional (3-D) beyond a
certain critical Reynolds number (≈200 behind a normal plate (Najjar & Vanka 1995),
and ≈300 behind an inclined plate (Yang et al. 2012)). Therefore, 3-D effects may begin
at parameters near our values. However, Khaledi et al. (2012) showed that, for a plate
normal to the flow undergoing inline oscillations, the flow remains two-dimensional at
ReU = 100 if the oscillation frequency is sufficiently larger than the natural shedding
frequency of the plate. (Two-dimensional flow was reported at plate-oscillation-to-natural-
shedding-frequency ratios 1.74 and 2.1 for ReU = 100.) In the present study, the lowest
oscillation frequency studied is at least twice the natural shedding frequency. Furthermore,
the body oscillations seem to suppress the transition from two to three dimensions, at least
for circular cylinders (Leontini, Thompson & Hourigan 2007; Lo Jacono et al. 2010).
Therefore, we believe our 2-D formulation at ReU = 100 is a reasonable model.

The structure of the paper is as follows. In § 2 we present the governing equations
and numerical method. Section 3 presents the flow fields and the local heat transfer
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distributions in the benchmark cases of non-oscillating plates. Section 4 shows the effect
of vorticity patterns on global and local heat transfer for oscillating plates with different
orientations and oscillation directions. In § 5 we discuss the input power for this system,
including the power to oscillate the plates and to drive the oncoming flow. Section 6
presents the conclusions.

2. Governing equations and numerical method
We consider a heated zero-thickness flat plate oscillating sinusoidally in a uniform on-
coming flow at angle γ relative to the plane of the plate (see figure 1). The plate oscillates
in a direction with angle α relative to the plane of the plate, different from γ in general.
The problem is formulated in two dimensions. We non-dimensionalise all variables using
the plate length �� as the characteristic length scale and the plate oscillation period 1/ f �

as the characteristic time scale, with f � the plate oscillation frequency. The oscillation
period is a convenient reference time scale for our computations, so that a fixed small time
step is sufficient to resolve the dynamics over a period of oscillation. Then f ��� is the
characteristic velocity scale. We use the fluid density ρ�

f as the characteristic mass density.
We prescribe the plate’s oscillation velocity, Ub(t) = (Ub(t), Vb(t)) as follows:

(Ub, Vb) =
(

U �
b

f ���
,

V �
b

f ���

)
= 2π A sin(2π t)

(
1 − e−(t/t0)2

)
(cos(α), sin(α)) , (2.1)

where the starred variables and parameters are dimensional and the unstarred variables
and parameters are dimensionless. The latter include A, the plate’s oscillation amplitude
(relative to its length). The exponential term makes the simulated flow start smoothly
from rest. We use t0 = 0.2 for all the simulations because it is small enough to make the
exponential term decay quickly but large enough to ensure a smooth start.

The governing equations for an incompressible viscous flow in the (non-inertial) frame
of reference attached to the moving plate are (Li, Sherwin & Bearman 2002; Alben 2021a)

∂u
∂t

+ u · ∇u = −∇ p + 1
Re f

∇2u − dUb

dt
, (2.2a)

∇ · u = 0, (2.2b)

with u(x, y, t) = (u(x, y, t), v(x, y, t)) and p(x, y, t) the flow velocity and pressure,
respectively. Here, Re f is the frequency-based Reynolds number, included in the list of
important dimensionless parameters for this problem

Re f = f ���2

ν�
, U∞ = U�∞

f ���
, ReU = |U�∞|��

ν�
= Re f × |U∞|, A = A�

��
,

A

|U∞| = f � A�

|U�∞| .
(2.3)

Here, U∞ = (U∞, V∞) = (|U∞| cos(γ ), |U∞| sin(γ )) is the steady far-field oncoming
flow velocity and ν� is the kinematic viscosity of the fluid. Besides the frequency-based
Reynolds number Re f , we can also define a Reynolds number based on U∞, which is
ReU in equation (2.3), also given by the product of Re f and |U∞|. In this study, we vary
both Re f and U∞ but fix ReU = 100. The physical interpretation is that the plate length,
fluid viscosity and background flow speed are considered fixed, but the plate oscillation
frequency varies (as do the oscillation amplitude and direction, and the plate orientation).
Another important parameter is A/|U∞|, which we term the ‘oscillation velocity.’ It
is proportional to the ratio between the plate’s oscillation velocity amplitude, 2π f � A�,
and the oncoming flow velocity magnitude, |U�∞|. For transverse oscillation (α = 90◦)
in an in-plane flow (γ = 0◦), the ‘plunge velocity’ (Rahman & Tafti 2020a) (defined
as π f � A�/|U�∞| = π A/|U∞|), or ‘Strouhal number’ (twice the oscillation velocity)
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Figure 2. (a) Schematic of the computational domain. All the parameters shown are dimensionless.
(b) Example of the non-uniform grid near the plate (red). (c) The marker-and-cell grid near the left edge
of the plate. The flow velocity components u and v are solved at the crosses and triangles, respectively, while
the pressure p and temperature T are solved at the circles.

(Triantafyllou et al. 1991, 1993) are often used, particularly in studies of locomotion
and fluid–structure interaction. Because we consider a wide range of oscillation and flow
directions, we use ‘oscillation velocity’ for this class of motions. Rahman & Tafti (2020a)
found that the rate of heat transfer is increased at higher A/|U∞|. However, the flow
also becomes very chaotic at high A/|U∞|. In this study, we mainly study flows with
A/|U∞| = 0.2 and 0.3. At these relatively low A/|U∞| values (compared with the range
studied by Rahman & Tafti (2020a)), the flow is typically tractable and heat transfer
enhancement is significant so that we can obtain insight into how oscillatory motions alter
global and local heat transfer.

The temperature field T (x, y, t) is governed by the unsteady advection-diffusion
equation

∂T

∂t
+ u · ∇T = 1

Re f Pr
∇2T, (2.4)

where Pr = ν�/κ� is the Prandtl number, with κ� the thermal diffusivity. In this study, we
take air as the fluid, with Pr = 0.7. As shown in figure 2(a), the heated plate is positioned
at 0 � x � 1, y = 0. For the temperature boundary conditions on the plate, we consider
two cases

Fixed temperature: T |y=0+ = T |y=0− = 1 for 0 � x � 1. (2.5)

Fixed heat flux: − ∂T

∂y

∣∣∣∣
y=0+

+ ∂T

∂y

∣∣∣∣
y=0−

= 2, T |y=0+ = T |y=0−, for 0 � x � 1.

(2.6)
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In (2.5) the plate temperature is fixed, while in (2.6) the heat flux per unit plate length
is fixed. In the latter case we have also equated the temperatures of the top and bottom
surfaces of the plate, as we assume the plate is a thin conducting material. If instead of
(2.6) we used −∂yT (y = 0+) = ∂yT (y = 0−) = 1, the top and bottom surfaces of the plate
would have different temperatures in general.

We solve equation (2.2) as a fully coupled system for u and p, using essentially the
same method as in Alben (2021a), a second-order finite-difference method on the MAC
(marker-and-cell) grid (Harlow & Welch 1965). A portion of the MAC grid is shown in
figure 2(c). We solve u at the crosses, v at the triangles and p at the circles. The grid
spacing is larger toward the boundary of the computational domain and smaller near the
plate, where the vorticity is large. An example of the grid is shown in figure 2(b). The
details for generating the non-uniform mesh are given in Appendix A. The distances from
the plate to the outer boundary (given by Lx1, Lx2, L y1, L y2 in figure 2(a) and the outer
boundary conditions are chosen differently for each value of γ to limit the influence of the
outer boundary. We use Dirichlet boundary conditions at the inflow sides and Neumann
boundary conditions at the outflow sides. For sides parallel to the mean oncoming flow,
we set the normal velocity to the far-field value, and impose zero shear, to avoid vorticity
generation (Tamaddon-Jahromi, Townsend & Webster 1994; Sen, Mittal & Biswas 2009).
These boundary conditions are listed in table 1. On the plate surface, we apply no-slip
boundary conditions. At t = 0, we assume steady uniform flow with u(x, y, 0) = U∞ (at
points off of the plate), except in one case, α = γ = 90◦, where we use an asymmetric
initial flow described in § 4.2.3. In figure 3 we provide examples of typical vorticity fields,
with γ increasing from the top row to the bottom row, and α increasing from left to right
within each row. The overall orientation of the wake relative to the body is set by γ ;
both γ and α affect the vorticity patterns around the body and particularly within the
wake. A main focus of the current study is the effect of these vorticity patterns on heat
transfer.

After computing the flow velocity u, we solve for the temperature using a second-order
discretisation of (2.4) at the same grid points as p (the centres of the MAC grid cells).
Either (2.5) or (2.6) is applied in one-sided finite-difference formulas for the y-derivatives
in (2.4) on either side of the plate, depending on whether we fix the plate temperature or
the heat flux. As with u, we apply different outer boundary conditions for T depending
on γ , i.e. which sides of the computational domain are the inflow and outflow boundaries.
These are listed in table 1. We apply T = 0 at inflow boundaries and ∂T/∂n = 0 at outflow
boundaries, with ∂/∂n the normal derivative. For sides parallel to the mean oncoming
flow, we switch between Dirichlet and outflow boundary conditions for T depending on
whether the flow is inward or outward at a given time, as shown in table 1. At t = 0 the
temperature is set to zero at all points in the fluid, i.e. T (x, y, 0) = 0. A comparison of
results with different domain and mesh sizes is given in Appendix B. Validations of our
numerical method against previous theoretical and computational results are provided in
Appendix C.

The main heat transfer performance metric in this study is the Nusselt number, the local
heat flux relative to the difference between the plate temperature Tplate and the far-field
fluid temperature T∞, set to zero here (Incropera et al. 2006)

Nu = ∂T/∂y

Tplate − T∞
. (2.7)

A larger rate of heat transfer corresponds to larger Nu. With the fixed-plate-temperature
boundary condition, the denominator of (2.7) is fixed at unity while the numerator varies
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γ = 0◦ γ = 45◦ γ = 90◦

Lx1 8 12 6.5
Lx2 10 14 7.5
L y1 5 12 12
L y2 5 14 14
m 432 420 336
n 240 416 624

Left u = U∞ − Ub, v = −Vb u = U∞ − Ub, u = −Ub,
∂v

∂x
= 0

T = 0 v = V∞ − Vb, T = 0 b1T + b2

(
∂T

∂t
− Ub · ∇T

)
= 0

Bottom
∂u

∂y
= 0, v = −Vb u = U∞ − Ub, u = −Ub, v = V∞ − Vb

a1T + a2

(
∂T

∂t
− Ub · ∇T

)
= 0 v = V∞ − Vb, T = 0 T = 0

Right
∂u

∂x
= 0,

∂v

∂x
= 0

∂u

∂x
= 0,

∂v

∂x
= 0 u = −Ub,

∂v

∂x
= 0

∂T

∂x
= 0

∂T

∂x
= 0 b2T + b1

(
∂T

∂t
− Ub · ∇T

)
= 0

Top
∂u

∂y
= 0, v = −Vb

∂u

∂y
= 0,

∂v

∂y
= 0

∂u

∂y
= 0,

∂v

∂y
= 0

a2T + a1

(
∂T

∂t
− Ub · ∇T

)
= 0

∂T

∂y
= 0

∂T

∂y
= 0

Table 1. The dimensions of the computational domain, the number of grid cells along x and y (denoted m and
n, respectively) and the boundary conditions, with a1 = (1 + sign(−Vb))/2, a2 = (1 − sign(−Vb))/2, b1 =
(1 + sign(−Ub))/2 and b2 = (1 − sign(−Ub))/2.

along the plate. We consider two local and one global Nusselt number in this case

Nutop(x, t) = − ∂T

∂y

∣∣∣∣
y=0+

, Nubot (x, t) = ∂T

∂y

∣∣∣∣
y=0−

,

Nu(t) =
∫ 1

0
− ∂T

∂y

∣∣∣∣
y=0+

+ ∂T

∂y

∣∣∣∣
y=0−

dx . (2.8)

The first two Nusselt numbers are the local heat fluxes from the plate’s top and bottom
surfaces, respectively, while the third is the global Nusselt number, the total heat flux from
both plate surfaces.

With the fixed-heat-flux boundary condition, the numerator of (2.7) summed over both
sides of the plate is fixed at each x while Tplate in the denominator varies with x . In
this case Nu is inversely proportional to Tplate, so lower plate temperature corresponds
to better heat transfer performance. In this case, instead of Nu, we use the plate-
temperature distribution Tplate(x, t), the maximum plate temperature Tmax (t) and the
spatially averaged plate temperature Tavg(t) as performance metrics

Tplate(x, t) = T |y=0, Tmax (t) = max(Tplate), Tavg(t) =
∫ 1

0
Tplate(x, t) dx . (2.9)

In the following sections, we will also examine the time averages of quantities in equations
(2.8) and (2.9), denoted as 〈·〉. In § 4.1 we explain how we choose appropriate time spans
for the time averages.
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Figure 3. Examples of the vorticity fields for different plate orientations and oscillation directions. The rows
from top to bottom have (a) γ = 0◦, (b) 45◦ and (c) 90◦. The red arrow indicates instantaneous plate oscillation
direction given by α. Within each row, α increases in increments of 45◦ moving rightward, starting at 0◦ in the
leftmost panel. All of the examples have Re f = 100, ReU = 100, A = 0.2 and A/|U∞| = 0.2.

3. Non-oscillating plate in steady oncoming flows
In figures 4 and 5, we show results for a non-oscillating plate in steady oncoming flows,
which can be taken as a reference state for investigating how plate oscillations influence
heat transfer. As in the cases with oscillating plates, the Reynolds number of the oncoming
flow is fixed at ReU = 100 for different plate orientations. However, since the plate is not
oscillating, t is non-dimensionalised using ��/|U�∞| instead of 1/ f �.

In figure 4(a) the plate is aligned with the flow (γ = 0◦). We have rapid convergence
to a steady flow with symmetrical boundary layers along both sides of the plate. The
temperature field is also up–down symmetric, and the thickness of the thermal boundary
layer increases toward the trailing edge (the right edge). For the isothermal plate (left sides
of the bottom rows of panel (a)), the local Nusselt number is equal on the top and bottom
surfaces, and larger near the leading edge than the trailing edge. Previous computations
show that the local Nusselt number diverges at both edges (Dennis & Smith 1966; Rahman
& Tafti 2020a). When instead the heat flux from the plate is fixed (right sides of the bottom
rows of panel (a)), the hottest spot is located slightly upstream of the trailing edge.

