
Canad. J. Math. 2025, pp. 1–51
http://dx.doi.org/10.4153/S0008414X25101156
© The Author(s), 2025. Published by Cambridge University Press on behalf of
Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Opposing average congruence class biases
in the cyclicity and Koblitz conjectures for
elliptic curves
Sung Min Lee , Jacob Mayle , and Tian Wang
Abstract. The cyclicity and Koblitz conjectures ask about the distribution of primes of cyclic and
prime-order reduction, respectively, for elliptic curves overQ. In 1976, Serre gave a conditional proof
of the cyclicity conjecture, but the Koblitz conjecture (refined by Zywina in 2011) remains open. The
conjectures are now known unconditionally “on average” due to work of Banks–Shparlinski and
Balog–Cojocaru–David. Recently, there has been a growing interest in the cyclicity conjecture for
primes in arithmetic progressions (AP), with relevant work by Akbal–Güloğlu and Wong. In this
article, we adapt Zywina’s method to formulate the Koblitz conjecture for AP and refine a theorem
of Jones to establish results on the moments of the constants in both the cyclicity and Koblitz
conjectures for AP. In doing so, we uncover a somewhat counterintuitive phenomenon: On average,
these two constants are oppositely biased over congruence classes. Finally, in an accompanying
repository, we give Magma code for computing the constants discussed in this article.

1 Introduction

Let E be an elliptic curve defined over the rationals, and let NE denote the conductor
of E. For a prime p not dividing NE (called a good prime for E), we write Ẽp to denote
the reduction of E modulo p. The curve Ẽp is an elliptic curve over the finite field Fp .
Hence, the set of Fp-points, denoted Ẽp(Fp), forms a finite abelian group. It is well
known that

Ẽp(Fp) ≃ Z/dp(E)Z⊕Z/ep(E)Z and p + 1 − 2
√

p ≤ ∣Ẽp(Fp)∣ ≤ p + 1 + 2
√

p

for some positive integers dp(E) and ep(E) such that dp(E) ∣ ep(E).
There has been considerable interest, dating back to the 1970s, in studying the

distribution of primes p for which Ẽp(Fp) has certain properties. In particular, one
defines a good prime p to be of cyclic reduction for E if Ẽp(Fp) is a cyclic group and
of Koblitz reduction for E if ∣Ẽp(Fp)∣ is a prime. It is worth noting that every prime
p of Koblitz reduction is also of cyclic reduction, since every group of prime order is
cyclic. Let X be either “cyc” or “prime” and XE(p) be either “p is of cyclic reduction”
or “p is of Koblitz reduction” for E, respectively. Define the counting function
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2 S. M. Lee, J. Mayle, and T. Wang

πX
E (x) ∶= #{p ≤ x ∶ p ∤ NE and XE(p) holds}.

The problem of determining asymptotics for πX
E (x) is called the cyclicity problem or

Koblitz problem, depending on the context. As noted in [5, 34], the Koblitz problem
can be viewed as an elliptic curve analog of the twin prime conjecture.

It is natural to consider finer versions of the cyclicity and Koblitz problems which
restrict to primes lying in arithmetic progressions. To discuss this, fix integers n, k
with n ≥ 1 and define

πX
E (x; n, k) ∶= #{p ≤ x ∶ p ≡ k (mod n), p ∤ NE , and XE(p) holds}.

Note that if n and k are not coprime, then there is at most one prime congruent to k
modulo n, so πX

E (x; n, k) is trivially bounded. As such, we will always take the integers
n and k to be coprime. Broadly speaking, the goal of this article is to examine the
constants that appear in the conjectural asymptotics of πX

E (x; n, k) and explore how
they are influenced by the choice of k modulo n. Before introducing our contributions,
we outline aspects of the rich history of the cyclicity and Koblitz problems relevant to
our work.

We begin with the cyclicity problem, which has its origin in 1975 when I. Borosh,
C. J. Moreno, and H. Porta [9, pp. 962–963] speculated that the density of primes
of cyclic reduction exists and can be expressed as an Euler product.1 In 1976, J.-P.
Serre [51] observed that the cyclicity problem bears a resemblance to Artin’s primitive
root conjecture, which was proven under the Generalized Riemann hypothesis (GRH)
by C. Hooley [30] a decade prior. With this insight, Serre proposed the following
conjecture, which he proved as a theorem under GRH.

Conjecture 1.1 (Cyclicity conjecture [51, pp. 465–468]) If E/Q is an elliptic curve,
then

πcyc
E (x) ∼ Ccyc

E ⋅
x

log x
,(1)

as x →∞, where Ccyc
E ≥ 0 is the explicit constant defined in (18).

Serre noted that Ccyc
E = 0 if and only if Q(E[2]) = Q, in which case we interpret (1)

as stating that πcyc
E (x) is bounded as x →∞.

Conjecture 1.1 has been extensively studied by various mathematicians since then.
M. Ram Murty [46] proved that the conjecture holds unconditionally for CM curves.
Later, using a lower bound sieve method, Gupta and Murty [28] showed uncondition-
ally for non-CM curves that

πcyc
E (x) ≫E

x
log2 x

,

as x →∞ unless Q(E[2]) = Q. See, for example, [6, 14–16, 24, 31, 59] for some recent
work on the problem.

1In 1977, S. Lang and H. Trotter [35] considered a related problem on the density of primes p for
which the reduction of a given rational point P on E generates Ẽp(Fp).
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Opposing average congruence class biases in the cyclicity and Koblitz conjectures 3

In 2022, Y. Akbal and A. M. Güloğlu [1] studied the cyclicity problem for primes
lying in an arithmetic progression. They proved that, under GRH,

πcyc
E (x; n, k) ∼ Ccyc

E ,n ,k ⋅
x

log x
,(2)

as x →∞, where Ccyc
E ,n ,k is the explicit constant defined in (21). As before, if Ccyc

E ,n ,k =
0, then we interpret (2) as stating that πcyc

E (x; n, k) is bounded as x →∞. In 2015,
J. Brau [12] obtained a formula for the constant Ccyc

E ,n ,k for all Serre curves outside of
a small class (see Remark 1.8). N. Jones and the first author [33] determined all the
possible scenarios in which the constant Ccyc

E ,n ,k vanishes. Additionally, P. -J. Wong
[60] established (2) unconditionally for CM elliptic curves.

While Conjecture 1 remains open without assuming GRH, researchers have found
success in proving the conjecture is true “on average” in various senses. As observed
in [8, Remark 7(v)], there are two broad approaches regarding the average results.
One approach is to compute the density of elliptic curves E over Fp for which E(Fp)
is cyclic, and average it over all primes p. Another approach is to count the number
of primes for which an elliptic curve over Q has cyclic reduction and then average
over the family of elliptic curves ordered by height. The former is called the “local”
viewpoint while the latter is called the “global” viewpoint.