In figure 4(b), with an oblique oncoming flow relative to the plate (γ = 45◦), we observe
a periodic flow with a von Kármán vortex street wake instead of the steady flow at γ = 0◦.
During one complete period, a negative vortex (in blue) and a positive vortex (in red)
form and shed at the left and right edges of the top wall alternately. Because the flow is
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Figure 4. Heat transfer from a non-oscillating plate in steady oncoming flows angled at γ = 0◦ (panel (a)), and
γ = 45◦ (panel (b)). The time series of Nu, Tmax and Tavg with selected snapshots of the vorticity field and
temperature field (at times marked with pink dots) are shown for each case. In panel (a), the temperature field
snapshots show the isothermal-plate and fixed-flux cases on the left and right, respectively. In panel (b) the
same quantities are shown but with four temperature snapshots, the leftmost two for the isothermal-plate case,
and the rightmost two for the fixed-flux case. At the bottom of each panel, the local Nu and plate temperatures
are shown, steady in panel (a) and averaged over the last four periods in panel (b).

oblique, the negative vortex covers a larger portion of the top wall, shown in the rightmost
vorticity snapshot in panel (b). The rotation of the negative vortex sweeps hot fluid along
the top surface from the right edge toward the left edge, which makes the thermal boundary
layer thicker near the left edge. Therefore, the time-averaged local Nusselt number of
the top wall 〈Nutop〉 (black solid line), which is roughly the inverse of the temperature
boundary layer thickness, has a minimum near the left edge. There are no vortices
adjacent to the bottom wall, and the thermal boundary layer thickness is more uniform
along the bottom wall. The thermal boundary layer is much thinner along the bottom
wall, so 〈Nubot 〉 > 〈Nutop〉. The temperature fields in the case of fixed heat flux from
the plate (two rightmost snapshots) are qualitatively similar to those for the isothermal
plate (two leftmost snapshots). The time-averaged plate temperature 〈Tplate〉 rises sharply
from the left edge to a maximum near the centre, and decreases more gradually on the
right side.

For the vertical oncoming flow (γ = 90◦) in figure 5, the vortex wake instead has
a long transition from a symmetric initial state to the time-periodic alternating-vortex-
shedding state. Initially, there is a pair of recirculation bubbles behind the plate, and the
corresponding temperature field is symmetric about the middle of the plate, as shown in the
first column of the temperature snapshots. The thermal boundary layer thickness is fairly
uniform and thinner along the bottom wall, as before. Small asymmetric perturbations
(from numerical round-off error) grow exponentially during this time and reach O(1)
amplitude at t ≈ 200. During this instability, which has been studied more extensively
for circular cylinders than for flat plates (Thompson et al. 2014), the long recirculation
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Figure 5. Heat transfer from a non-oscillating plate in a steady oncoming flow angled at γ = 90◦. The time
series of Nu, Tmax and Tavg with selected snapshots of the vorticity field and temperature field (at times marked
with pink dots) are shown at the bottom left. The first row of the temperature snapshots is for the isothermal
case and the second row is for the fixed-flux case. The local Nu and plate temperature, averaged over the last
four periods, are shown at the bottom right.

bubbles become wavy and shed vortices, as shown in the second vorticity field snapshot.
However, the corresponding temperature field close to the plate does not change much
from the first stage, as shown in the second column of the temperature snapshots, because
the flow is still fairly symmetric close to the plate. At t ≈ 300, the system reaches a periodic
state, with alternating shedding of positive and negative vortices from the edges, giving
rise to a von Kármán vortex street. The near-wake flow and temperature fields (third and
the fourth columns of the temperature snapshots) are now very asymmetric. The top panel
shows jumps in the global Nusselt number Nu, Tavg and Tmax during the transition at
t ≈ 250. Similarly to the case of γ = 45◦, the vortices behind the plate make the thermal
boundary layer thinner along the top wall, increasing heat transfer, although 〈Nubot 〉 is
still larger than 〈Nutop〉. The plots of 〈Nutop〉, 〈Nubot 〉 and 〈Tplate〉 are symmetric about
the plate centre when γ = 90◦, reflecting the symmetry of the plate with respect to the
oncoming flow. The vortices at the two edges take the same time to develop and have
the same strength. The vortices alternately sweep hot fluid toward the two edges, so the
thermal boundary layer is thinnest in the middle of the plate, where 〈Nutop〉 has a local
maximum and 〈Tplate〉 has a local minimum. Thompson et al. (2014) studied the transient
wake development for elliptical cylinders ranging from a flat plate to a circular cylinder at a
Reynolds number of 150. Using a much larger domain than we use here, they reported not
only the von Kármán street behind the plate but also secondary vortex shedding further
downstream. We believe that the secondary vortex shedding has negligible influence on
heat transfer as the near wake reported by Thompson et al. (2014) is very similar to what
we show in figure 5 and very close to periodic, despite the existence of the secondary
vortex shedding.
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Our discussion so far has shown that the local heat transfer is quite different for
γ = 0◦, 45◦ and 90◦. The time-averaged global heat transfer quantities 〈Nu〉 and 〈Tavg〉
can be inferred from the graphs in figures 4 and 5 at the latest times (in the final
periodic steady state for γ = 90◦, after the symmetry breaking). For the isothermal plate,
γ = 0◦ has the best heat transfer i.e. the largest 〈Nu〉, 13.0, and the smallest 〈Tavg〉, 0.15.
Slightly worse is γ = 90◦, with 〈Nu〉 = 12.6 and 〈Tavg〉 = 0.16. Third best is γ = 45◦ with
〈Nu〉 = 11.0 and 〈Tavg〉 = 0.19. At γ = 45◦, local heat transfer is decreased particularly
at the left edge of the top wall, as shown by 〈Nutop〉 and the temperature snapshots in
figure 4(b). Considering the possibility of device failure above a temperature threshold
(Wen & Yan 2021), it is also important to consider the maximum temperature over space
and time, max(Tmax ). By this measure γ = 90◦ is best with max(Tmax ) = 0.18. The other
cases are close, with max(Tmax ) 0.20 and 0.21 for γ = 0◦ and 45◦, respectively. The
temperature snapshots of figures 4(a) and 4(b) show that the highest temperatures occur
near the trailing edge for γ = 0◦ and near the top left edge for γ = 45◦, where the mean
flow tends to advect hot fluid in each case. By contrast, the alternating vortex shedding for
γ = 90◦ leads to a more uniform temperature distribution, lowering the temperature of the
hottest spots, as shown in the last two columns of the temperature snapshots in figure 5.

4. Vorticity patterns and their effects on heat transfer
Having quantified heat transfer in the baseline non-oscillating-plate cases at the three γ

values, we now examine the same heat transfer quantities with plate oscillation, in the
direction α, at frequency Re f and oscillation velocity A/|U∞|, and at the same three γ

(flow orientation) values.
For γ = 0◦ and 90◦, we consider five α values: 0◦, 30◦, 45◦, 60◦ and 90◦. For γ = 45◦,

we consider eight α values: 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦ and 150◦. (There is no
need to consider α > 90◦ for γ = 0◦ and 90◦ since α = α1 and α = 180◦ − α1 give the same
flows after a reflection.) For each combination of γ and α, we use two values of the plate’s
oscillation velocity A/|U∞|, 0.2 and 0.3, and vary Re f from 50 to 250 in increments of
50. Note that ReU = Re f × A × |U∞|/A by (2.3). At a given A/|U∞| (0.2 or 0.3) and at
fixed ReU (always 100), the product of the oscillatory frequency and amplitude Re f × A
must be constant. Therefore, at each A/|U∞| we vary Re f with the understanding that
simultaneously the amplitude A is varied inversely.

4.1. Global heat transfer
We investigate the global heat transfer using Nu(t), Tavg(t) and Tmax (t) from (2.8) and
(2.9). Although the plate oscillates periodically, these three quantities are not necessarily
time periodic. We use the time series of Nu(t), Tavg(t) and Tmax (t) to classify the types of
periodic and non-periodic dynamics in figure 6. Panels (a) and (b) give the classifications
for A/|U∞| = 0.2 and 0.3, respectively. Each panel is divided into three subpanels, one
each for γ = 0◦, 45◦ and 90◦. Each subpanel classifies the dynamics in the space of α and
Re f as one of four types using circles and squares, with and without crosses.

The first major class corresponds to periodic time series, shown with squares. The
squares are open for period-1 dynamics and filled with crosses for period-1/2 dynamics.
To determine whether a case is periodic, we consider the last four cycles of the plate
oscillation and compute the time average of Nu(t) and Tavg(t) every half-cycle. We
take the standard deviation of the eight values, normalised by 1/4

∫ tend
tend−4 Nu(t) dt and

1/4
∫ tend

tend−4 Tavg(t) dt , respectively, with tend the final time of the simulation. If the
normalised standard deviation is below 0.1 % we label the case 1/2-periodic. If the case
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Figure 6. The four classes of the time series of Nu, Tavg and Tmax . The three panels in (a) and (b) correspond
to γ = 0◦, γ = 45◦ and γ = 90◦, respectively. The open and filled squares denote period-1 and period-1/2 cases,
respectively. The open and filled circles represent almost-periodic and non-periodic cases, respectively, with
periods typically � 1 in the almost-periodic cases. Panels (c)–(h) show examples of the four classes, with the
class label at the upper left. The portion of the curves in red and blue is used to compute the time average.

is not 1/2-periodic, we test for 1-periodicity by splitting the eight values into two groups,
one for the first half-cycle and the other for the second half-cycle. If the average of the
normalised standard deviations of each group is below 0.1 %, we label the case 1-periodic.

Most cases with γ = 0◦ (left sides of panels (a) and (b)) have period 1, i.e. the period of
the plate oscillation. Period 1/2 occurs when the flow is symmetric on the two half-strokes
of the plate, and this is possible only when the two half-strokes are symmetric with respect
to the oncoming flow, i.e. for α = 90◦. Two cases with γ = 0◦, α = 90◦ and A/|U∞| = 0.2
have period 1/2 (filled squares), and the remainder have period 1.

A period-1/2 example is shown in figure 6(c), and we will show the corresponding up–
down symmetry of the vorticity field in § 4.2. Panel (d) shows an example with period 1
but not 1/2. Although the plate motion is up–down symmetric here, the flow is not. For all
the periodic cases, we compute time averages using the last two plate oscillation cycles,
e.g. the intervals marked in red and blue in panels (c) and (d).

The second major class corresponds to non-periodic time series, labelled with circles. In
this class, the aforementioned normalised standard deviations based on the last four cycles
of the plate oscillation are far above 0.1 %. All cases with γ = 45◦ and 90◦, and several
cases with γ = 0◦ at A/|U∞| = 0.3, belong to this class. Within this class, open circles
denote cases that are almost periodic with a period longer than 1. Figures 6(f ) and 6(g)
show examples of these cases. The time series have a component with the frequency of
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the plate oscillation and a much lower-frequency component, corresponding to 11 plate
oscillations in figure 6(f ) and 10 plate oscillations in figure 6(g). The low-frequency
component is caused by the vortex grouping dynamics over several plate oscillation cycles,
at almost the same location each time. We take time averages using at least two of these
longer cycles of vortex grouping, shown in red and blue in panels (f ) and (g).

To quantitatively determine whether a case is almost periodic, we compare the cycle
averages of Nu(t) and Tavg(t) every tlow apart for five consecutive oscillations, with tlow

the tentative number of plate oscillations corresponding to the low-frequency component.
For example, with tlow = 11 in figure 6(f ), the cycle-averaged 〈Nu〉 and 〈Tavg〉 from the
26th to 30th cycle are compared with those from the 15th to 19th cycle, respectively. We
compute the standard deviations of the five pairs and then take the average and normalise
it by 1/tlow

∫ tend
tend−tlow

Nu(t) dt and 1/tlow

∫ tend
tend−tlow

Tavg(t) dt , respectively. If the resulting
value is � 1 %, we label the case ‘almost periodic.’ In figure 6(f ), tlow = 11, and the
resulting two normalised average standard deviations are 0.67 % and 0.56 %, respectively.
In figure 6(g), we have tlow = 10 and the values are 0.26 % and 0.17 %. There are subtle
but noticeable differences between the longer cycles that make these cases non-periodic:
although the vortex configuration near the plate is nearly the same from one long period
to the next, the configuration far from the plate differs. For this reason we chose the 1 %
threshold for the almost-periodic cases, instead of the 0.1 % threshold for the periodic
cases.

The last subclass, shown by circles with crosses, corresponds to a strongly non-periodic
dynamics. In these cases, vortex grouping still occurs over long cycles, but the long cycles
vary in duration, the positions of the groups vary from one long cycle to the next, and
the vortex shedding can be irregular. These cases are more prevalent at A/|U∞| = 0.3
than 0.2, and with α close to 90◦, i.e. with more transverse plate motions. Such cases
correspond to stronger vortices with a more complicated dynamics. Example time series
are shown in figures 6(e) and 6(h). For this subclass we compute time averages over time
intervals that are long enough that further increases give only minor changes, as shown
in Appendix B. The beginnings and ends of the intervals are chosen so that the vorticity
distributions near the plate approximately match.

We can interpret the periodic and almost-period cases by considering the frequency
of vortex shedding due to the plate oscillation together with the natural wake shedding
frequency seen in the steady cases of § 3 at γ = 45◦ and 90◦. At γ = 0◦ there is no natural
wake shedding frequency, so here the dynamics is mostly periodic with the period of the
plate oscillation. At γ = 45◦ and 90◦ there is the additional wake frequency, but many
cases are close to periodic, particularly at A/|U∞| = 0.2. Such cases resemble frequency
locking between the wake and plate oscillation, which has been studied most often for
circular cylinders (Koopmann 1967; Armstrong, Barnes & Grant 1986; Williamson &
Roshko 1988; Chen & Fang 1998). In these studies, lock-in was observed when the body
was forced at a period within approximately 20 % of the natural wake period. Locking
of the flow to a multiple of the period of the oscillating body was found in experiments
by Bishop & Hassan (1964) and in computations of an oscillating ellipse that is free to
translate horizontally (Alben 2008).

Although it might be conjectured that the four classes correspond to completely different
heat transfer performances, we do not see a direct mechanism by which one class performs
better than the other consistently. In particular, as we will show next, it is not uncommon
for different classes to have similar global heat transfer. Thus the classification only
indicates the regularity of the vortex dynamics. In the following discussion, we can see
that, compared with the regularity of the vortex dynamics, the strength of the shed vorticity
is more correlated with heat transfer.
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Figure 7. (a) The time-averaged global Nusselt number, 〈Nu〉, for the isothermal plate, (b) the time-averaged
plate temperature, 〈Tavg〉 and (c) the maximum plate temperature, max(Tmax ), when the heat flux from the
plate is fixed. The first and second rows in each panel correspond to A/|U∞| = 0.2 and 0.3, respectively. The
dashed line in each panel gives the values for the non-oscillating plate. The panels in the same row share the
same y axis for ease of comparison.

Having classified the types of dynamics over the full parameter space in figures 6(a)
and 6(b), we plot the key global measures of heat transfer in the same parameter space
in figure 7. Panels (a) and (b) show the time- and space-averaged Nusselt number 〈Nu〉
and plate temperature 〈Tavg〉 in the fixed-temperature and fixed-flux cases respectively.
In the latter case, panel (c) shows the maximum plate temperature over space and time,
max(Tmax ). Instead of 2-D plots in the (Re f , α) space of figure 6, figure 7 plots each
quantity versus Re f with a separate line for each α, so that we can compare the values of
the quantities clearly by referring to the vertical axes.

Comparing figures 7(a) and 7(b) we see that 〈Nu〉 and 〈Tavg〉 are generally
anticorrelated as Re f and α vary, i.e. the two quantities give the same ordering of
parameters in terms of optimality for heat transfer. Here, max(Tmax ) is generally consistent
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with this ordering but shows more deviations, because it is more sensitive to the details of
the velocity and temperature field evolution near the particular instant when the maximum
temperature occurs.

Now we discuss the effect of each of the four key parameters – A/|U∞|, α, γ and Re f –
on global (time- and space-averaged) heat transfer, and the role of the vortex dynamics.
Since the heat transfer enhancement is realised through oscillation-induced vortices, we
expect a positive correlation between the vorticity strength near the plate and the global
heat transfer. In Appendix D, we show the time-averaged vorticity strength, defined as the
integral of the absolute value of the vorticity within a box around the plate, as A/|U∞|,
α, γ and Re f vary. It is confirmed that the vorticity strength is strongly correlated with
global heat transfer as the parameters vary. In the next subsection, we will present detailed
descriptions of the vorticity distributions across space and time, and the corresponding
local distributions of heat transfer quantities that underlie the global patterns.

Consistent with Rahman & Tafti (2020a), we find A/|U∞| = 0.3 (bottom rows of each
panel) gives better global heat transfer—larger 〈Nu〉 and smaller 〈Tavg〉—than 0.2 (top
rows), if the other parameters are the same. The extent of the improvement varies with α,
γ and Re f . Larger A/|U∞| means larger plate velocity and stronger vorticity generation
(as shown in figure 25 in Appendix D), which tend to bring colder fluid close to the plate.

By comparing different coloured lines within each panel we see the effect of varying
the plate oscillation direction α. At γ = 45◦ and 90◦, the three metrics vary by a factor of
1.5–2 as α is varied, with smaller variation at γ = 0◦. In most cases α has a stronger effect
than A/|U∞| with other parameters fixed. Transverse oscillation (α = 90◦) generally gives
the best heat transfer (highest 〈Nu〉 and lowest 〈Tavg〉) and in-plane oscillation (α = 0◦) is
generally worst, except for a few cases at low Re f . The lowest max(Tmax ) generally occurs
at α = 90◦ also, or at nearby values (60◦ or 120◦).

These dependences on α and other, more subtle, effects are connected to the vortex
dynamics. First, the plate generates stronger vortices when α is closer to 90◦ (i.e. the
oscillation is more transverse than in plane). (In Appendix D, we show that the vorticity
strength increases as α approaches 90◦.) This generally enhances local heat transfer in the
wake, as discussed in § 4.2. Some exceptions are seen, e.g. in panel (b), the fixed-heat-flux
cases, in the top left subpanel (γ = 0◦ and A/|U∞| = 0.2). Here, α = 30◦ and 45◦ have
higher 〈Tavg〉 than α = 0◦, while max(Tmax ) is more monotonic with α. The vorticity fields
at α = 30◦ and 45◦ create a more uniform thermal boundary layer with a lower maximum
temperature but a higher average temperature than α = 0◦.

At γ = 45◦, α spans the range [0◦, 180◦), unlike γ = 0◦ and 90◦ which have the
(α ↔ 180◦ − α) symmetry. For γ = 45◦, the eight α values form five groups in order of
proximity to 90◦: 90◦, 60◦/120◦, 45◦/135◦, 30◦/150◦ and 0◦. We have already mentioned
that heat transfer increases with proximity to 90◦, but there is an additional variation within
the three pairs. The plate oscillation is more in plane with the oncoming flow for the first
member of each pair (α < 90◦) and more transverse for the second (α > 90◦), e.g. α = 45
versus 135◦ with γ = 45◦ in figure 1. Comparing the graphs for each pair in figure 7, we
usually have better global heat transfer for in-plane oscillation, but the difference becomes
smaller as Re f or A/|U∞| increases. For example, 〈Nu〉 is larger and 〈Tavg〉 is smaller
with α = 60◦ than α = 120◦ at γ = 45◦ and A/|U∞| = 0.2 (top centre subpanels of (a) and
(b)), and the difference between the two becomes smaller at higher Re f , and is almost non-
existent at A/|U∞| = 0.3 (bottom centre subpanels of (a) and (b)). A short explanation
for this phenomenon is that oscillating along the flow (α < 90◦) generates stronger vortices
than oscillating across the flow (α > 90◦), as shown by figure 25 in Appendix D. In the
next section we will discuss the differences between the vortex dynamics that underlie
these results.
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The plate orientation γ generally has a weaker effect on heat transfer than α and
A/|U∞|, particularly when we focus on the variations with γ when α = 90◦ in figure 7 (the
green curves), usually the best α for heat transfer. At A/|U∞| = 0.2 (top rows), 〈Nu〉 is
lowest at γ = 0◦, where the flow is periodic with period 1 and has an attached vortex group
near the leading edge of the bottom wall that decreases local heat transfer. By contrast, the
flows for γ = 45◦ and 90◦ are non-periodic, with alternating formations of vortex groups
at both edges of the plate’s top wall over many plate oscillation cycles, which improves
the local (and global) heat transfer. We will give examples in § 4.2.

At A/|U∞| = 0.3, by contrast, the maximum 〈Nu〉 and minimum 〈Tavg〉 are
approximately the same for all three γ values, as shown in the bottom rows of each
subpanel. All of these cases are non-periodic and involve long-lasting groups of strong
vortices at the plate edges. Here, different γ yield different vortex group positions that
enhance heat transfer in different locations, but the global heat transfer performance is
similar, as we will show in § 4.2.

Surprisingly, the global heat transfer quantities do not vary much with Re f in most cases
i.e. most curves in figure 7 are nearly flat, particularly at Re f above 100. Recall from the
beginning of § 4 that we vary Re f by keeping the oscillation velocity A/|U∞| fixed, so for
each graph in figure 7, increasing the frequency Re f decreases the amplitude A such that
the product is fixed. (Also, as shown in figure 25 in Appendix D, vorticity strength does
not vary strongly with Re f in most cases.) As we will see in § 4.2, the vortex dynamics
and the resulting local heat transfer do not vary much as Re f increases. An exception is
γ = 0◦ and α = 90◦ (green curves). In the leftmost subpanels, the green curves jump when
Re f increases from 100 to 150, showing improved heat transfer. These jumps correspond
to flow transitions: the transition from period-1/2 to period-1 dynamics at A/|U∞| = 0.2
due to symmetry breaking, and the transition from period-1 to non-periodic dynamics at
A/|U∞| = 0.3. With each transition, stronger vortices are generated by means of vortex
grouping (see figure 25 in Appendix D), and local and global heat transfer are enhanced,
as described in § 4.2. At other parameters (e.g. γ = 45◦ and 90◦), the curves also jump
between Re f = 50 and 100. These changes also correspond to transitions in the vortex
dynamics. In particular, vortex grouping is enhanced as Re f increases from 50 to 100 so
that stronger vortices are trapped near the plate, increasing local and global heat transfer
at Re f = 100. In Appendix D, we compare the vortex dynamics between Re f = 50 and
100 with γ = 45◦ and 90◦ in figure 26 and 27, respectively, to illustrate this point.

4.2. Local heat transfer
In the previous section we summarised the general trends of the vorticity dynamics and
heat transfer in terms of time- and space-averaged (global) quantities. Now we show the
vorticity and temperature fields and the heat flux and temperature distributions on the plate
that explain these trends, in the space of the four key parameters: A/|U∞|, α, γ and Re f .
Since the temperature fields are similar for the isothermal and fixed-heat-flux plates (also
seen in figures 4(a), 4(b) and 5), we only show the temperature fields for the isothermal
plate in this section.

4.2.1. In-plane oncoming flow: γ = 0◦
We start with in-plane plate oscillation (α = 0◦) in an in-plane oncoming flow (γ = 0◦).
These are the only cases without significant vortex shedding and thus have the smallest
change in heat transfer due to plate motion.

The top panels of figures 8(a) and 8(b) show the vorticity and temperatures fields for
A/|U∞| = 0.2 and A/|U∞| = 0.3, respectively, at the instants of maximum rightward and
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Figure 8. Flows and heat transfer for in-plane plate oscillation (α = 0◦) in an in-plane oncoming flow (γ = 0◦).
Panels (a) and (b) show vorticity and temperature fields (in the first two rows) at Re f = 100, the time-
averaged local Nu with fixed plate temperature (red lines in the third row) and the time-averaged plate
temperature with fixed heat flux (red lines in the fourth row). The red arrows in the vorticity snapshots
indicate the instantaneous plate velocity direction. The motion in panel (b) is shown in the supplementary
movie 1, accessible https://doi.org/10.1017/jfm.2025.10201. Panel (c) shows time-averaged global heat transfer
quantities. In each panel the black dashed lines are the non-oscillating-plate results.

leftward velocity, shown by the red arrows. The attached shear layers and vortex wakes are
slightly different from those without plate motion (figure 4a), but still up–down symmetric.
When the plate moves to the right (top row), the thermal boundary layer is more uniform
than for the steady plate, and heat flux is reduced near the leading edge. When the plate
moves to the left (second row), the larger velocity difference with the oncoming flow re-
duces the thermal boundary thickness near the leading edge, increasing the heat flux there.

The third and fourth rows of panels (a) and (b) show that the time-averaged quantities
〈Nu〉 and 〈Tplate〉 (red lines) are slightly worse near the leading edge and slightly better
near the trailing edge than the steady case (black dashed lines), and the difference
diminishes as Re f increases. Here, Nu denotes Nutop and Nubot , equal by symmetry. As
Re f increases, the vorticity fields and 〈Nu〉 (panel (c)) are closer to the steady values.
The lower two subpanels of (c) show that, interestingly, 〈Tavg〉 and max(Tmax ) have
opposite trends with Re f , so smaller, higher-frequency oscillations mitigate the maximum
temperature better, although the overall differences are small for both quantities.

Next, we discuss oblique plate oscillation (α = 30◦, 45◦ and 60◦) in an in-plane
oncoming flow (γ = 0◦), with the results shown in figure 9. As shown in figure 6, unlike
γ = 45◦ and 90◦, these flows are time periodic at both A/|U∞| values and all Re f
values, except for a single case (α = 60◦, Re f = 50 and A/|U∞| = 0.3) that is deferred
to figure 10. The vortex dynamics and temperature fields of the cases in figure 9 have a
common form. Panels (a) and (b) show two examples with α = 45◦, at a lower Re f (100)
and a higher Re f (200), respectively. In both cases, negative (blue) vortices shed from the
left edge merge into a group that stays attached to the top of the left edge. We also observe
that positive vortices (red) form at the bottom of the left edge when the plate moves upward
(the first snapshot of the vorticity field). Meanwhile a series of dipoles sheds from the right
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Figure 9. Flows and heat transfer for oblique plate oscillation (α = 30◦, 45◦ and 60◦) in an in-plane oncoming
flow (γ = 0◦). Panels (a) and (b) show snapshots of the vorticity and temperature field at α = 45◦ and γ = 0◦.
The motion in panel (b) is shown in the supplementary movie 2, accessible here. The red arrows in the vorticity
snapshots show the instantaneous plate velocity direction. Panels (c) and (d) show the time-averaged local
Nu and plate-temperature distributions versus x (the horizontal axis) when the plate temperature or heat flux
is fixed, respectively. The graphs are arranged in three columns, one for each α, and five rows, one for each
Re f from 50 to 250, increasing downward. Pairs of subpanels are shown in each column, corresponding to
A/|U∞| = 0.2 and 0.3 on the left and right, respectively. Panel (e) shows the global heat transfer quantities; here
〈Nu〉 and 〈Tavg〉 are the spatial averages of the graphs in panels (c) and (d) (and summing the top and bottom
values of 〈Nu〉 for 〈Nu〉). In all cases the black dashed lines show the results for the non-oscillating plate.

edge and advects downstream. At the lower Re f in panel (a), the vortical structures are
larger than in panel (b) because they have more time to grow.

These common patterns of the vortex dynamics lead to similar local heat transfer
distributions. Local heat transfer is typically enhanced near the right edge but reduced
near the left edge. Specifically, panel (c) shows the local Nu distributions, which vary
along x , the horizontal axis, and are time averaged. All the subpanels share the same y
axis, and the local Nu of the non-oscillating plate (black dashed lines) is provided as
a reference. The blue curves showing 〈Nutop〉 are lower than the non-oscillating-plate
curves (black dashed lines) near the left edge but higher on the rest of the wall. Meanwhile
the red curves showing 〈Nubot 〉 are increased from the non-oscillating case on the right
sides and less changed on the left sides. For the fixed-heat-flux plate, panel (d) shows that
〈Tplate〉 is higher than the steady values on the left sides and lower and more uniform on
the right sides. These changes in local heat transfer are caused by the combined effects of
the vortices (or vortex groups) formed at the left edge and the vortex shedding at the right
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Figure 10. The non-periodic case with γ = 0◦, α = 60◦, Re f = 50 and A/|U |∞ = 0.3. The three snapshots of
the vorticity and temperature field correspond to times marked with red dots on the graphs of Nu and 〈Tmax 〉.
The red arrows in the vorticity snapshots show the instantaneous direction of plate motion. The right three
panels show the cycle-averaged 〈Nu〉 of the top and bottom walls for the isothermal plate, and the cycle-
averaged 〈Tplate〉 with fixed heat flux. The first 5 cycles are omitted to avoid transient effects. The black
dashed line shows the results for the non-oscillating plate. This motion is shown in the supplementary movie 3,
accessible here.

edge. On one hand, the rotation of the negative vortex group advects hot fluid leftward
along the top wall from the middle of the plate (or sometimes from the right edge if the
vortex (group) is large enough), making the thermal boundary layer thicker than that of
the non-oscillating plate near the left edge but thinner along the rest of the top wall. The
positive vortex at the bottom of the left edge has a similar effect. However, since this
vortex is smaller and weaker, the reduction of 〈Nubot 〉 near the left edge is less significant
than 〈Nutop〉. On the other hand, the dipoles shed from the right edge also enhance heat
transfer near the right edge because they disrupt the layer of hot fluid that forms there in
the non-oscillating-plate case.