In 1999, S. G. Vlăduţ [57] obtained some statistics related to the cyclicity problem
for elliptic curves over finite fields. In particular, he determined the ratio

#{E ∈ Fp ∶ E(Fp) is cyclic}
#Fp

,(3)

whereFp denotes the set of isomorphism classes of elliptic curves overFp . Later, E.-U.
Gekeler [26] built upon this result to obtain the local result for the average cyclicity
problem. He computed that the average of (3) over all primes p is Ccyc, which is defined
in (20).

In 2009, building upon Vlăduţ’s work, W. D. Banks and I. E. Shparlinski [6] deduced
a global result for the average cyclicity problem and demonstrated that it aligns
with Gekeler’s local result. To set notation: For positive real numbers A and B, let
F ∶= F(A, B) denote the family of elliptic curves E/Q defined by a short Weierstrass
model

E∶Y 2 = X3 + aX + b,(4)

for some a, b ∈ Z satisfying ∣a∣ ≤ A and ∣b∣ ≤ B. Banks and Shparlinski proved the
following.

Theorem 1.2 [6, Theorem 18] Let x > 0 and ε > 0. Let A ∶= A(x) and B ∶= B(x) be
parameters satisfying x ε ≤ A, B ≤ x 1−ε , and AB ≥ x 1+ε . Then, we have

1
∣F∣ ∑E∈F

πcyc
E (x) ∼ Ccyc ⋅ x

log x
, as x →∞.

Later, the inequality conditions on A and B in the theorem above were significantly
relaxed by A. Akbary and A. T. Felix [2, Corollary 1.5].
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4 S. M. Lee, J. Mayle, and T. Wang

Building upon Banks and Shparlinski’s methods, the first author refined the results
to consider primes in arithmetic progressions [38, Theorem 1.3]. To summarize his
results, under the same assumptions of Theorem 1.2, for n ≤ log x and k coprime to n,
there exists a positive constant Ccyc

n ,k for which

1
∣F∣ ∑E∈F

πcyc
E (x; n, k) ∼ Ccyc

n ,k ⋅
x

log x
, as x →∞.

The average constant Ccyc
n ,k is given explicitly in (23).

Related to the cyclicity problem is the Koblitz problem, which seeks to understand
the asymptotics of πprime

E (x) and has significance for elliptic curve cryptography
[47, 55]. In 1988, N. Koblitz [34] made a conjecture analogous to Conjecture 1.1.
In particular, it follows from the conjecture that a non-CM elliptic curve E/Q has
infinitely many primes of Koblitz reduction unless E is rationally isogenous to an
elliptic curve with nontrivial rational torsion. The Koblitz conjecture remained open
for over 20 years until Jones gave a counterexample, which appears in [62, Section
1.1]. The fundamental issue with the conjecture, which the counterexample exploits,
is its failure to account for the possibility of entanglements of division fields. Properly
accounting for this possibility, D. Zywina [62] refined the Koblitz conjecture as follows.
Conjecture 1.3 (Refined Koblitz conjecture, [62, Conjecture 1.2]) If E/Q is an elliptic
curve, then

πprime
E (x) ∼ Cprime

E ⋅ x
(log x)2 ,(5)

as x →∞, where Cprime
E ≥ 0 is the explicit constant defined in (27).

Similar to the cyclicity case, the constant Cprime
E may vanish. In this case, we

interpret (5) as indicating that πprime
E (x) is bounded as x →∞. Beyond the statement

of the conjecture provided above, Zywina made the conjecture more generally for
elliptic curves over number fields and allowed for a parameter t to consider primes
p for which ∣Ẽp(Fp)∣/t is prime.

Conjecture 1.3 is often referred to as an elliptic curve analog of the twin prime
conjecture. Assuming that the events “p is prime” and “∣Ẽp(Fp)∣ is prime” are
independent, and applying the Hardy–Littlewood heuristic [29], one would expect
that πprime

E (x) should grow like a constant times x/ log2 x, unless E has an intrinsic
obstruction preventing the existence of primes of Koblitz reduction. Although Con-
jecture 1.3 remains open even under GRH, upper bounds for πprime

E (x) have been
studied by several authors. A notable result is due to A. C. Cojocaru [18], who proved
that for a non-CM E/Q of conductor NE , we have

πprime
E (x) ≪NE

x
log2 x

(6)

as x →∞, under the quasi-GRH. (See [18, p. 268].) For CM curves, she applied
Selberg’s sieve to prove that the upper bound holds unconditionally, independently
of the conductor. Later, C. David and J. Wu [22] improved (6) into an effective
upper bound for non-CM curves under the quasi-GRH. However, a lower bound for
πprime

E (x) remains unknown.
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Opposing average congruence class biases in the cyclicity and Koblitz conjectures 5

A related problem is to understand how many prime factors the group order
∣Ẽp(Fp)∣ has as p varies. One of the first major advances in this direction was made by
S. A. Miri and V. K. Murty [3]. Given a positive integer N, let ν(N) denote the number
of prime factors of N, counted with multiplicity. They demonstrated that, assuming
GRH, for any non-CM elliptic curve E/Q,

#{p ≤ x ∶ ν(∣Ep(Fp)∣) ≤ 16} ≫E
x

log2 x
,

as x →∞. This line of research was continued by many mathematicians, leading to
successive improvements: the bound of 16 was reduced to 8 for non-CM curves under
GRH, and to 5 for CM curves unconditionally (see, for example, [18, 22, 54]).

In 2011, A. Balog, A. C. Cojocaru, and C. David obtained a local result for the
average version of the Koblitz problem and applied it to deduce the following global
results.

Theorem 1.4 [5, Theorem 1] Set x > 0 and ε > 0. Let A ∶= A(x) and B ∶= B(x) be
parameters satisfying x ε < A, B and AB > x log10 x. There exists a constant Cprime > 0
for which

1
∣F∣ ∑E∈F

πprime
E (x) ∼ Cprime ⋅ x

log2 x
, as x →∞.

The average constant Cprime is defined in (33). The inequality conditions on A and
B can also be relaxed as in Akbary and Felix [2, Equation (1.8)].

A natural inquiry is whether each of these average results is consistent with the
corresponding conjectured outcomes on average. This question was answered by Jones
[31], assuming an affirmative answer to Serre’s uniformity question (Question 2.3).

Theorem 1.5 [31, Theorem 6] Assume an affirmative answer to Serre’s uniformity
question. Let X ∈ {cyc, prime}. There exists an exponent γ > 0 such that for any positive
integer t, we have

1
∣F∣ ∑E∈F

∣CX
E − CX∣ t ≪t max

⎧⎪⎪⎨⎪⎪⎩
( log B ⋅ log7 A

B
)

t/t+1

, logγ(min{A, B})√
min{A, B}

⎫⎪⎪⎬⎪⎪⎭
,

as min{A, B} → ∞.

In particular, by taking t = 1, Theorem 1.5 gives a result on the average value of
the constants CX

E . Indeed, suppose that A ∶= A(x) and B ∶= B(x) tend to infinity as
x →∞ and assume an affirmative answer to Serre’s uniformity question and that
(log B log7 A)/B → 0 as x →∞. Then for X ∈ {cyc, prime}, we have

1
∣F∣ ∑E∈F

CX
E → CX .

This verifies that the average of the constants CX
E aligns with the average constants CX.

In this article, we utilize Zywina’s approach to propose the Koblitz constant Cprime
E ,n ,k

for primes in arithmetic progressions. Unlike the cyclicity problem, the average
version of the Koblitz constant Cprime

E ,n ,k has not yet been considered. We address this
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6 S. M. Lee, J. Mayle, and T. Wang

gap in the literature by providing a candidate for Cprime
n ,k , the average version of Cprime

E ,n ,k ,
in (42). We illustrate the suitability of these conjectural constants by proving an
analogous version of Theorem 1.5 for them.

We start by formulating the Koblitz conjecture for primes in arithmetic progres-
sions.
Conjecture 1.6 If E/Q is an elliptic curve, then there exists Cprime

E ,n ,k ≥ 0 for which

πprime
E (x; n, k) ∼ Cprime

E ,n ,k ⋅
x

log2 x
,

as x →∞, where Cprime
E ,n ,k is the explicit constant defined in (35).

As before, if Cprime
E ,n ,k = 0, we interpret the above as saying that πprime

E (x; n, k) is
bounded as x →∞. As one piece of evidence to suggest Cprime

n ,k is the correct average
constant, we compare it with the constant Cprime

E ,n ,k for Serre curves which, by Jones [32],
make up a density 1 set of elliptic curves when ordered by naive height.

To state our theorem, we first introduce some notation. Associated with E, we
define the constant

L = ∏
�∣mE

�α� , where α� =
⎧⎪⎪⎨⎪⎪⎩

v�(n) if � ∣ n,
1 otherwise,

(7)

where mE denotes the adelic level of E (defined in Sections 2.1 and 2.3) and v�(n)
denotes the �-adic valuation of n. The constants mE and L play a crucial role in com-
puting Ccyc

E ,n ,k and Cprime
E ,n ,k . For a Serre curve E, Proposition 2.4 gives a straightforward

formula for mE ,

mE =
⎧⎪⎪⎨⎪⎪⎩

2∣Δ′∣ if Δ′ ≡ 1 (mod 4),
4∣Δ′∣ otherwise,

where Δ′ denotes the squarefree part of the discriminant ΔE of any Weierstrass model
of E.
Theorem 1.7 Let E/Q be a Serre curve and let mE , Δ′, and L be as above. If mE ∤ L,
then

Ccyc
E ,n ,k = Ccyc

n ,k and Cprime
E ,n ,k = Cprime

n ,k .

Otherwise, if mE ∣ L, then

Ccyc
E ,n ,k = Ccyc

n ,k

⎛
⎜⎜⎜
⎝

1 + τcyc 1
5 ∏�∣L

�∤2n

1
�4 − �3 − �2 + � − 1

⎞
⎟⎟⎟
⎠

,

Cprime
E ,n ,k = Cprime

n ,k

⎛
⎜⎜⎜
⎝

1 + τprime ∏
�∣L
�∤2n

1
�3 − 2�2 − � + 3

⎞
⎟⎟⎟
⎠

,

where τcyc , τprime ∈ {±1} are defined in Definition 5.1.
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Opposing average congruence class biases in the cyclicity and Koblitz conjectures 7

Remark 1.8 For a Serre curve E, the constant Ccyc
E ,n ,k was previously obtained by Brau

[12, Proposition 2.5.8] under the assumption that Δ′ /∈ {−2,−1, 2}. Our formula for
Ccyc

E ,n ,k does not require this assumption and it aligns with Brau’s.

As another piece of evidence, we also consider the moments of the constants
Ccyc

E ,n ,k and Cprime
E ,n ,k for E ∈ F. Building upon Jones’s methods, we improve Theorem

1.5 unconditionally as follows.

Theorem 1.9 Let n be a positive integer and k be coprime to n. Then there exists an
exponent γ > 0 such that for any positive integer t, we have

1
∣F∣ ∑E∈F

∣Ccyc
E ,n ,k − Ccyc

n ,k ∣
t ≪t max

⎧⎪⎪⎨⎪⎪⎩
(n log B log7 A

B
)

3t
3t+1

, logγ(min{A, B})√
min{A, B}

⎫⎪⎪⎬⎪⎪⎭
,

1
∣F∣ ∑E∈F

∣Cprime
E ,n ,k − Cprime

n ,k ∣
t ≪n ,t max

⎧⎪⎪⎨⎪⎪⎩
(n log B log7 A

B
)

2t
2t+1

,

(log log(max{A3 , B2}))t logγ(min{A, B})√
min{A, B}

⎫⎪⎪⎬⎪⎪⎭
,

as min{A, B} → ∞.

Observe that as min{A, B} → ∞, we have

logγ(min{A, B})√
min{A, B}

→ 0.

This gives us the following corollary.

Corollary 1.10 Fix n ∈ N. Let k be coprime to n. Let A ∶= A(x) and B ∶= B(x) both
tend to infinity as x →∞. With the same notation as in Theorem 1.9 and for X ∈
{cyc, prime}, we have that

1
∣F∣ ∑E∈F

CX
E ,n ,k → CX

n ,k ,

provided that as x →∞,

(n log B log7 A
B

) → 0

in the cyclicity case and

(n log B log7 A
B

) → 0,
(log log(max{A3 , B2}))t logγ(min{A, B})

√
min{A, B}

→ 0

in the Koblitz case.

Based on the above considerations, the constant Cprime
n ,k that we propose in this

article appears to be a plausible candidate for the average counterpart of Cprime
E ,n ,k .