The effect of Re f is more subtle but still noticeable. The dips at the left side of
the blue 〈Nutop〉 curves in panel (c) become more concentrated as Re f increases
(moving downward), because the shed vortices are smaller in this high-frequency–low-
amplitude regime. Meanwhile, the improvements in 〈Nutop〉 and 〈Nubot 〉 on the right
sides become smaller. These effects are strongest at α = 30◦ (left column of panel (c)),
still significant at α = 45◦ (middle column) and less noticeable at α = 60◦ (right column),
particularly at A/|U∞| = 0.3 (right side of right column). In this case, higher A/|U∞|
and more transverse oscillations make the vortices strong enough even at large Re f (small
amplitude) to give strong heat transfer enhancement on the right side. Panel (d) shows
the effects of Re f on 〈Tplate〉 in the fixed-heat-flux case. The results are similar to those
in panel (c), with increases and decreases in 〈Tplate〉 relative to the steady case in panel
(d) occurring where there are relative decreases and increases in 〈Nutop〉 in panel (c).
With stronger vortices, the location of the largest 〈Tplate〉 shifts farther from the non-
oscillating-plate location at the right side towards the left side, due to advection of cold
fluid by the vortex group near the left edge as well as the dipoles shed at the right edge.
Despite these common characteristics of the variation of local heat transfer with Re f , the
global heat transfer quantities (panel (e)) do not display a uniform trend as Re f increases
(monotonic variation is only seen in some cases), indicating a complicated relationship
between oscillation frequency and heat transfer.
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The net effect, shown in 〈Nu〉 in panel (e), is a maximum increase of 1 %–11 % at
A/|U∞| = 0.2 and 23 %–35% at A/|U∞| = 0.3 as α ranges from 30 to 60◦. For the fixed-
heat-flux plate, the net result, 〈Tavg〉 in panel (e), ranges from worse to slightly better than
the steady plate as α ranges from 30 to 60◦ at A/|U∞| = 0.2. There is always improvement
at A/|U∞| = 0.3, however, up to 11 %–19 % decreases in average temperature in the best
cases over this α range. Panel (e) shows generally larger improvements in max(Tmax ). The
improvements are larger at larger α because stronger vorticity is shed when the oscillation
is more transverse (closer to 90◦) than in-plane (0◦, where essentially no shedding occurs).
Improvements are also larger at the larger A/|U∞|, where stronger vorticity is shed.

A single case was omitted in figures 9(c) and 9(d), in the upper right corners where blank
spaces appear. This is the only non-periodic case in that parameter range, as can also be
seen in figure 6(b) where, at γ = 0◦, α = 60◦ and Re f = 50, it is marked with a filled
circle rather than the open square of the other cases from figure 9, which have period 1.
Figure 6 shows that non-periodicity is most common with γ = 45◦ and 90◦, but among
those cases, the dynamics is farther from periodic with α close to 90◦ and A/|U∞| = 0.3.
For the case omitted from figure 9(c) and (d), γ = 0◦ like the periodic cases discussed
so far, but α = 60◦ and A/|U∞| = 0.3, values associated with stronger shed vorticity and
non-periodicity. This case is shown in figure 10, in a format we use for other non-periodic
cases shown subsequently.

The vortex dynamics has similarities to the period-1 cases shown in figure 9. However,
the formation and shedding of vortices vary from one cycle to the next in an irregular
fashion. The first and third vorticity snapshots of figure 10, one oscillation period apart,
have some similarities but differences strong enough to give large differences in Nu, Tavg ,
and Tmax , corresponding to the first and third red dots on the graphs. Instead of long-time
averages of their spatial distributions, as shown previously, in the three rightmost panels
we show ensembles of distributions averaged over single oscillation cycles, from the 6th
to the 30th cycles. The variations among the cycles are noticeable but not large compared
with the mean (not shown). The distributions are close to those next to the omitted panels
in figure 9. Like those cases, large negative vortex groups at the left edge and vortex
shedding at the right edge increase 〈Nutop〉 and 〈Nubot 〉 near the right edge, and 〈Tplate〉
is maximum near the left edge.

For γ = 0◦ we have discussed α = 0◦, 30◦, 45◦ and 60◦. The last α, 90◦, was previously
studied for heat transfer (Rahman & Tafti 2020a) and is the most commonly studied case
for propulsion (Alben 2021a). At A/|U∞| = 0.2, the dynamics transitions from up–down
symmetric with period 1/2 to asymmetric with period 1 as Re f increases above 100.
Figures 11(a) and 11(b) show the vorticity and temperature fields before and after the
transition, respectively. Panel (c) shows that the local heat transfer quantities improve
after the transition, moving from the red to the blue lines. The improvement is mainly
on the left side. This corresponds to enlarged positive vorticity (through merging with
the positive vortex of the previous cycle) and shrunken negative vorticity regions below
and above the left edge, respectively, in panel (b). Panel (c) shows that the heat transfer
is enhanced on both sides of the plate, with a smaller but broader region of enhancement
on the bottom. Near the right edge, similar reverse von Kármán vortex streets form and
give similar distributions of heat transfer quantities. Overall, 〈Nu〉 increases by 11 % and
(in the fixed-flux case) 〈Tavg〉 and max(Tmax ) decrease by 11 % and 15 %, respectively,
moving from Re f = 100 to 200.

At A/|U∞| = 0.3, the dynamics instead transitions from periodic to non-periodic as
Re f increases, again with significant improvement of the global heat transfer after the
transition. Panel (d) shows examples of the vorticity and temperature fields at Re f = 200,
after the transition. Here, vortex grouping occurs in an irregular fashion, and the graphs
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Figure 11. Flows and heat transfer for transverse plate oscillation (α = 90◦) in an in-plane oncoming flow (γ =
0◦). (a) The case with period Tc = 1/2 at Re f = 100 and A = 0.2, also shown in the supplementary movie 4,
accessible here. (b) The case with period Tc = 1 at Re f = 200 and A = 0.1, also shown in the supplementary
movie 5, accessible here. (c) Comparison of time-averaged local Nu and plate temperature for (a) and (b). (d)
The non-periodic case at Re f = 200 and A = 0.15. The three snapshots at the bottom left occur during the
26th, 56th and 84th cycles of oscillation, respectively, and the corresponding cycle-averaged local heat transfer
quantities are shown with dash-dotted curves blue, green and orange curves, respectively, in the three rightmost
subpanels. This motion is shown in the supplementary movie 6, accessible here. The red arrows in the vorticity
snapshots show the instantaneous direction of plate motion. In all cases the black dashed lines show the results
for the non-oscillating plate.

of Nu, Tavg and Tmax are not close to periodic. We observe three different stages in the
vortex dynamics and show one snapshot from each stage. The first snapshot somewhat
resembles those in panel (b), with a grouping of positive vortices near the left edge of the
bottom wall and a reverse von Kármán vortex street emanating from the right edge. At this
instant, blue dashed-dotted lines show the cycle-averaged local heat transfer quantities in
the three subpanels on the right side of panel (d). We see some similarities with the blue
lines in panel (c). The second snapshot shows the second stage, when the large positive
vortex group detaches from the left edge. It continues absorbing positive vortices from the
left edge, but is more diffuse than in the previous stage. The local heat transfer quantities
for this snapshot are shown by the green dashed-dotted lines in the rightmost subpanels,
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and are somewhat worse at the middle and left side of the plate than the blue dashed-
dotted lines of the first stage. At the right edge the vortex street is more strongly paired
as dipoles, and 〈Nubot 〉 is improved. The third snapshot approximates a mirror image of
the first snapshot, with a region of negative vorticity above the left edge and an array of
dipoles shed from the right edge, directed downward. The local heat transfer quantities
are shown by the orange dashed-dotted line in the rightmost subpanels. The values of
〈Nutop〉 and 〈Nubot 〉 for this snapshot are approximately 〈Nubot 〉 and 〈Nutop〉 for the
first snapshot (blue dashed-dotted lines), while the 〈Tplate〉 distributions are approximately
equal, consistent with a mirror-image symmetry of the flows and temperature fields. In
these cases and in figures 9 and 10, 〈Nu〉 has a local minimum near the leading edge on
the side facing the large region of merged vortices, and is larger (relative to the steady case,
the black dashed line) near the trailing edge. On the other side of the plate, 〈Nu〉 is instead
larger near the leading edge and smaller near the trailing edge. In figure 11(d) and in other
non-periodic cases discussed next, vortices merge near one edge into a large cloud over
many cycles, then the cloud detaches, and then vortex merging occurs at the other edge.
The switching between the edges occurs at somewhat irregular intervals. During these
changes in the local heat transfer distribution, the global (spatially averaged) heat transfer
does not change much; increases in heat transfer in one region are balanced by decreases in
other regions. At lower Re f , 50 and 100, the dynamics is periodic and similar to panel (b).
In these two cases 〈Nu〉 values are 28 % and 20 % lower than the non-periodic Re f = 200
case, while 〈Tavg〉 values are 37 % and 22 % higher than at Re f = 200, respectively. The
merged vorticity near the leading edge is stronger in the non-periodic case than in the
periodic case, and hence more capable of bringing cold fluid towards the plate.

4.2.2. Oblique oncoming flow: γ = 45◦
The previous section considered the case of the background flow along the plane of the
plate, γ = 0◦. We now consider heat transfer in the same system with γ increased to 45◦,
an oblique background flow. For any γ significantly different from 0◦, the wake oscillates
periodically (for a range of ReU near the present value of 100) even for a steady plate, as
shown in § 3. When we oscillate the plate also but at a different period, the dynamics can be
almost periodic on a longer time scale (i.e. the flow period locks to a multiple of the plate
period) or clearly non-periodic, as indicated by the open and filled circles respectively in
figure 6 for γ = 45◦ and 90◦. Almost-periodic cases are the most common at A/|U∞| =
0.2, while non-periodic cases are approximately equally common at A/|U∞| = 0.3, and
more common with transverse oscillation, when the shed vorticity is stronger. In almost-
periodic cases, vortex merging occurs over the same number of plate oscillation cycles and
at the same location each time. In non-periodic cases, the locations and dynamics of vortex
merging are somewhat irregular. In general, the almost-periodic and non-periodic cases are
distinguished by the regularity of the vortex dynamics, but not heat transfer performance.
Generally, we see larger heat transfer with stronger vortices, which are also associated
with non-periodic flows. But we do not see a direct mechanism by which non-periodicity
increases heat transfer relative to almost-periodic flows with vortices of roughly the same
strength. If we compare almost-periodic and non-periodic cases with the same A/|U∞|
(i.e. the same oscillation velocity), for example, γ = 45◦ and α = 120◦ at A/|U∞| = 0.3
in figures 6 and 7, we see similar global heat transfer for the open and filled circles.

In figure 12, we show the cases with the best global heat transfer (〈Nu〉) when γ = 45◦,
for A/|U∞| = 0.2 (panel (a)) and 0.3 (panel (b)). Both occur with transverse oscillation
(α = 90◦), which is also optimal at γ = 0◦ and 90◦. Both optima occur at an intermediate
Re f of 150, but other Re f give similar 〈Nu〉 and 〈Tavg〉. As indicated by the time series of
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Figure 12. The cases that optimise global heat transfer (〈Nu〉 and 〈Tavg〉) at γ = 45◦ for A/|U∞| = 0.2
(a) and 0.3 (b). The supplementary movies for panel (a) and (b) are named ‘movie 7’ and ‘movie 8’,
respectively, and can be found here. In each panel, the four snapshots of the vorticity and temperature field
correspond to times marked with red dots on the graphs of Nu and 〈Tmax 〉, with the red arrows indicating the
instantaneous direction of plate motion. The bottom three panels show the cycle-averaged 〈Nu〉 of the top and
bottom walls for the isothermal plate, and the cycle-averaged 〈Tplate〉 with fixed heat flux. The first 5 cycles are
omitted to avoid transient effects. The black dashed line shows the time-averaged results for the non-oscillating
plate in the final periodic state for γ = 45◦.

1013 A47-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
20

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10201
https://doi.org/10.1017/jfm.2025.10201
https://doi.org/10.1017/jfm.2025.10201
https://doi.org/10.1017/jfm.2025.10201


X. Wang and S. Alben

the global quantities in the first row of each panel, panel (a) is nearly periodic with a period
of 17 plate oscillation cycles, while panel (b) is non-periodic. In both cases a dipole sheds
alternately from the left and right edge every half-cycle; the stronger vortex of the dipole
pair merges with the cloud of previously shed vortices of the same sign and the weaker
vortex diffuses. Over many cycles, negative vortices group at the left edge, detach and then
positive vortices group at the right edge, detach and the process repeats. (Supplementary
movies of these cases, named ‘movie 7’ and ‘movie 8’, can be found here.) During this
time, the graphs of the global quantities Nu, Tavg and Tmax show oscillations on the time
scale of the plate oscillation and on much longer time scales. At the bottom of each panel,
the graphs of the local quantities 〈Nutop〉, 〈Nubot 〉 and 〈Tplate〉 also oscillate, between
distributions with maxima on the left and right alternately for the first and third quantities.
These oscillations are correlated with the vortex dynamics shown in the snapshots in the
middle of each panel.

In the first vorticity snapshot of panel (a), a region of negative merged vortices lies
above the left edge, which makes 〈Nutop〉 low on the left and high on the right and gives a
maximum of 〈Tplate〉 near the left edge. The top subpanel shows Nu is generally increasing
at this time. In the second vorticity snapshot, a positive vortex group forms and repels the
negative vortex group. The maximum of 〈Nutop〉 shifts from the right towards the left. The
second red dot on the Nu time series above shows that the global heat transfer reaches a
maximum at this time. In the third snapshot, the positive vortex group detaches, while
Nu decreases, reaching a minimum at the time of the fourth snapshot, when the negative
vortex group begins to grow again. The graphs of Tavg and Tmax below show nearly the
inverse behaviour for the fixed-flux case, as expected. During this entire cycle 〈Nubot 〉,
which is less influenced by the vortex wake dynamics, has much smaller oscillations about
a mean distribution slightly above that of the steady case (black dashed line).

A few differences are seen in panel (b) (A/|U∞| = 0.3). The vortex groups form over
more oscillation cycles than at A/|U∞| = 0.2. In the first snapshot of panel (b), the
negative vortex group is more diffuse than in panel (a), with a longer chain of dipoles
emanating from the right edge. Meanwhile, the global heat transfer quantities (Nu, Tavg
and Tmax ) are nearly steady. In the second snapshot, the positive vortices from the right
edge have formed a loose group that repels the negative vortex group, and Nu drops to a
local minimum. In the third snapshot the positive vortices have formed a more compact
group attached to the right edge of the plate, during a long period of increase of Nu.
In the fourth snapshot, the positive vortex group has detached, the negative vortex group
is reforming and Nu drops to another local minimum. Meanwhile 〈Nutop〉, 〈Nubot 〉 and
〈Tplate〉 at the bottom oscillate between distributions similar to those in panel (a), but more
erratically and with larger oscillation amplitudes.

Figure 13 shows vorticity field snapshots and local heat transfer quantities for oblique
flow (γ = 45◦) and the remaining seven plate oscillation directions, i.e. α 
= 90◦. We only
discuss A/|U∞| = 0.2 because the phenomena are generally similar at A/|U∞| = 0.3. In
figure 13, we show the variations in vorticity and local heat transfer distributions with a
simplified presentation. In each row, two cases are positioned side by side and compared.
Two representative snapshots of the vorticity field are selected for each case to indicate the
motions of the vortices. We also provide supplementary movies of each case (at the link
in the figure caption). The three subpanels to the right of each pair of vorticity fields show
the cycle-averaged local quantities. We have removed the axis labels to make the figure
compact, but all the subpanels for the cycle-averaged local Nu and plate temperature share
the same y axes, respectively, and the non-oscillating-plate values (the black dashed curve)
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Figure 13. Vorticity fields and cycle-averaged local heat transfer quantities for an oscillating plate in an oblique
flow (γ = 45◦) with A/|U∞| = 0.2 and α 
= 90◦, i.e. oscillation directions other than transverse. The red arrow
in each vorticity panel indicates the instantaneous plate velocity direction. Supplementary movies are available
at this link for the left case of panel (a) (‘movie 9’), the two cases in panel (b) (‘movie 10’ and ‘movie 11’) and
the two cases in panel (c) (‘movie 12’ and ‘movie 13’).

can be taken as a reference. (Besides the cycle-averaged local quantities, we also show the
long-time-averaged local Nu in figure 28 in Appendix E.)