The average constants Ccyc
n ,k and Cprime

n ,k are given explicitly and we can compute their
values (to any given precision) using the Magma [10] scripts available in this article’s
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8 S. M. Lee, J. Mayle, and T. Wang

n /k 1 2 3 4 5

2 0.813752 − − − −
3 0.398219 0.415533 − − −
4 0.406876 − 0.406876 − −
5 0.202164 0.203863 0.203863 0.203863 −
6 0.398219 − − − 0.415533

Table 1: The value of Ccyc
n ,k to six decimal places.

n /k 1 2 3 4 5

2 0.505166 − − − −
3 0.280648 0.224518 − − −
4 0.252583 − 0.252583 − −
5 0.131482 0.124562 0.124562 0.124562 −
6 0.280648 − − − 0.224518

Table 2: The value of Cprime
n ,k to six decimal places.

GitHub repository [39]. Below are tables with the values of CX
n ,k for X ∈ {cyc, prime}

and small moduli n.
From the table, we observe that CX

2,1 = CX. Moreover, in each table, the sum of
the values across any given row yields CX. In Propositions 4.1 and 4.6, we prove
(reassuringly) that these simple checks hold for all moduli.

Let p be a good prime for E. As noted previously,

∣Ẽp(Fp)∣ is prime -⇒ Ẽp(Fp) is cyclic.

Hence, for an arbitrary elliptic curve E/Q, one might suspect that if primes in a certain
congruence class are more likely to be primes of Koblitz reduction, then they are also
more likely to be primes of cyclic reduction. However, the tables above suggest that
the contrary holds on average. Indeed, it follows from the formulas (23) and (42) for
CX

n ,k that these two average constants are oppositely biased for any given modulus n.
More specifically, for any k coprime to n, we have

Ccyc
n ,1 ≤ Ccyc

n ,k ≤ Ccyc
n ,−1 while Cprime

n ,1 ≥ Cprime
n ,k ≥ Cprime

n ,−1 .

Furthermore, we have Ccyc
n ,1 < Ccyc

n ,−1 and Cprime
n ,1 > Cprime

n ,−1 if and only if n is not a power
of two. The phenomenon of primes being statistically biased over congruence classes is
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Opposing average congruence class biases in the cyclicity and Koblitz conjectures 9

referred to as the average congruence class bias and was first observed in the cyclicity
problem by the first author in [38].

Lastly, it is notable that in both tables, CX
5,2 = CX

5,3 = CX
5,4. This is because, for a fixed

n, the value of CX
n ,k depends solely on whether k is congruent to 1 or not modulo

each prime factor of n. Therefore, for a fixed modulus n that is supported by s distinct
odd primes, there are at most 2s distinct values of CX

n ,k . Whether there are exactly 2s

distinct values is a question proposed by the first author in [38].

1.1 Outline of the article

Sections 2 and 3 provide the essential groundwork for proving the main results. In
Section 2, we introduce the properties of Galois representations of elliptic curves. In
particular, we introduce the definition of the adelic level and characterize the Galois
images of Serre curves and CM curves. In Section 3, we determine the sizes of certain
subsets of matrix groups that will be used in calculating the Euler factors of product
expansions of Ccyc

E ,n ,k and Cprime
E ,n ,k .

Sections 4 and 5 are dedicated to the computation of the constants CX
E ,n ,k for

X ∈ {cyc, prime}. These computations extend Zywina’s approach (a method that
originates from Lang and Trotter’s work [37] on the Lang–Trotter conjecture) to obtain
Cprime

E . The general idea is to interpret the conditions for primes of Koblitz reduction
for E in terms of mod m Galois representations, establish the heuristic constant at
each level m, and then take the limit as m →∞. In Section 4, we apply this idea
to reformulate the constants Ccyc

E and Ccyc
E ,n ,k and express Cprime

E ,n ,k in the form of an
almost Euler product. We also propose the average constant Cprime

n ,k as a complete
Euler product. In Section 5, we examine the special case where E is a Serre curve,
proving Theorem 1.7 which gives explicit formulas for Ccyc

E ,n ,k and Cprime
E ,n ,k in this case.

A critical aspect of these computations involves extracting as many Euler factors as
possible from the limits (35) and (45), leading to the crucial definition of L in (7).

Sections 6 and 7 establish bounds for moments of Ccyc
E ,n ,k and Cprime

E ,n ,k for E ∈ F. In
Section 6, we build on the work carried out in Section 5 to bound Cprime

E ,n ,k for non-
Serre, non-CM curves, and CM curves. Using a result due to D. W. Masser and G.
Wüstholz [41], we bound Cprime

E ,n ,k for non-Serre, non-CM curves in terms of the naive
height of E. This approach allows us to avoid assuming an affirmative answer to Serre’s
uniformity question, in contrast to Jones. For CM elliptic curves, we first derive the
conjectural constant Cprime

E ,n ,k using a similar method to that of Sections 4 and 5 and
bound it directly from its formula. In Section 7, we adapt the method of Jones [31] to
complete the moments computations and prove Theorem 1.9.

Finally, in Section 8, we provide numerical examples that support our results. The
numerical examples are computed using the Magma code available in this article’s
GitHub repository [39]:

https://github.com/maylejacobj/CyclicityKoblitzAPs.
We now summarize the main functions of the repository. The functions

AvgCyclicityAP and AvgKoblitzAP allow one to compute Ccyc
n ,k and Cprime

n ,k
for given coprime integers n and k, and were used to produce the tables above. Next,
the functions CyclicityAP and KoblitzAP allow one to compute the constants
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Ccyc
E ,n ,k and Cprime

E ,n ,k for any given non-CM elliptic curve E. These functions are based on
Propositions 4.10 and 4.4 and rely crucially on Zywina’s FindOpenImage function
[61] to compute the adelic image of E. The functions SerreCurveCyclicityAP
and SerreCurveKoblitzAP compute Ccyc

E ,n ,k and Cprime
E ,n ,k for a given Serre curve

E using Theorem 1.7 and do not require Zywina’s FindOpenImage. Lastly, the
repository contains code for the examples in Section 8.

1.2 Notation and conventions

We now give a brief overview of the notation used throughout the article.

• For functions f , g∶R→ R, we write f ≪ g or f = O(g) if there exists C > 0 and
x0 ≥ 0 such that ∣ f (x)∣ ≤ Cg(x) for all x > x0. If C depends on a parameter m, we
write f ≪m g or f = Om(g).

• In the same setting as above, we write f ∼ g to denote that limx→∞ f (x)/g(x) = 1.
• Let A and B be positive real numbers. Let F ∶= F(A, B) denote the family of models

Y 2 = X3 + aX + b of elliptic curves for which ∣a∣ ≤ A and ∣b∣ ≤ B.
• Given a subfamily G ⊆ F of elliptic curves, let f and g be functions defined from G

to R. We write f ≪ g if there exists an absolute constant M > 0 for which ∣ f (E)∣ ≤
Mg(E) for all E ∈ G. When M depends on a parameter m, we write f ≪m g.