The top row (panel (a)) shows in-plane oscillation (α = 0◦), for which the largest heat
transfer enhancement occurs at Re f = 50 (shown on the left side), and mainly on the top
side of the plate near the left edge. As Re f increases and the amplitude decreases, the
enhancement drops. The flow and local heat transfer quantities converge to those of the
steady plate, as shown on the right side of panel (a), neglecting the dark blue graphs of
the initial transient period before the steady state. With in-plane oscillations, each edge
mainly sheds vorticity of a single sign, as for the static plate. Without strong interactions
of oppositely signed vorticity, there is relatively weak fluid mixing near the plate.

The remaining rows, panels (b)–(d), show α = 30◦, 45◦ and 60◦ on the left paired with
the supplementary angles 150◦, 135◦ and 120◦ on the right. For each pair, the transverse
velocity component is the same, ranging from smaller (more in plane) at α = 30◦ and
150◦ (panel (b)) to larger (more transverse) at α = 60◦ and 120◦ (panel (d)). But the in-
plane velocity components are reversed, so the left side (α < 90◦) oscillates more along
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the oncoming flow direction while the right side (α > 90◦) oscillates more across it, as
seen from the plate velocity vectors (red arrows) in each panel. In figure 7 we saw that
oscillating along the flow is better, i.e. within each pair α < 90◦ outperforms α > 90◦,
and the difference between the two becomes smaller as Re f increases. This is also seen
in the local heat transfer graphs of figure 13, for which 〈Nutop/bot 〉 is generally higher
and 〈Tplate〉 is lower relative to the steady reference case (black dashed) on the left side,
oscillating along the flow.

Previously, we mentioned that stronger vorticity is found near the plate for α < 90◦ than
α > 90◦ (as shown in figure 25 in Appendix D), which might be a short explanation for
the better heat transfer achieved with α < 90◦. We now give a more detailed explanation
by showing the differences in vortex dynamics for α < 90◦ and α > 90◦. With A/|U∞| =
0.2, the ratio of the maximum plate velocity to the oncoming flow velocity is 2π · 0.2 =
1.26, so the plate oscillation is strong enough to reverse the oncoming flow velocity. This
occurs for α = 45◦, when the plate oscillates along the flow, and at nearby values, i.e. over
most of the range 0◦ < α < 90◦. In this case, oppositely signed vortices are shed from
each edge on each cycle, and they have relatively strong interactions and mix the fluid
close to the plate, as can be seen in the vorticity snapshots on the left sides of panels
(b)–(d). When α = 135◦, the plate oscillates across the flow, and there is always a positive
flow component in the oncoming flow direction. The same is true over most of the range
90◦ < α < 180◦. In this case, the vorticity shed from each edge is predominantly (but not
completely) single signed, similarly to the in-plane oscillation of panel (a). Here there are
weaker interactions between the vortices near the plate, before they are advected away by
the oncoming flow, as seen in the vorticity snapshots on the right sides of panels (b)–(d).
These differences may underlie some of the common features of the local heat transfer
quantities on the left and right. For example, the right subpanels but not the left subpanels
show a dip in 〈Nubot 〉, and a rise in 〈Tplate〉, at the left edge relative to the steady graph
(black dashed line). The difference between the two cases diminishes as Re f increases,
because the vorticity fields become more similar. This is seen in the second rows of panels
(c) and (d), where the vorticity snapshots are more similar on the left and right sides than
in the first rows, at lower Re f .

4.2.3. Transverse oncoming flow: γ = 90◦
Having discussed in-plane and oblique oncoming flows, γ = 0◦ and 45◦, we now consider
transverse oncoming flow, γ = 90◦. Due to symmetry, we can restrict ourselves to
0◦ � α � 90◦. As before, the best global heat transfer occurs with transverse plate oscilla-
tions (α = 90◦). At these particular α and γ , as for the steady plate at γ = 90◦, a uniform
initial oncoming flow with small asymmetric perturbations reaches the asymmetric steady
state slowly, after ≈300 time units. To reach the steady state faster, we instead initialise the
flow and temperature fields to be those at t = 400 for the steady plate with γ = 90◦, similar
to the cases shown at the latest times in figure 5, which have a von Kármán vortex wake.

The optimal flows for heat transfer at A/|U∞| = 0.2 and 0.3 are shown in figures 14(a)
and 14(b), respectively, using a layout similar to figure 12, with links to corresponding
movies in the caption. With the combination of a plate oscillation frequency and the bluff-
body wake shedding frequency, the vortex dynamics and resulting heat transfer for γ = 90◦
are generally similar to those for γ = 45◦ in a few ways. First, in both cases complex
vortex-shedding patterns occur in the wake, and greatly enhance heat transfer on the top
of the plate (the side facing the wake). Second, shed vortices merge into large regions of
single-signed vorticity over many oscillation periods, and then detach, alternately at one
edge and then the other. Third, in most cases at A/|U∞| = 0.2 the vortex dynamics is close
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Figure 14. The cases that optimise global heat transfer (〈Nu〉 and 〈Tavg〉) at γ = 90◦ for A/|U∞| = 0.2
(a) and 0.3 (b), with supplementary movies named ‘14‘ and ‘15’, respectively, linked here. In each panel, the
four snapshots of the vorticity and temperature field correspond to times marked with red dots on the graphs
of Nu and 〈Tmax 〉, with the red arrows indicating the instantaneous direction of plate motion. The bottom
three panels show the cycle-averaged 〈Nu〉 of the top and bottom walls for the isothermal plate, and the cycle-
averaged 〈Tplate〉 with fixed heat flux. The first 5 cycles are omitted to avoid transient effects. The black dashed
line shows the time-averaged results for the non-oscillating plate in the final periodic state for γ = 90◦, after
the symmetry breaking.

to periodic and locked to a multiple of the plate oscillation period (10 in panel (a)), while
at A/|U∞| = 0.3 more cases are non-periodic, particularly near α = 90◦. One difference
is the bilateral symmetry of the γ = α = 90◦ cases, e.g. in figure 14, so that the positive
and negative vortex groups are essentially mirror images in the two leftmost and rightmost
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Figure 15. Vorticity fields and cycle-averaged local heat transfer quantities for an oscillating plate in a
transverse flow (γ = 90◦) with A/|U∞| = 0.2 (a) and 0.3 (b) and α 
= 90◦, i.e. oscillation directions other
than transverse. The red arrow in each vorticity panel indicates the instantaneous plate velocity direction. The
red dash-dotted curves show instantaneous distributions of cycle-averaged local heat transfer quantities that
are discussed in the main text. Supplementary movies named ‘movie 16’ and ‘movie 17’ are available here for
panels (a1) and (b3), respectively.

snapshots of the periodic case in panel (a), and almost mirror images in the non-periodic
case of panel (b). A corresponding left-right symmetry is seen in the ensemble of cycle-
averaged 〈Nutop〉, 〈Nubot 〉 and 〈Tplate〉 distributions in panel (a), and to a lesser extent in
panel (b). Key features of the graphs of the global heat transfer quantities are correlated
with events in the vortex dynamics, similarly to γ = 45◦. Troughs in Nu and peaks in Tavg
and Tmax in panels (a) and (b) occur when a vortex group detaches from one edge and
starts to form at the other edge, as shown in the second and fourth snapshots of each panel.
During the process of vortex merging, the global heat transfer quantities first increase and
then oscillate about fairly constant levels, as occurs during the first and third snapshot of
panel (b).

Examples of flows and heat transfer quantities for the other plate oscillation directions
are shown in figure 15, for A/|U∞| = 0.2 (panel (a)) and 0.3 (panel (b)). For each case
shown, the first vorticity snapshot shows the negative vortex/vortex group at the left edge,
while the second vorticity snapshot shows the positive vortex/vortex group at the right
edge. To the right of the two snapshots, the cycle-averaged local quantities are shown
with the same y-axis scales. Similar to figure 13, the axis labels are removed to make
the figure compact but the result for the non-oscillating plate (black dashed curve) can be
taken as a reference. The second vorticity snapshots in the last three rows show typical
vorticity patterns for γ = 90◦, with the corresponding distributions of the cycle-averaged
local quantities highlighted with red dash-dotted curves. The caption lists links to two
supplementary movies that show the dynamics of the vortices and local heat transfer
distributions. As a supplement, the time-averaged local Nusselt number is shown in
figure 29 in Appendix E.

Subpanels (a1) and (b1) show the in-plane-oscillation case (α = 0◦). As occurred with
γ = 45◦, the most noticeable heat transfer enhancement relative to the steady case occurs
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at this value of Re f , the lowest (see figure 7). The graphs of 〈Nutop〉 and 〈Tplate〉 show
that the local heat transfer is enhanced mainly at the edges and less enhanced or even
worsened in the middle. The overall enhancement in both subpanels (a1) and (b1) is
very limited. In these subpanels the cycle-averaged local heat transfer quantities have a
left–right symmetry that is broken for the α in the following subpanels. Here, we have
vortex groupings at both edges, with the positive vortex group (above the right edge) more
prominent. It usually lasts longer, is more compact and intense and is closer to the top wall
than the negative vortex group. In subpanels (a2), (b2), (a3) and (b3), the negative vortex
group is partially or fully separated into individual vortices, while the positive vortex group
is a single compact region at the right edge. When the positive vortex group grows to a
certain size, it is repelled by the negative vortex group and detaches from the plate. At
higher Re f , the negative vortex group also forms into a compact group attached to the
plate, as shown in subpanels (a4) and (b4), but the positive vortex group still lasts longer.
The second snapshots in the last three rows of subpanels show an instant when the positive
vortex group is detaching from the plate and dipoles have been shed from the left edge.
At these times, 〈Nutop〉 has a local maximum near the left edge and a local minimum
near the right edge, with the inverse pattern in 〈Tplate〉, as shown by the red dash-dotted
lines.

5. Input power
In the previous sections we studied the heat transfer of oscillating plates without
considering what drives the oscillation and what input power may be required. Both natural
(e.g. plants) and human-made structures can passively vibrate in ambient air and water
flows, in which case no additional power source is required to produce the flow (Dowell &
Hall 2001; Heil & Hazel 2011; Leontini et al. 2013; Mavroyiakoumou & Alben 2021, 2022;
Alben 2022; Wang & Christov 2022). Many previous studies have examined the benefits
of passive fluid–structure interaction for heat transfer specifically (Kim & Choi 2004; Soti,
Bhardwaj & Sheridan 2015; Glezer, Mittal & Alben 2016; Lee et al. 2017; Gosselin 2019;
Solano, Ordonez & Shoele 2020; Kumar et al. 2020).

In other situations, power is needed to oscillate the plate but the ambient flow is free.
Flapping plates are a model for the wings or fins of flying and swimming animals in
ambient flows (Dabiri 2009). Under ‘free locomotion’, the organism reaches a steady state
with non-zero forward velocity in a quiescent flow, in which case the ambient flow is
simply the negative of the forward velocity of the organism (Alben & Shelley 2005; Alben
et al. 2012; Tytell et al. 2016; Hoover et al. 2018; Godoy-Diana et al. 2019; Alben 2021b).
Other examples are energy-harvesting applications in which flapping bodies are used to
harvest energy from the ambient flow (Zhu & Peng 2009; Zhu 2011).

One may also consider the power needed to oscillate the plate and drive the oncoming
flow. Recent works have calculated the flows that maximise heat transfer for a given total
power needed to drive the flow, for flows through channels (Alben 2017a; Alben, Prabala
& Godek 2024), between parallel heated walls (Hassanzadeh, Chini & Doering 2014;
Tobasco & Doering 2017; Motoki et al. 2018a,b; Souza, Tobasco & Doering 2020; Kumar
2022; Alben 2023) and in more general geometries (Alben 2017b).

Here, we will consider the input power in two situations. In the first, the oncoming
flow is freely available from the environment but power is needed to oscillate the plate.
In the second situation, power is needed both to drive the oncoming flow past the moving
plate and to oscillate the plate. In the previous sections we found that the best global
heat transfer occurs with transverse oscillation (α = 90◦). However, more power may
be required to sustain transverse oscillation because it displaces more fluid than other
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oscillation directions. Varying the oncoming flow direction from transverse to in plane has
a similar effect on the power needed to drive the flow.

First, we express the input power needed to oscillate the plate. The horizontal force
exerted on the plate by the fluid is due to viscous shear stress on the two sides of the plate

Fx (t) = 1
Re f

∫ 1

0
[∂yu(x, 0, t)]+− dx, (5.1)

where the bracket notation denotes the jump along the plate, the value on the top minus
the value on the bottom. The vertical force on the plate is due to the pressure difference
between the two sides

Fy(t) =
∫ 1

0
[−p(x, 0, t)]+− dx . (5.2)

The power needed to move the plate is the product of the force the plate exerts on the fluid
(−Fx , −Fy) with the sinusoidal velocity given in equation (2.1), i.e.

Pbody(t) = −(Fx (t) × Ub(t) + Fy(t) × Vb(t)), P̃body = Re3
f Pbody . (5.3)

Equation (5.3) is the total input power required if the oncoming flow is freely available.
In (5.3) we rescale the power by multiplying it by Re3

f . The rescaled power corresponds
to using ν�/�� as the characteristic velocity scale instead of f ���. Then the power non-
dimensionalisation does not depend on frequency, which allows us to compare results with
different frequencies (i.e. different Re f ).

To consider the power required for the oncoming flow, we can write the energy balance
for a fixed rectangular region R containing the oscillating plate (Kundu, Cohen & Dowling
2016)

d

dt

∫∫
R

1
2

u2
i dA = −

∮
∂ R+plate

1
2

u2
i u j n j ds +

∮
∂ R+plate

uiτi j n j ds −
∫∫

R

2
Re f

e2
i j dA.

(5.4)

We have used tensor index notation to express the terms more easily. The equation says that
the rate of change of fluid kinetic energy in the rectangle equals the sum of three terms: the
net inward flux of kinetic energy (n j is the outward unit normal vector), the rate of work
done on the fluid in R by pressure and viscous stresses from the oscillating plate and at
the outer boundary of R (τi j is the stress tensor) and the rate of viscous dissipation in the
rectangle (ei j is the rate-of-strain tensor). When we take a long-time-average, the left-hand
side is zero. Hence, the average power dissipated is supplied by the stresses at the plate
and outer boundary and by kinetic energy flux at the outer boundary. In heat exchangers,
the dominant contribution from the outer boundary is from the pressure stresses there, and
is called the ‘pumping power’ (Rathore & Kapuno 2010).