• p and � denote rational primes, n a positive integer, and k an integer coprime to n.
• We write pa ∥ n if pa ∣ n and pa+1 ∤ n. In this case, a is called the p-adic valuation

of n, and is denoted by vp(n).
• Given a positive integer n, nodd denotes the odd part of n, i.e., nodd = n/2v2(n).
• We sometimes write (m, n) as shorthand for gcd(m, n).
• m∞ denotes an arbitrarily large power of m. Thus, gcd(n, m∞) denotes
∏p∣(n ,m) pvp(n). If every prime factor of n divides m, then we write n ∣ m∞.

• ( ⋅d ) denotes the Jacobi symbol.
• ϕ denotes the Euler totient function.
• μ denotes the Möbius function.
• G(m) denotes the image of a subgroup G of GL2(Ẑ) under the reduction modulo

m map.
• Given that d ∣ m and M ∈ GL2(Z/mZ), Md denotes the reduction of M modulo d.
• If A is the empty set, then we take∏a∈A a to be 1.

2 Preliminaries

2.1 Galois representations and the adelic level

Let E/Q be an elliptic curve. Associated with E, we consider the adelic Tate module,
which is given by the inverse limit

T(E) ∶= lim←4E[n],

where E[n] denotes the n-torsion subgroup of E(Q). Let Ẑ denote the ring of profinite
integers. It is well known that T(E) is a free Ẑ-module of rank 2. The absolute Galois
group Gal(Q/Q) acts naturally on T(E), giving rise to the adelic Galois representation
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of E,

ρE ∶Gal(Q/Q) 4→ Aut(T(E)).

Upon fixing a Ẑ-basis for T(E), we consider ρE as a map

ρE ∶Gal(Q/Q) 4→ GL2(Ẑ).

Let GE denote the image of ρE , which, because of the above choice of basis, is defined
only up to conjugacy in GL2(Ẑ). With respect to the profinite topology on GL2(Ẑ),
the subgroup GE is necessarily closed since ρE is a continuous map.

We now state a foundational result of Serre, known as Serre’s open image theorem.

Theorem 2.1 (Serre, [48, Théorème 3]) If E/Q is without complex multiplication, then
GE is an open subgroup of GL2(Ẑ). In particular, the index [GL2(Ẑ) ∶ GE] is finite.

Suppose that E/Q is a non-CM elliptic curve. For each positive integer m, let πm
be the natural reduction map

πm ∶GL2(Ẑ) 4→ GL2(Z/mZ).

Let GE(m) be the image of the mod m Galois representation

ρE ,m ∶Gal(Q/Q) → GL2(Z/mZ),

defined by the composition πm ○ ρE . It follows from Theorem 2.1 that there exists a
positive integer m for which

GE = π−1
m (GE(m)).(8)

One may observe that (8) is equivalent to the statement that for every n ∈ N,

GE(n) = π−1(GE(gcd(n, m))),(9)

where π∶GL2(Z/nZ) → GL2(Z/ gcd(n, m)Z) denotes the natural reduction map.
The least positive integer m with this property is called the adelic level of E, and is
denoted by mE . The constant mE accounts for both the nonsurjectivity of the �-adic
Galois representations of E as well as the entanglements between their images.

We now give a fundamental property of mE that we will use several times.

Lemma 2.2 Let E/Q be a non-CM elliptic curve of adelic level mE . For any d1 , d2 ∈ N
with d1 ∣ m∞

E and (d2 , mE) = 1, we have

GE(d1d2) ≃ GE(d1) ×GL2(Z/d2Z)

via the map GL2(Z/d1d2Z) → GL2(Z/d1Z) ×GL2(Z/d2Z).

Proof By the given conditions, we have (d1 , d2) = 1. Set d′ = gcd(d1 , mE). Let
π∶GL2(Z/d1d2Z) → GL2(Z/d′Z) and π1∶GL2(Z/d1Z) → GL2(Z/d′Z) be the natu-
ral reduction maps. By the Chinese remainder theorem, π can be identified with

π1 × triv∶GL2(Z/d1Z) ×GL2(Z/d2Z) → GL2(Z/d′Z) × {1}.

By (9), we have that

GE(d1d2) = π−1(GE(d′)) ≃ (π1 × triv)−1(GE(d′)) = GE(d1) ×GL2(Z/d2Z). ∎
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We conclude this subsection by recalling Serre’s uniformity question.

Question 2.3 Does there exist an absolute constant c such that for each elliptic curve
E/Q,

GE(�) = GL2(Z/�Z)
holds for all rational primes � > c?

While Question 2.3 remains open, it is widely conjectured to be true with c = 37
[56, 63] and considerable partial progress has been made toward its resolution [4, 25,
40, 43, 48, 49].

2.2 Serre curves

In this subsection, we introduce the generic class of elliptic curves E/Q with maximal
adelic Galois image GE , and provide an explicit description of GE for curves in this
class.

Serre noted [48] that for an elliptic curve E/Q, the adelic Galois representation
ρE cannot be surjective2, that is, the adelic level mE is never 1. We briefly give the
argument here. If E has complex multiplication, then [GL2(Ẑ) ∶ GE] is necessarily
infinite [48], so we restrict our attention to the case that E is non-CM. Assume that E
is defined by the factored Weierstrass equation

Y 2 = (X − e1)(X − e2)(X − e3)

with e1 , e2 , e3 ∈ Q. Then, the 2-torsion of E is given by

E[2] = {O, (e1 , 0), (e2 , 0), (e3 , 0)} ≅ Z/2Z⊕Z/2Z.

Consequently, Aut(E[2]) can be identified with S3. The discriminant ΔE of E is given
by

ΔE = [(e1 − e2)(e2 − e3)(e3 − e1)]2 .(10)

Let Δ′ denote the squarefree part of ΔE , i.e., the unique squarefree integer such that
ΔE/Δ′ ∈ (Q×)2. Note that the discriminant ΔE depends on the Weierstrass model of
E, but Δ′ does not.

Let us first assume that ΔE /∈ (Q×)2. Let dE be the conductor of Q(
√

ΔE), that
is, the smallest positive integer such that Q(

√
ΔE) ⊆ Q(ζdE ). It is straightforward to

check that

dE =
⎧⎪⎪⎨⎪⎪⎩

∣Δ′∣ if Δ′ ≡ 1 (mod 4),
4∣Δ′∣ otherwise.