We define the average input power required for the entire flow, the oncoming flow plus
that induced by the oscillating plate, to be the time average of all the terms at the plate
and at the outer boundary in (5.4), in the limit that the outer boundary ∂ R tends to infinite
distance from the body. By (5.4), the sum of all the terms at the plate and outer boundary
equals the average viscous power dissipation rate. To calculate this term, we consider the
flow in the frame that is at rest in the far field by adding −U∞ to the fluid velocity. In this
frame the body moves upstream while it oscillates and has velocity Ub − U∞. For this
flow, ei j is the same as before. As the boundary of R tends to infinite distance from the
body, all the work is done at the body surface, because then there is no other source of
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energy input. In effect we have replaced the power to drive the flow past the body with the
power to move the body upstream into a quiescent flow.

Thus, the average total power required for the plate oscillation plus the oncoming
flow is

〈Ptotal(t)〉 = −Fx (t) × (Ub(t) − U∞) − Fy(t) × (Vb(t) − V∞), 〈P̃total〉 = Re3
f 〈Ptotal〉,

(5.5)
which is (5.3) but with the body velocity in the frame where it moves upstream into a
quiescent far-field flow. In (5.5), as in (5.3), we rescale the power by Re3

f to remove the
frequency dependence of the non-dimensionalisation.

In figure 16 we plot 〈Nu〉 versus 〈P̃body〉 (panel (a)) and 〈P̃total〉 (panel (b)) for all of the
isothermal-plate cases. We compute 〈P̃body〉 and 〈P̃total〉 using the same time spans as for
〈Nu〉, discussed in § 4 and Appendix B. In each panel, the Pareto optimal cases lie at the
upper left of each region of points. For such cases, no other cases provide equal or greater
〈Nu〉 with equal or smaller input power.

For panel (a), the input power is given by (5.3) and the oncoming flow is free. Three
horizontal dashed lines mark 〈Nu〉 at ReU = 100 for the non-oscillating plates, for which
〈P̃body〉 = 0. The cases connected with dashed-dotted lines and solid lines have A/|U∞| =
0.2 and 0.3, respectively. For each group of connected points, Re f increases from left to
right.

A few cases with γ = 45◦ and α = 0◦ or 150◦ are below the horizontal dashed lines
with γ = 0◦ and/or 45◦, so the non-oscillating plates with these γ values achieve better
global heat transfer. Above the dashed lines, the Pareto optimal cases mostly have γ =
45◦ and 90◦. The Pareto optimal cases with the lowest 〈P̃body〉 (left side) have in-plane
oscillations in transverse flow (α = 0◦ and γ = 90◦). These cases give a small increase
in 〈Nu〉 relative to the steady plate as well as a few oscillating plates with larger α at
γ = 0◦ and 45◦. Moving rightward to intermediate 〈P̃body〉, Pareto optimal cases typically
have A/|U∞| = 0.2 and γ = 45◦ and 90◦. In general, 〈P̃body〉 increases strongly with α,
i.e. with the degree of transverse oscillation. At the far right, where 〈P̃body〉 is largest, the
optimal cases have A/|U∞| = 0.3 and most have γ = 90◦, transverse oncoming flow.

Panel (b) shows the results including the power for the oncoming flow, i.e. with 〈P̃total〉
instead of 〈P̃body〉. Now non-zero power is required for the steady plates due to drag from
the oncoming flow. The three dashed lines show 〈Nu〉 and 〈P̃total〉 for the steady plates
as ReU ranges from 10 (black dashed line, γ = 0◦) or 100 (green and blue dashed lines,
γ = 45◦ and 90◦) up to 500, with the values at ReU = 100 marked by red stars. By varying
ReU from 100, we extend the steady cases from the red stars to the dashed curves, so
that we can cover the 〈Nu〉 and 〈P̃total〉 ranges of all the oscillating-plate data. With this
comparison we imagine that we have a fixed amount of input power 〈P̃total〉 that we can
use to either move a flow at ReU = 100 past an oscillating plate or move a flow at various
ReU past a steady plate, to obtain the largest 〈Nu〉. Panel (b) shows that the best option,
i.e. the Pareto front, is in-plane flow past a steady plate, the black dashed line. It requires
much less power at every 〈Nu〉 value, even compared with in-plane flow with in-plane
oscillations (blue crosses, α = 0◦). The dashed lines for γ = 45◦ and γ = 90◦ are far to the
right, and here pressure drag dominates skin friction for a steady plate. If we constrain the
oncoming flow orientation at γ = 45◦ or 90◦, then many oscillating cases, particularly at
low Re f , lie above and to the left of the corresponding steady curves (the green and blue
dashed lines). For these cases, larger 〈Nu〉 is obtained with an oscillating plate at ReU =
100 than for a steady plate with the same 〈P̃total〉 (which has ReU > 100).
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Figure 16. The value of 〈Nu〉 versus (a) the time-averaged power needed to oscillate the plate, and (b)
the time-averaged total power including the power needed to drive the oncoming uniform flow. The three
horizontal dashed lines in panel (a) show 〈Nu〉 at ReU = 100 for the non-oscillating plates, for which 〈P̃body〉
= 0. In panel (b) the data for the non-oscillating plates correspond to ReU ranging from 100 to 500 for the
green and blue dashed lines, and also include ReU below 100 for the black dashed line. The values with
ReU = 100 are marked with red stars.

By comparing the groups of points connected by a line of a given colour and line type
in panels (a) and (b), we can see the effect of adding the power needed to drive the flow.
This power is the amount by which the lines are shifted to the right in (b) relative to (a)
(with 〈Nu〉, the vertical position, unchanged). Many of the lines are also more compressed
horizontally in (b). The horizontal shift and compression is most noticeable on the left
side, i.e. for the lower-power cases. Here, the power for the oncoming flow makes a
proportionately larger contribution to the overall power. On the right side, the power for
the plate oscillation is dominant, and such cases typically have A/|U∞| = 0.3 and α close
to 90◦, i.e. a strong transverse plate oscillation.
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Figure 17. Ratio of 〈Nu〉 for the oscillating plate to that of the stationary plate at the same total input power.
Panels (a) and (b) correspond to A/|U∞| = 0.2 and 0.3, respectively. The colours of the filled circles in the
α-Re f plane correspond to different values of the ratio 〈Nu〉/〈Nu〉re f , with 〈Nu〉 and 〈Nu〉re f computed for
the oscillating and stationary plates at the same total input power evaluated with equation (5.5).

An alternative to the Pareto frontier is a performance measure that combines the output
quantity 〈Nu〉 with the total input power 〈P̃total〉. Similar to Tsia & Hwang (1999), Webb &
Kim (2004) and Shoele & Mittal (2014), we define a performance measure 〈Nu〉/〈Nu〉re f ,
the ratio of 〈Nu〉 for the oscillating plate to 〈Nu〉re f , the global heat transfer for the
stationary plate with the same γ and 〈P̃total〉. To achieve the same 〈P̃total〉 as the oscillating
plate at ReU = 100, the stationary plate has ReU > 100.

Figure 17 shows the values of 〈Nu〉/〈Nu〉re f with coloured circles in the α-Re f plane
for each γ at A/|U∞| = 0.2 (panel (a)) and 0.3 (panel (b)). Circles coloured orange to red
show 〈Nu〉/〈Nu〉re f > 1, i.e. when the oscillating plate outperforms the stationary plate.
Such cases occur when γ = 45◦ and 90◦ but not when γ = 0◦, consistent with what we
observe in figure 16(b). For γ = 45◦ and 90◦, 〈Nu〉/〈Nu〉re f is generally larger with more
transverse oscillation (α closer to 90◦) and smaller Re f , but there are exceptions.

We present Pareto fronts and performance measures for the fixed-flux case in
Appendix F. The optimal cases are generally similar to those with fixed plate temperature.

6. Conclusion
We studied the effect of vortex dynamics on heat transfer for an oscillating plate in
an oncoming flow with Reynolds number ReU = 100. We varied the oncoming flow
direction (γ ) from in plane to transverse, the plate oscillation direction (α) from in
plane to transverse and studied the effects of the plate oscillation velocity, frequency
and amplitude. Although our work is an extension of the work of Rahman & Tafti
(2020a) with an expanded parameter space, we investigated a variety of flow patterns
and focused on how these flows influence local and global heat transfer, while Rahman &
Tafti (2020a) mainly studied the effect of the plunge velocity (similar to the oscillation
velocity (A/|U∞|) in our work) on the global Nusselt number without discussing the flow
details.

We classified the resulting vortex dynamics and heat transfer patterns into a small
number of main categories. Steady plates provided benchmark flows, either steady Prandtl-
boundary-layer-type flows (at γ = 0◦) or von Kármán vortex wakes (at γ = 45◦ and 90◦).
Without a natural wake frequency, many in-plane oncoming flows (γ = 0◦) resulted in a
periodic dynamics with the period of the plate oscillation. A few cases with transverse
oscillation had period 1/2, up–down symmetry, and smaller heat transfer, and a few other
cases at larger oscillation velocity (A/|U∞| = 0.3) were non-periodic and had larger heat
transfer. With natural wake frequencies in addition to the plate frequency, oblique and
transverse flows (γ = 45◦ and 90◦) resulted in a dynamics that was almost periodic at
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multiples of the plate oscillation period, or non-periodic, the latter occurring mainly with
more transverse oscillations at larger velocity (A/|U∞| = 0.3). Note that the classification
is based on the regularity of the vortex dynamics instead of heat transfer performance,
although non-periodic cases are often associated with stronger vortices and thus better
heat transfer.

The steady plate has different vorticity patterns at different plate orientations (γ ).
Including the plate oscillation adds many new features to the vorticity patterns and alters
the local heat transfer distributions dramatically. With in-plane flow (γ = 0◦) and no plate
oscillation, heat transfer is maximum at the leading edge and temperature is maximum near
the trailing edge. Adding in-plane oscillation (α = 0◦) gives modest improvements near the
trailing edge, but the boundary layers remain intact. With oblique (α = 45◦) and transverse
(α = 90◦) oscillations, vortices are shed from the edges, decreasing heat transfer near the
leading edge and but enhancing it over the rest of the plate, giving a net improvement.
With oblique and transverse flow (γ = 45◦ and 90◦), the heat transfer is controlled by the
formation of large regions of vorticity, from the merging of vortices shed over multiple
cycles. These ‘vortex groups’ tend to form near one edge and enhance heat transfer mainly
at the opposite edge. After many cycles the group detaches from one edge, a new group
of oppositely signed vorticity forms near the other edge, and the cycle repeats. The net
effect of the vortex groups is to greatly increase heat transfer on the wake side, to a level
comparable to that on the side facing the oncoming flow. On the wake side, heat transfer
is increased most on the portion farther from the vortex group, which draws colder fluid
there. Although the local heat transfer patterns for different γ are quite different, when
we take an average over the plate to compute the global heat transfer, the differences are
significantly reduced.

The global heat transfer (figure 7) was most strongly affected by the oscillation velocity
(A/|U∞|) and direction (α), being larger with a faster and more transverse oscillation. In
this case the shed vortices were stronger and the dynamics was less periodic, enhancing
mixing in the wake region. The effect of γ was relatively small for the cases with better
heat transfer (γ 
= 0, α 
= 0). For a given oscillation velocity (A/|U∞|), increasing the
oscillation frequency (Re f ) while decreasing the oscillation amplitude had relatively little
effect on the global heat transfer, except in a few cases with transitions between patterns of
vortex dynamics. Local heat transfer was altered by γ and Re f , however, through changes
in the sizes and locations of shed vortices.

Another mechanism we found was that vortex grouping helped trap the vorticity and
enhanced mixing near the plate. We already mentioned that the shed vorticity was
stronger with more transverse oscillations (α closer to 90◦). At γ = 45◦, pairs of cases
(supplementary angles) have the same degree of transverse motion but one (α < 90◦)
moves more along the oncoming flow and the other across it (α > 90◦). The former case
leads to stronger, more compact vortex groups and somewhat better heat transfer. Vortex
grouping was also seen in some cases of in-plane flow (γ = 0◦) with transverse oscillation,
where it also enhanced heat transfer.

We considered plates with fixed temperature or fixed heat flux. In general the same
parameters are optimal in both cases, with some variability when the maximum (rather
than average) plate temperature is considered in the latter case.

We also considered the input power needed to oscillate the plate and to drive the entire
flow including the oncoming flow. The input power can be neglected if the oncoming flow
is provided by ambient flows in the environment and the plate oscillation occurs through
passive fluid–structure interaction. In this case the best case, the one that maximises 〈Nu〉,
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has A/|U∞| = 0.3, α = 90◦ and γ = 45◦ (with γ = 90◦ very close). If power is needed to
oscillate the plate, optimality is given by the Pareto front in 〈Nu〉–〈P̃body〉 space. The
front includes the steady plate with γ = 0◦ (with 〈P̃body〉 = 0) as well as many oscillating
plates with larger 〈Nu〉 and non-zero 〈P̃body〉. These cases have A/|U∞| = 0.2 and 0.3,
0◦ � α � 90◦ and γ = 45◦ and 90◦. If power is also needed to drive the oncoming flow,
the optimal case (the Pareto front in 〈Nu〉–〈P̃total〉 space) is the steady plate with γ = 0◦.
If we restrict γ to 45◦ and 90◦, then many of the oscillating-plate cases that are Pareto
optimal in 〈Nu〉–〈P̃body〉 space are also Pareto optimal in 〈Nu〉–〈P̃total〉 space.

We used a Prandtl number of 0.7, corresponding to air at standard temperature and
pressure. Changing Pr will not affect our flows as the flow is independent of the
temperature field in our problem. However, the temperature fields and resulting Nusselt
numbers will be affected. In general, increasing Pr decreases the thermal boundary layer
thickness, which increases the Nusselt number. At Pr = 0.7, the thermal and velocity
boundary layers are comparable in thickness. If Pr � 1 (� 1), the thermal boundary
layer is much thicker (thinner) than the velocity boundary layer, and the Nusselt number
increases as different power laws of Pr in these two regimes for steady boundary layer flow
(Schlichting & Gersten 2017). There are some studies on the effect of Pr on oscillatory
flows past fixed bodies at Re similar to our study (Dhiman et al. 2006; Chandra & Chhabra
2011; Sarkar, Dalal & Biswas 2011; Chatterjee & Mondal 2012; Ali et al. 2024), but fewer
studies consider oscillating bodies, although the work of Cheng, Hong & Aung (1997)
is one example. In general, these studies find, as for steady flows, that increasing Pr
increases the Nusselt number by thinning the thermal boundary layer. When Pr � 1, the
thermal boundary is thicker than the flow boundary layer, and may be comparable in size
to, or larger than, the shed vortices. This can make the temperature field less sensitive
to the vortex dynamics. In contrast, when Pr � 1, the thermal boundary is thinner than
the flow boundary layer. However, the pattern of temperature contours is still strongly
determined by the vorticity pattern, since the flow determines the temperature field. Thus
the temperature boundary layer separates and rolls up on length scales set by the vortices.
As Pr varies in our problem, we expect broadly similar trends to those mentioned above.
However, it is difficult to give more detailed predictions without simulating the system at
various Pr , which is beyond the scope of this study.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10201.

Funding. This research was supported by the NSF-DMS Applied Mathematics program under award number
DMS-2204900.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Grid details
In this appendix, we provide details about the grid generation and mesh point distributions.
The method used here to generate a non-uniform mesh (as shown in figure 2) is modified
from that used by Alben (2021a).

To generate grid points in the x direction, we first specify m2, m1 and m3, the numbers
of grid points on the plate (0 � x � 1), on the interval from the left edge of the plate to the
left boundary of the computational domain (−Lx1 � x � 0), and on the interval from the
right edge of the plate to the right boundary of the computational domain (1 � x � Lx2),
respectively. Then we generate uniform grids (X ) for each segment and stretch them as
follows:
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x = X − η

2π
sin(2π X), 0 � X � 1, (A1a)

x = X − η1Lx1

π
sin

(
π X

Lx1

)
, −Lx1 � x � 1, (A1b)

x = 1 + X − η2(Lx2 − 1)

π
sin

(
π X

Lx2 − 1

)
, 0 � X � Lx2 − 1. (A1c)

Here, η, η1 and η2 are the three factors controlling grid spacing. On the plate (A1a),
the uniform grid spacing X is compressed by approximately 1 − η near the edges and
stretched by approximately 1 + η in the centre. Similarly, by equations (A1b) and (A1c),
the grid points cluster near the plate edges and gradually spread out toward the boundary
of the computational domain. In our simulation, we set η = 0.95. This number is also
suggested by Alben (2021a), which is close enough to 1 to reduce the errors at the plate
edges. In order to keep the grid size similar at the two sides of the plate edge, we set η1
and η2 by imposing

Lx1

m1
(1 − η1) = Lx2 − 1

m3
(1 − η2) = 1

m2
(1 − η). (A2)

In a similar way, we first create a uniform grid Y by assigning n1 and n2 points below
and above the plate, respectively. Then the grid is deformed using

y = Y − β1L y1

π
sin

(
πY

L y1

)
, −L y1 � Y � 0, (A3a)

y = Y − β2L y2

π
sin

(
πY

L y2

)
, 0 � Y � L y2. (A3b)

The grid size along y is smallest near the plate and gradually increases toward the bottom
and top boundaries of the computational domain. In our simulation, we use β1 = 0.95.
Again, to ensure the grid sizes at the top and bottom of the plate are similar, β2 is computed
by imposing

L y1

n1
(1 − β1) = L y2

n2
(1 − β2). (A4)

In table 2, we report the number of grid cells for each segment in (A1) and (A3) as well
as the smallest and the largest grid spacings in the x and y directions, respectively. The
mesh near the plate is dense to capture the sharp gradients in flow velocity and temperature
there. For γ = 0◦, we have approximately 40 cells in the y direction across the boundary
layer thickness (calculated using the Blasius approximation) at the plate centre (x = 0.5).
The larger grid cells are close to the boundaries of the computational domain. For γ =
0◦ and γ = 45◦, the mesh near the left boundary is more sparse than that near the right
boundary because the left boundary is the inlet and the flow is almost uniform.

Appendix B. Grid independence study
In this appendix, we give numerical tests to explain the chosen domain and grid sizes
in table 1. We vary the domain size according to the plate orientation γ to avoid
boundary effects. For different γ , we compare the time series of the global heat transfer
quantities, Nu, Tmax and Tavg using different grid sizes with different domain sizes. We
also investigate the variation of the time averages of the global heat transfer quantities
when we average over different numbers of oscillation cycles.
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γ = 0◦ γ = 45◦ γ = 90◦

m1 (0 � x � Lx1) 48 72 140
m2 (0 � x � 1) 64 48 56
m3 (1 � x � Lx2) 320 300 140
n1 (−L y1 � y � 0) 120 192 288
n2 (0 � y � L y2) 120 224 336
xmin 7.817×10−4 1.042×10−3 8.967×10−4

xmax 0.3324 0.3322 0.09196
ymin 2.088×10−3 3.127×10−3 2.084×10−3

ymax 0.08125 0.1219 0.08125

Table 2. The numbers of grid cells in different regions and the minimal and maximal grid sizes in the x and y
directions.

When the oncoming flow is horizontal (γ = 0◦), we use a computational domain with
horizontal length approximately twice the vertical length. In figure 18, we compare the
time series of the three global heat transfer quantities in three computational domains. The
number of grid points is roughly proportional to the domain size. For example, the ratios
of x grid points satisfy: 288/224 ≈ (8 + 10)/(6 + 8) and 352/288 ≈ (10 + 12)/(8 + 10).
We find that domain 2 with the intermediate mesh of 432 × 240 can produce results with
sufficient accuracy. Since it is a periodic flow, the time averages are taken over the last
2 cycles of the plate oscillation. This mesh is also studied in a case with a non-periodic,
irregular dynamics in figure 19. Here, close agreement with different meshes and domain
sizes is only observed in the first several cycles. In panel (c), we show the time-averaged
quantities 〈Nu〉, max Tmax and 〈Tmax 〉 using averages over different numbers of cycles.
Note that the number of cycles is counted backwards starting from the final time. For
example, if the number of cycles is 2, it means that the last 2 cycles are used to compute
the time averages. The averages show stronger variations when close to the maximum
number of cycles is used, since then the cycles from the initial transient are included. As
shown in panels (c) and (d), 〈Nu〉 starts to increase and Tavg starts to decrease if more
than 54 cycles are used. This is because Nu rapidly decreases from a very high value
while Tavg increases from 0 (recalling that T (t = 0) = 0 in the fixed-heat-flux case) over
the first several cycles, as shown in panels (a) and (b). Therefore, time averages should be
taken over approximately 5–10 cycles fewer than the maximum (tend ), e.g. 50–55 cycles in
figure 19, where the time averages are nearly flat. It is somewhat coincidental that the time-
averaged results with the coarsest and finest meshes are closer, because the agreements
between the time series in panels (a) and (b) are less close: in panel (a), the finest mesh
agrees better with the middle mesh than the coarsest mesh. In this case, we take the last 40
cycles to compute the time-averaged quantities. For the other non-periodic and irregular
cases, we do similar comparisons, and the time span chosen to compute the time average
is usually at least half of the total simulated time.

For the oblique oncoming flow (γ = 45◦), we use a square computational domain since
the oncoming flow has equal horizontal and vertical components. Panels (a), (b) and (c) of
figure 20 show the time series of the three global heat transfer quantities computed with
different domain sizes. In each computation domain, we have good agreement between the
results at different grid sizes. Compared with the fixed-temperature results, we find that the
fixed-heat-flux results are more sensitive to the grid and domain sizes: in panels (a) and
(b), Tmax and Tavg on the coarsest mesh are noticeably smaller, unlike Nu. We compare the
results with different computational domain sizes in panel (d). The middle mesh is chosen
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Figure 18. Comparisons of the time series of the global heat transfer quantities Nu, Tmax and Tavg with
different domain sizes and grid sizes when the oncoming flow is horizontal (γ = 0◦). The other simulation
parameters are: Re f = 100, ReU = 100, α = 90◦ and A/|U∞| = 0.2.

for domains 1 and 2 whereas the coarsest mesh is chosen for domain 3 because its results
agree well with those of the finest mesh. In the first several cycles of plate oscillations,
Tmax and Tavg for domains 2 and 3 agree well and are smaller for domain 1. Since boundary
effects are more apparent for domain 1 we use domain 3 with the 420 × 416 grid because it
is moderately expensive computationally. This case is non-periodic and irregular, as shown
by the time series after 15 cycles. However, the time-averaged 〈Nu〉 and 〈Tavg〉 in the three
domains using more than 15 cycles of oscillations agree well, as shown in panel (e). The
large variations in max(Tmax ) are expected because, as the temperature of the hottest spot
of the plate at one moment, it is sensitive to the irregular dynamics.

Finally, we show the convergence study for transverse oncoming flow (γ = 90◦) in
figure 21. Similar to the case of γ = 0◦, the computational domain for γ = 90◦ has a
vertical dimension approximately twice the horizontal dimension. The case shown is not
periodic but not as irregular as the case in figure 20, as the time series computed in
different domains and with different grid sizes tend to agree for the entire simulated time.
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Figure 19. Comparisons of the global heat transfer quantities Nu, Tmax and Tavg , and their time averages,
using different grid sizes (a) and domain sizes (b) when the oncoming flow is horizontal (γ = 0◦) and Re f =
200, ReU = 100, α = 90◦ and A/|U∞| = 0.3. (c) Time-averaged global heat transfer quantities using different
numbers of cycles in the three computational domains. The correspondence between the curve colour and the
domain size is the same as in panel (b).

We again observe that the results with fixed heat flux are more sensitive to the domain size
and grid size. For this case domain 1 is less accurate for the global heat transfer quantities,
as shown in panels (d) and (e). Based on the comparisons in panels (a)–(e), we choose
domain 3 with a mesh of 336 × 624 for transverse oncoming flow.

Appendix C. Validation
In this appendix we first validate our numerical method against the theoretical and
computational results for a stationary plate with a fixed temperature in an in-plane
oncoming flow. In figure 22(a), we compare the local Nusselt number

Nux (x) = −x
∂T

∂y

∣∣∣∣
y=0+

, (C1)
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Figure 20. Comparisons of the global heat transfer quantities Nu, Tmax and Tavg , and their time averages, using
different domain and grid sizes when the oncoming flow is oblique (γ = 45◦) and Re f = 100, ReU = 100,
α = 90◦ and A/|U∞| = 0.3. The correspondence between the curve colour and the domain size in panel (e) is
the same as in panel (d).

with that of Rahman & Tafti (2020a). Here, we only compare Nux on the top plate surface;
it is the same on the bottom surface by symmetry. We also compare the Blasius boundary
layer solution (Incropera et al. 2006)

Nux = 0.332Re1/2
x Pr1/3. (C2)

The simulated Nux is larger than the Blasius result, especially near the trailing edge. The
Blasius assumption of a semi-infinite plate shows the strongest deviation from the finite
plate here. For the finite plate only, Nux diverges at the trailing edge, as discussed by
Dennis & Smith (1966) and Rahman & Tafti (2020a).

We show corresponding global Nusselt number results in figure 22(b). The symbols
show our Nu (2.8) at several ReU . The simulation results are compared with the Blasius
solution (Incropera et al. 2006)

Nu = 2 × 0.664Re1/2
U Pr1/3, (C3)
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Figure 21. Comparisons of the global heat transfer quantities Nu, Tmax and Tavg , and their time averages, using
different domain and grid sizes when the oncoming flow is transverse (γ = 90◦) and Re f = 100, ReU = 100,
A = 0.3, α = 60◦ and A/|U∞| = 0.3. The correspondence between the curve colour and the domain size in
panel (e) is the same as in panel (d).

and the theoretical model of Khan (2004):

Nu = 2 × 0.750Re1/2
U Pr1/3. (C4)

The latter is derived for an elliptic body in a uniform oncoming flow. A boundary layer
equation is used on the body surface and potential flow is assumed outside the boundary
layer. Equation (C4) is obtained in the flat plate limit, i.e. taking the ratio of the minor and
major ellipse axes to zero. In equations (C2) and (C4), the factor 2 on the right-hand sides
is because both sides of the plate are considered. Similar to the local Nusselt number, the
simulated Nu is larger than the Blasius approximation. Better agreement is seen between
our simulation and (C4), mainly at lower ReU .

For two examples of an oscillating plate, we validate our flow simulations with results
in Rahman & Tafti (2020b) in figure 23. Good agreement is seen in the thrust coefficient
(Fx/(1/2|U∞|2) with Fx in (5.1)) over one oscillation cycle and The vorticity fields at the
beginning and the end of upstroke (marked with red stars).
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Figure 22. For a stationary plate in the horizontal oncoming flow (γ = 0◦), (a) the local Nusselt number Nux
compared with (Rahman & Tafti 2020a, figure 6) and the Blasius approximation, and (b) the global Nusselt
number compared with the Blasius approximation and a different theoretical approximation of Khan (2004).

Appendix D. Vorticity strength
In this appendix, we show how the vorticity strength varies with the plate’s orientation,
oscillation direction, frequency and amplitude. We define the vorticity strength as the
integral of the absolute value of the vorticity within a box around the plate (denoted as
Ωb), written as

S = 1
|U∞|

∫∫
|∂xv − ∂yu| dΩb. (D1)

Note that S has been rescaled by dividing by |U∞|, which corresponds to using the fixed
oncoming flow speed |U�∞| as the characteristic velocity scale instead of f ���. Then the
non-dimensionalisation of vorticity strength does not depend on frequency, so we can
compare results with different frequencies, analogous to how we rescaled power in § 5. In
figure 25, we show the time-averaged vorticity strength 〈S〉 using boxes of three different
sizes: 2 × 2 (panel (a)), 4 × 4 (b) and 6 × 6 (c). The time average is taken over the same
number of cycles as in figure 7. The boxes are chosen to include the plate and surrounding
vorticity, and are therefore biased to include more of the downstream than upstream flow.
The positions are different for different γ , and are shown in figure 24.

Generally speaking, the overall trends of the time-averaged vorticity 〈S〉 with respect to
A/|U∞|, α and Re f do not depend very strongly on the box size. It is more straightforward
to compare the values of 〈S〉 across A/|U∞|, α and Re f at a given γ than at different
γ , because the wake vorticity distributions vary with γ ; e.g. the boxes typically include
different numbers of vortices at different γ .

With the other parameters fixed, 〈S〉 is larger at A/|U∞| = 0.3 (bottom rows) than
A/|U∞| = 0.2 (top rows), since stronger vortices are generated at higher oscillation
velocity. In most cases, 〈S〉 is larger for more transverse oscillation, i.e. α closer to 90◦.
Also at γ = 45◦, 〈S〉 is larger when the plate oscillates more along the flow (α < 90◦) than
across the flow (α > 90◦).

With A/|U∞| and α fixed, the vorticity strength 〈S〉 does not vary much with Re f in
most cases, as indicated by many flat curves in figure 25. However, a sudden change of 〈S〉
as Re f increases is also observed in several cases. Those jumps are typically associated
with a change in the vortex dynamics. Specifically, the cases with more enhanced vortex
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Figure 23. Comparison between the present numerical method and the results from Rahman & Tafti (2020b)
for a vertically oscillating plate (α = 90◦) in a horizontal oncoming flow (γ = 0◦) with ReU = 100. The black
curve (the present simulation) and the triangles (the results of Rahman & Tafti (2020b)) in each panel show the
histories of the thrust coefficient during one oscillation cycle, defined as Fx/(1/2|U∞|2), with Fx computed
by(5.1). The stars on the curve mark the beginning and the end of upstroke, respectively, with the corresponding
vorticity fields compared above the stars in each panel.
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grouping have stronger vorticity near the plate because vorticity grouping helps trap the
vortices near the plate.

In summary, 〈S〉 varies similarly to the global Nusselt number 〈Nu〉 across parameters
space, so the strength of shed vorticity is a strong indicator of the global heat transfer. We
now discuss the changes in the vortex dynamics that occur as 〈S〉 increases from Re f = 50
to 100.