Let us define the quadratic character associated with Q(
√

ΔE) as follows,

χΔE ∶Gal(Q/Q) rest.44→ Gal(Q(
√

ΔE)/Q)
∼4→ {±1}.

2Over some number fields K ≠ Q, there exist elliptic curves E/K for which ρE is surjective [27].
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Fix σ ∈ Gal(Q/Q). Viewing ρE ,2(σ) ∈ GE(2) ⊆ Aut(E[2]) ≃ S3, by (10), we notice
that

χΔE (σ) (
√

ΔE) = ε(ρE ,2(σ)) (
√

ΔE) ,

where ε∶ S3 → {±1} denotes the signature map.3 Hence, χΔE (σ) = ε(ρE ,2(σ)).
On the other hand, we have that Q(

√
ΔE) ⊆ Q(ζdE ). Since Gal(Q(ζdE )/Q) ≃

(Z/dEZ)×, there exists a unique quadratic character α∶Gal(Q(ζdE )/Q) → {±1} for
which χΔE (σ) = α(det ○ρE ,dE (σ)) for any σ ∈ Gal(Q/Q). Therefore, we have

ε(ρE ,2(σ)) = α(det ○ρE ,dE (σ))(11)

for any σ ∈ Gal(Q/Q).
Let ME ∶= lcm(2, dE). Consider the subgroup

HE(ME) = {M ∈ GL2(Z/MEZ) ∶ ε(M2) = α(det MdE )} ,

where M2 and MdE denote the reductions of M modulo 2 and dE , respectively. Note
that the index of HE(ME) in GL2(Z/MEZ) is 2 and that GE(ME) ⊆ HE(ME) by (11).
We define

HE ∶= π−1(HE(ME)),(12)

where π∶GL2(Ẑ) → GL2(Z/MEZ) is the natural reduction map. Then HE is an index
2 subgroup of GL2(Ẑ) that contains GE . We say that E is a Serre curve if HE = GE , that
is, [GL2(Ẑ) ∶ GE] = 2.

In the above discussion, we supposed that ΔE /∈ (Q×)2. We now consider the
opposite case that ΔE ∈ (Q×)2. Let Q(E[2]) = Q(e1 , e2 , e3) denote the 2-division
field of E. Observe that [Q(E[2]) ∶ Q] divides 3, and hence [GL2(Z/2Z) ∶ GE(2)] is
divisible by 2. Thus, by [42, Proposition 2.14], [GL2(Ẑ) ∶ GE] ≥ 12, which follows by
considering the index of the commutator of GE in SL2(Ẑ). In particular, E cannot be
a Serre curve in this case.

Serre curves are useful for us for two key reasons. First, as mentioned in the
introduction, Jones [32] showed that they are “generic” in the sense that the density of
the subfamily of Serre curves among the family of all elliptic curves ordered by naive
height is 1. Second, the adelic image GE of a Serre curve E can be explicitly described,
as we will now discuss.

Proposition 2.4 Let E/Q be a Serre curve and write Δ′ to denote the squarefree part
of the discriminant of E. Then

mE =
⎧⎪⎪⎨⎪⎪⎩

2∣Δ′∣ if Δ′ ≡ 1 (mod 4),
4∣Δ′∣ otherwise.

(13)

Furthermore, for any positive integer m,

GE(m) =
⎧⎪⎪⎨⎪⎪⎩

GL2(Z/mZ) if mE ∤ m,
HE(m) if mE ∣ m,

3Note that the value of ε(ρE ,2(σ)) is independent of the choice of isomorphism Aut(E[2]) ≃ S3.
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14 S. M. Lee, J. Mayle, and T. Wang

where HE(m) denotes the image of HE , defined in (12), under the reduction modulo m
map.

Proof The proof of (13) can be found in [31, pp. 696–697]. Hence, mE = ME where
ME is defined as above. Now, let m be a positive integer. By [31, Equation (13)]
and (9), one may deduce that GE(m) = GL2(Z/mZ) if mE ∤ m. Suppose mE ∣ m.
Then, GE(m) ⊆ HE(m). The containment must be equal; otherwise, the index of GE
in GL2(Ẑ) is greater than [GL2(Z/mZ) ∶ HE(m)] = [GL2(Z/mEZ) ∶ HE(mE)] = 2,
contradicting the assumption that E/Q is a Serre curve. ∎

In order to compute CX
E ,n ,k , we need to know GE (meaning we must know the

adelic level mE and the image of GE modulo mE ). For Serre curves, this is particularly
tractable, and was exploited in the work of Jones [31]. We now give the description of
GE for Serre curves.

First, we define χ4∶ (Z/4Z)× → {±1} and χ8∶ (Z/8Z)× → {±1} as follows:

χ4(k) =
⎧⎪⎪⎨⎪⎪⎩

1 if k ≡ 1 (mod 4)
−1 if k ≡ 3 (mod 4)

, χ8(k) =
⎧⎪⎪⎨⎪⎪⎩

1 if k ≡ 1, 7 (mod 8)
−1 if k ≡ 3, 5 (mod 8)

.

We define the character ψm ∶GL2(Z/mZ) → {±1} associated with E by

ψm = ∏
�α∥m

ψ�α ,

where ψ�α ∶GL2(Z/�αZ) → {±1} is defined for M ∈ GL2(Z/�αZ) by

ψ�α(M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( det M�

�
) if � is odd,

ε(M2) if � = 2, α ≥ 1, and Δ′ ≡ 1 (mod 4),
χ4(det M4)ε(M2) if � = 2, α ≥ 2, and Δ′ ≡ 3 (mod 4),
χ8(det M8)ε(M2) if � = 2, α ≥ 3, and Δ′ ≡ 2 (mod 8),
χ8(det M8)χ4(det M4)ε(M2) if � = 2, α ≥ 3, and Δ′ ≡ 6 (mod 8),
1 otherwise.

As noted in [31, p. 701], given mE ∣ m, one may see that for M ∈ GL2(Z/mZ), we have

ε(M2)(
Δ′

det MmE

) = ψm(M).

In particular, we have HE(m) = ker ψm . Thus GE is the preimage of ker ψm in GL2(Ẑ).

2.3 Galois representations in the CM case

Having discussed Galois representations for non-CM elliptic curves, we now turn to
the CM case. Suppose that E has CM by an order O in an imaginary quadratic field K.
In this case, the absolute Galois group Gal(K/K) acts naturally on T(E), which is a
one-dimensional Ô-module, where Ô denotes the profinite completion of O. Hence,
we can construct the adelic Galois representation associated with E,

ρE ∶Gal(K/K) → Aut(T(E)) ≃ GL1(Ô) ≃ Ô×.
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Let GE denote the image of ρE . We now state Serre’s open image theorem for CM
elliptic curves.

Theorem 2.5 (Serre, [48, p. 302, Corollaire]) If E/Q has CM by O, then GE is an open
subgroup of Ô×. In particular, the index [Ô× ∶ GE] is finite.

For each positive integer m, consider the natural reduction map

πm ∶ Ô× → (O/mO)×.

Let GE(m) denote the image of the modulo m Galois representation

ρE ,m ∶ Gal(K/K) → (O/mO)×

defined by the composition πm ○ ρE . It follows from Theorem 2.5 that

GE = π−1
m (GE(m))(14)

for some positive integer m. As in the non-CM case, (14) is equivalent to the statement
that for every n ∈ N,

GE(n) = π−1(GE(gcd(n, m))),(15)

where π∶ (O/nO)× → (O/ gcd(n, m)O)× is the natural reduction map.
In the CM case, we follow [31, p. 693] to define mE to be the smallest positive integer

m such that (15) holds and for which

4( ∏
� ramifies in K

�) divides m.(16)

One can prove the following using the same argument sketched in the proof of
Lemma 2.2.

Lemma 2.6 Let E/Q be a CM elliptic curve of level mE . For any d1 , d2 ∈ N with d1 ∣
m∞

E and (d2 , mE) = 1, we have

GE(d1d2) ≃ GE(d1) × (O/d2O)×.

Lemmas 2.2 and 2.6 are used to express the constants Ccyc
E ,n ,k and Cprime

E ,n ,k as almost
Euler products. It is worth noting that both lemmas hold even if mE is replaced by
any positive multiple of it. Thus, the minimality condition in the definition of mE for
both non-CM and CM curves is not required from a theoretical perspective for us.
Nonetheless, the minimality of mE is useful for our computations as it allows us to
extract more Euler factors.

Let K/Q be an imaginary quadratic field. We denote its ring of integers by OK .
Let O be an order of K. The index f = [OK ∶ O] is necessarily finite and is called the
conductor of O. Let χK be the Dirichlet character defined by

χK(�) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if � ramifies in K ,
1 if � splits in K ,
−1 if � is inert in K .

(17)
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16 S. M. Lee, J. Mayle, and T. Wang

Let dK be the discriminant of K. One can check that

χK(�) = (
dK

�
)

for each odd prime �. By [45, Theorem 9.13], we see that χK is a primitive quadratic
character.

We now state a lemma on the size of the image of mod �α Galois representation of
E for � ∤ f mE .

Lemma 2.7 Let E/Q be a CM elliptic curve. For � ∤ f mE , we have

∣GE(�α)∣ = �2(α−1)(� − 1)(� − χK(�)).
Proof Since O is an order of class number 1, we have

O/(�OK ∩O) = O/�O ≃ OK/�OK

for any � ∤ f . (See [21, Proposition 7.20].) By Lemma 2.6, we have GE(�α) ≃
(OK/�αOK)×. Applying [13, Equation (4)], we obtain the desired results. ∎

Moreover, we have the following uniformity result for CM elliptic curves over Q.

Proposition 2.8 There is an absolute constant C such that

f mE ≤ C

holds for all CM elliptic curves E/Q.

Proof It suffices to show that the index [Ô× ∶ GE], the product of ramified primes
in (16), and the conductor f = [OK ∶ O] of the CM-order O are uniformly bounded
for E/Q. This follows from the fact that there are only finitely many endomorphism
rings for CM elliptic curves overQ and [11, Theorem 1.1]. In fact, for CM elliptic curves
E/Q, it is known that the conductor of O is at most 3. (See [52, Appendix C, Example
11.3.2].) ∎

3 Counting matrices

In this section, we will establish counting results that will play pivotal roles in
determining the cyclicity and Koblitz constants for arithmetic progressions. We first
outline the general strategy.

Let � be a prime and P� be a property that certain matrices in GL2(Z/�Z) satisfy.
Let m and n be positive integers and k be coprime to n. Suppose that we are interested
in counting the size of the set

X(m) ∶= {M ∈ GL2(Z/mZ) ∶ M� satisfies P� for each � ∣ m, det M ≡ k (mod gcd(n, m))},

where M� denotes the reduction of M modulo �. By the Chinese remainder theorem,
it suffices to count the size of X(�a) for each �a ∥ m. Also, note that the reduction map
π ∶ GL2(Z/�aZ) → GL2(Z/�Z) induces a surjective map X(�a) → X(�) and further
X(�a) = π−1(X(�)). Consequently, the problem of counting the size of X(m) reduces
to counting the size of X(�) for each � ∣ m.

The condition that � is a prime of cyclic or Koblitz reduction for E can be interpreted
as a condition on matrices modulo primes. Thus, with the above strategy in mind, we
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give a lemma and corollary that will be used to compute the cyclicity constant Ccyc
E ,n ,k

for non-CM curves.

Lemma 3.1 Let � be a prime, a be a positive integer, and k be an integer coprime to �.
Fix M ∈ GL2(Z/�Z) with det M ≡ k (mod �). For any integer k̃ with k̃ ≡ k (mod �),
we have

#{M̃ ∈ GL2(Z/�aZ) ∶ M̃ ≡ M (mod �), det M̃ ≡ k̃ (mod �a)} = �3(a−1) .

Proof Let π∶GL2(Z/�aZ) → GL2(Z/�Z) denote the reduction modulo � map,
which is a surjective group homomorphism. For any M ∈ GL2(Z/�Z), we have that

π−1(M) = {M̃ ∈ GL2(Z/�aZ) ∶ M̃ ≡ M (mod �)} .

The image of π−1(M) under det∶GL2(Z/�aZ) → (Z/�aZ)× is

det(π−1(M)) = {k′ ∈ (Z/�aZ)× ∶ k′ ≡ k (mod �)}.

Hence, for any integer k̃ with k̃ ≡ k (mod �), we have

#{M̃ ∈ GL2(Z/�aZ) ∶ M̃ ≡ M (mod �), det M̃ ≡ k̃ (mod �a)} = ∣π−1(M)∣
∣det(π−1(M))∣ .

Finally, we note that ∣π−1(M)∣ = ∣ker(π)∣ = �4(a−1) and ∣det(π−1(M))∣ = �a−1. ∎
Corollary 3.2 Fix a prime � and positive integer a. Let k be an integer coprime to �.
Then

#{M ∈ GL2(Z/�aZ) ∶ M /≡ I (mod �), det M ≡ k (mod �a)}

=
⎧⎪⎪⎨⎪⎪⎩

�3(a−1) ⋅ (�3 − � − 1) if k ≡ 1 (mod �),
�3(a−1) ⋅ (�3 − �) if k /≡ 1 (mod �).