At γ = 0◦, 〈S〉 with α = 90◦ at Re f = 50 and 100 is lower than that at higher Re f , as
shown by the green curve of the first panel in each row (except the green curve of the upper
left subpanel in panel (c)). At A/|U∞| = 0.2, no vortex grouping occurs at Re f = 50 and
Re f = 100 (and the vortices shed display up–down symmetry as in figure 11a), while the
positive vortices merge at the plate’s left edge every cycle at Re f > 100 (with the up–
down symmetry broken as shown in figure 11b). Consequently, the cases at Re f > 100
have stronger vorticity near the plate. At A/|U∞| = 0.3, the positive vortices merge every
cycle at the plate’s left edge at Re f = 50 and Re f = 100 as in figure 11(b), but the cases at
Re f > 100 become non-periodic, with not only the positive vortices but also the negative
vortices grouping at the left edge for many cycles, and the resulting vorticity strength is
much larger than for Re f = 50 and Re f = 100.

A jump in 〈S〉 is also found with γ = 45◦ and α = 90◦ as Re f increases from 50 to 100
at both A/|U∞| = 0.2 and 0.3. As shown in panels (a) and (c) of figure 26, for γ = 45◦
at A/|U∞| = 0.2, the negative vortices merge at the plate’s left edge every 6 cycles of
oscillations and there is no vortex grouping at the right edge at Re f = 50, while vortex
grouping at Re f = 100 is enhanced with the merging of positive and negative vortices
at the two edges alternately every 11 cycles of oscillations. (Note that in (a) and (c)
the two rows are similar, indicating that the two cases are almost periodic over several
cycles). Panels (b) and (d) of figure 26 show the comparison between Re f = 50 and 100
for γ = 45◦ at A/|U∞| = 0.3. Both cases are non-periodic. No vortex grouping occurs at
Re f = 50 whereas the negative vortices group at the left edge (as shown by the first row
of panel (d)) and the positive vortices tend to group loosely at the right edge at Re f = 100
(as shown by the second row of panel (d)).

We also observe that the vorticity strength suddenly increases from Re f = 50 to 100
for γ = 90◦ and α = 90◦ at both A/|U∞| = 0.2 and 0.3, and α = 60◦ at A/|U∞| = 0.2.
Similarly, the stronger vorticity at Re f = 100 results from more enhanced vortex grouping
at Re f = 100. Here, we only show the cases with α = 90◦ for simplicity but the situation
with α = 60◦ is similar. As shown in figure 27(a), at Re f = 50 and A/|U∞| = 0.2, the
negative and positive vortices from two consecutive cycles tend to merge at the two edges
alternately but they ungroup quickly once shed from the plate. However, at Re f = 100,
as shown in figure 27(c), compact vortex groups are formed at the two edges by merging
vortices from several cycles (note that the second row is the mirror image of the first row),
resulting in stronger vorticity near the plate. For the cases with A/|U∞| = 0.3 shown
in panels (b) and (d), although they are non-periodic with an irregular vortex dynamics,
positive and negative vortex grouping are observed to occur at the two edges at Re f = 100
while no vortex grouping occurs near the plate at Re f = 50.

In summary, stronger vorticity typically occurs as Re f increases from 50 to 100 because
there is stronger vortex grouping near the plate.

Appendix E. Long-time-averaged local Nusselt number at γ = 45◦ and γ = 90◦

In this appendix, we show the time-averaged local Nusselt number at γ = 45◦ and γ = 90◦
as a supplement to the cycle-averaged local quantities discussed in §§ 4.2.2 and 4.2.3.
The time interval used to compute the averaged local Nu is the same as in figure 7,
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Figure 26. Changes in the vortex dynamics from Re f = 50 ((a) to (b)) to Re f = 100 ((c) and (d)) with
γ = 45◦ and α = 90◦.

and the time-averaged global Nu is repeated as the second panels in figures 28 and 29
for convenience.

Figure 28(a) shows the time-averaged local Nu at γ = 45◦. Note that the subpanels
share the same y axis, and the values of the non-oscillating plate (black curves) are given
as reference values. As the vortex wake is mainly behind the top wall, 〈Nutop〉 is improved
more than 〈Nubot 〉. The improvement is more pronounced at the higher A/|U∞| = 0.3 (the
right panels of each column) and when the oscillation is more transverse with α closer to
90◦, which is consistent with the variation of 〈Nu〉 (i.e. the space average of the local Nu)
with A/|U∞| and α in panel (b).

The effect of Re f is more complicated. When the plate oscillates in plane (α = 0◦),
〈Nutop〉 is improved slightly at the left edge but the improvement diminishes as Re f
increases, while 〈Nubot 〉 is almost the same as the non-oscillating plate. Consequently,
we see 〈Nu〉 with α = 0◦ decreases with Re f and 〈Nu〉 with α = 30◦ and α = 150◦ also
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Figure 27. Change of vortex dynamics from Re f = 50 ((a) to (b)) to Re f = 100 ((c) and (d)) with γ = 90◦
and α = 90◦.

decrease monotonically with Re f , but the local Nu for the two cases is different. The
case of α = 30◦ is more like α = 0◦. As Re f increases, the vortices become smaller,
making the enhancement of 〈Nutop〉 near the left edge less significant; 〈Nubot 〉 near the
right edge is also improved with α = 30◦ at A/|U∞| = 0.3. Similarly, the improvement
becomes less pronounced as Re f increases. The case of α = 150◦ has the same vertical
oscillation velocity as α = 30◦ but the horizontal oscillation is opposite. Both 〈Nutop〉
and 〈Nubot 〉 at α = 150◦ are improved over a broader range of the plate, each with a dip
located near the right and left edges, respectively. This pattern of local Nu distribution is
also observed in the other cases with α > 90◦, i.e. α = 120◦ and 135◦. Furthermore, the
dips move closer to the edges and the improved regions seem to shrink as Re f increases.
However, only at α = 150◦, we see that the local Nu is less enhanced as Re f increases,
while the variation at α = 120◦ and 135◦ is more complicated. As shown in panel (b), the
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Figure 28. (a) The long-time-averaged local Nu and (b) the time-averaged global Nu at γ = 45◦. Note that the
number of cycles taken to compute the time average is the same in (a) and (b). The graphs in (a) are arranged in
eight columns, one for each α, and five rows, one for each Re f from 50 to 250, increasing downward. Pairs of
subpanels are shown in each column, corresponding to A/|U∞| = 0.2 and 0.3 on the left and right, respectively.
Here, 〈Nus

top〉 (black dashed curve) and 〈Nus
bot 〉 (black dash-dotted curve) in (a) denote the time-averaged local

Nu on the top and bottom walls of the non-oscillating plate, respectively.

global Nu at α = 120◦ and 135◦ slightly increase with increasing Re f at A/|U∞| = 0.2
and vary non-monotonically with Re f at A/|U∞| = 0.3. For the other cases, α = 45◦–90◦,
significant improvement is observed in 〈Nutop〉 over a broad range of the plate while the
enhancement of 〈Nubot 〉 is more significant near the right edge. Monotonic variations of
the local and global Nu with Re f are not seen in this range of α. Typically, strong vortices
are generated and complicated interactions between vortices are observed with α = 45◦ to
135◦, which do not give rise to a simple correlation between heat transfer and Re f .

The time-averaged local Nu at γ = 90◦ is shown in figure 29 and has a pattern similar to
figure 28. As for γ = 90◦, 〈Nutop〉 is enhanced more than 〈Nubot 〉, and the enhancement
is more significant at larger A/|U∞| and α closer to 90◦. The distribution of local Nu is
symmetric at α = 0◦, with 〈Nutop〉 improved most significantly at the lowest Re f = 50.
The global Nu also decreases with Re f at α = 0◦. For α = 30◦–60◦, the distribution of
local Nu is asymmetric. Due to the intense positive vortex group formed at the right
edge (as shown in figure 15), the enhancement near the left edge is more significant,
usually with a local maximum of 〈Nutop〉 located near the left edge. As Re f increases,
the local maximum moves closer to the left edge. An improvement in 〈Nubot 〉 is also
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Figure 29. (a) The long-time-averaged local Nu and (b) the time-averaged global Nu at γ = 90◦. Note that the
number of cycles taken to compute the time average is the same in (a) and (b). The graphs in (a) are arranged
in five columns, one for each α, and five rows, one for each Re f from 50 to 250, increasing downward. Pairs of
subpanels are shown in each column, corresponding to A/|U∞| = 0.2 and 0.3 on the left and right, respectively.
Here, 〈Nus

top〉 (black dashed curve) and 〈Nus
bot 〉 (black dash-dotted curve) in (a) denote the time-averaged local

Nu on the top and bottom walls of the non-oscillating plate, respectively.

seen at α = 30◦ with A/|U∞| = 0.3, and at α = 45◦ and 60◦ with both A/|U∞|. The
enhancement is most significant near the right edge, and the improved area gradually
shrinks as Re f increases. However, this shrinkage does not necessarily lead to decreased
global heat transfer. As shown in panel (b), 〈Nu〉 does not vary much with Re f at α = 30◦
and 45◦, and has non-monotonic variation at α = 60◦. Finally, at α = 90◦, the local Nu
becomes more symmetric again because the vortices/vortex groups at the two edges have
similar intensities. Here, 〈Nutop〉 has a local maximum in the middle of the plate because
the vortices bring the hot fluid toward the two edges alternately. The enhancement at the
lowest Re f of 50 is the smallest since vortex grouping is less intense than in the other
cases, leading to weaker vorticity and thus weaker mixing near the plate (as shown in
figure 27 and see our discussion in Appendix D). Beyond Re f = 50, no significant changes
in local Nu are observed as Re f changes. The corresponding global Nu also stays at a
fairly constant level.
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Figure 30. Value of 〈Tavg〉 versus the time-averaged power needed to oscillate the plate (a), and the time-
averaged total power including the power needed to drive the oncoming flow (b). The three horizontal dashed
lines in (a) mark 〈Tavg〉 for the steady plate. The three dashed curves in (b) show 〈Tavg〉 versus 〈P̃total 〉 for the
steady plate. The values with ReU = 100 are marked with red stars.

Appendix F. Pareto fronts for the fixed-heat-flux case
In this appendix we present 〈Tavg〉 versus the input powers (figure 30) and max(Tmax )

versus the input powers (figure 32) for the fixed-heat-flux case. For both figures, a case
is Pareto optimal with respect to another case if it lies below and to the left of it. The
Pareto optimal cases are those that minimise 〈Tavg〉 or max(Tmax ) at a given input power,
or minimise the input power at a given 〈Tavg〉 or max(Tmax ).

If the oncoming flow is free, the conclusions from figure 30(a) are similar to those with
fixed temperature, as 〈Tavg〉 is inversely related to 〈Nu〉: the optimal cases have γ = 45◦
or γ = 90◦. As 〈Tavg〉 decreases along the Pareto front, the optimal cases transition from
A/|U∞| = 0.2 to A/|U∞| = 0.3. These observations also apply for max(Tmax ) versus
〈P̃body〉, as shown in figure 32(a). Here, many of the optimal cases correspond to γ = 90◦.
The reason might be that the transverse flow sets no preferences for vortex grouping at
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Figure 31. Comparison of 〈Tavg〉 between the oscillating and stationary plate at the same total input power.
Panels (a) and (b) correspond to A/|U∞| = 0.2 and 0.3, respectively. The different colours of the filled circles
in the α-Re f plane correspond to different values of the ratio of 〈Tavg〉/〈Tavg〉re f , with 〈Tavg〉 and 〈Tavg〉re f

computed for the oscillating and stationary plate at the same total input power evaluated with equation (5.5).
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Figure 32. Value of max(Tmax ) versus the time-averaged power needed to oscillate the plate (a), and the time-
averaged total power including the power needed to drive the oncoming flow (b). The three horizontal dashed
lines in (a) mark max(Tmax ) for the steady plate. The three dashed curves in (b) show max(Tmax ) versus 〈P̃total 〉
for the steady plate. The values with ReU = 100 are marked with red stars.
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Figure 33. Comparison of max(Tmax ) between the oscillating and stationary plate at the same total input
power. Panels (a) and (b) correspond to A/|U∞| = 0.2 and 0.3, respectively. The different colours of the
filled circles in the α-Re f plane correspond to different values of the ratio of max(Tmax )/ max(Tmax )

re f , with
max(Tmax ) and max(Tmax )

re f computed for the oscillating and stationary plate at the same total input power
evaluated with equation (5.5).

the two edges, which leads to a relatively even temperature distribution, lowering the
temperature at the hottest spot.

If the total power in (5.5) is considered, the Pareto frontier is again the steady plate with
γ = 0◦, as shown in panels (b) of figures 30 and 32. Again, the oscillating plates at low
Re f with γ = 45◦ or γ = 90◦ outperform the steady plates at γ = 45◦ or γ = 90◦, but
they still consume much more energy than the steady plate at γ = 0◦ for given 〈Tavg〉 or
max(Tmax ).

Similar to the fixed-temperature case, we define two performance measures,
〈Tavg〉/〈Tavg〉re f and max(Tmax )/ max(Tmax )

re f , which compare 〈Tavg〉 and max(Tmax )

with the non-oscillating plate with the same orientation in the flow and at the same total
input power. The oscillating plate is considered outperform the non-oscillating plate if
〈Tavg〉/〈Tavg〉re f or max(Tmax )/ max(Tmax )

re f is less than 1.
The results of 〈Tavg〉/〈Tavg〉re f are shown in figure 31. Again, since 〈Tavg〉 is anti-

correlated to 〈Nu〉, we can draw similar conclusions as the fixed-temperature case. The
stationary plate is always better than the oscillating plate at γ = 0◦. As α gets closer to
90◦, more cases have the oscillating plate outperforming the stationary plate at γ = 45◦
and γ = 90◦. With α fixed, 〈Tavg〉/〈Tavg〉re f increases with Re f at γ = 45◦ and γ = 90◦,
indicating that oscillations at lower Re f are more beneficial to heat transfer.

The results of max(Tmax )/ max(Tmax )
re f are shown in figure 33. The conclusions

for max(Tmax ) are generally similar to those for 〈Tavg〉. However, for γ = 45◦ and
90◦, many cases at the lowest Re f = 50 have the stationary plate outperforming the
oscillating plate, which indicates that, although the oscillation at low Re f helps lower the
average temperature of the plate, it might also induce an uneven temperature distribution
with a specific region very hot. Also, as A/|U∞| increased from 0.2 to 0.3, less
cases have the oscillating plate better than the stationary plate, and the variation of
max(Tmax )/ max(Tmax )

re f with Re f becomes more irregular. This might be related to the
more irregular flows at A/|U∞| = 0.3. The value of max(Tmax ) is sensitive to the flow and
temperature details corresponding to a specific instant when the maximum temperature
occurs, which make the variation of max(Tmax )/ max(Tmax )

re f with the parameters less
regular than the space and time-averaged quantities, 〈Nu〉 and 〈Tavg〉.
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