Proof Let M ∈ GL2(Z/�Z). If M /≡ I (mod �), then any lifting M̃ of M in
GL2(Z/�aZ) satisfies M̃ /≡ I (mod �). If k /≡ 1 (mod �), then det M ≡ k (mod �) guar-
antees that M /≡ I (mod �). Since the determinant map det∶GL2(Z/�Z) → (Z/�Z)×
is a surjective group homomorphism, one can check that there are �3 − � matrices M
in GL2(Z/�Z) with det M ≡ k (mod �). On the other hand, if k ≡ 1 (mod �), we have
one less choice for M. Along with Lemma 3.1, we obtain the desired results. ∎

The next lemma gives a corollary that will be useful when computing the Koblitz
constant Cprime

E ,n ,k for non-CM curves.

Lemma 3.3 Let � be an odd prime, t be an integer, and d be an integer coprime to �.
Then we have

#{M ∈ GL2(Z/�Z) ∶ det M ≡ d (mod �), tr M ≡ t (mod �)} = �2 + � ⋅ ( t2 − 4d
�
) ,

where ( ⋅
�
) denotes the Legendre symbol. If � = 2, then we have

#{M ∈ GL2(Z/2Z) ∶ det M ≡ 1 (mod 2), tr M ≡ t (mod 2)} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4 if t ≡ 0 (mod 2),

2 if t ≡ 1 (mod 2).
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18 S. M. Lee, J. Mayle, and T. Wang

Proof The case when � = 2 follows from a direct calculation. See [19, Lemma 2.7] for
the case when � is odd. ∎
Corollary 3.4 Fix a prime � and positive integer a. Let k be an integer coprime to �.
Then

#{M ∈ GL2(Z/�aZ) ∶det(M − I) /≡ 0 (mod �), det M ≡ k (mod �a)}

=
⎧⎪⎪⎨⎪⎪⎩

�3(a−1) ⋅ (�3 − �2 − �) if k ≡ 1 (mod �),
�3(a−1) ⋅ (�3 − �2 − 2�) if k /≡ 1 (mod �).

Proof Let M ∈ GL2(Z/�aZ) be such that det M ≡ k (mod �a) and note that

det(M − I) ≡ 0 (mod �) ⇐⇒ tr M ≡ k + 1 (mod �).
Thus, if � ≠ 2, we have that

((k + 1)2 − 4k
�

) = ((k − 1)2
�
) =
⎧⎪⎪⎨⎪⎪⎩

0 if k ≡ 1 (mod �),
1 if k /≡ 1 (mod �).

By Lemma 3.3, this completes the proof when � ≠ 2. When � = 2 and a = 1, it is
straightforward to check that the lemma holds. ∎

Now, we turn our attention to the CM case. Let K be an imaginary quadratic field
and write OK to denote the ring of integers of K. Then OK is a free Z-module of
rank 2. Fixing a Z-basis, we can identify GL1(OK) = O×

K as a subgroup of GL2(Z).
In the following discussion (and henceforth) the determinant of g for g ∈ O×

K means
the determinant of g considered as a matrix in GL2(Z). Moreover, we note that for any
odd rational prime � and integer a ≥ 1, the determinant of any element in �aOK lies
in �aZ, so we obtain the induced determinant map det∶ (OK/�aOK)× → (Z/�aZ)×,
which does not depend on the choice of the basis.

Lemma 3.5 Let K be an imaginary quadratic field and OK be the ring of integers of K.
Let � be an odd rational prime unramified in K and a be a positive integer. Let k be an
integer that is coprime to � and fix g ∈ (OK/�OK)× with det g ≡ k (mod �). Then

#{g̃ ∈ (OK/�aOK)× ∶ g̃ ≡ g (mod �OK), det g̃ ≡ k (mod �a)} = �a−1 .

Proof The reduction map π∶ (OK/�aOK)× → (OK/�OK)× is a surjective group
homomorphism. Regardless of whether � splits or is inert in K, we have ∣ker π∣ =
�2(a−1) by Lemma 2.7. Therefore,

#{g̃ ∈ (OK/�aOK)× ∶ g̃ ≡ g (mod �OK)} = ∣π−1(g)∣ = ∣ker π∣ = �2(a−1) .

The image of π−1(g) under det∶ (OK/�aOK)× → (Z/�aZ)× is

det(π−1(g)) = {k′ ∈ (Z/�aZ)× ∶ k′ ≡ k (mod �)} .

Thus, we have ∣det(π−1(g))∣ = �a−1. Finally, note that

#{g̃ ∈ (O/�a
O)× ∶ g̃ ≡ g (mod �OK), det g ≡ k (mod �

a)} = ∣π−1(g)∣
∣det(π−1(g))∣ = �

a−1 .

∎
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We now prove a corollary that will be used for the computation of the Koblitz
constant Cprime

E ,n ,k for CM curves.

Corollary 3.6 Let K be an imaginary quadratic field. Fix an odd rational prime � that
is unramified in K. Let k be an integer that is coprime to �. If � splits in K, then

#{g ∈ (OK/�aOK)× ∶ det(g − 1) /≡ 0 (mod �), det g ≡ k (mod �a)}

=
⎧⎪⎪⎨⎪⎪⎩

�a−1(� − 2) if k ≡ 1 (mod �),
�a−1(� − 3) if k /≡ 1 (mod �).

If � is inert in K, then

#{g ∈ (OK/�aOK)× ∶ det(g − 1) /≡ 0 (mod �), det g ≡ k (mod �a)}

=
⎧⎪⎪⎨⎪⎪⎩

�a if k ≡ 1 (mod �),
�a−1(� + 1) if k /≡ 1 (mod �).

Proof By Lemma 3.5, it suffices to consider the case where a = 1. Suppose � splits in
K. Then we have that OK/�OK ≃ F� × F� and the determinant map det∶F×� × F×� → F×�
is identified with the multiplication map (a, b) ↦ ab. Thus, the set in question can be
expressed as

{(g1 , g2) ∈ F×� × F×� ∶ g1 − 1, g2 − 1 ∈ F×� , g1 g2 ≡ k (mod �)} .

Hence, any element in the set is of the form (g , kg−1) where both g and kg−1 are not
congruent to 1 modulo �. Thus, the size of the set is � − 2 if k ≡ 1 (mod �) and � − 3
otherwise.

Now, suppose � is inert in K. Then we have OK/�OK ≃ F�2 and the determinant
map det∶F�2 → F� is identified with the norm map NF�2 /F�

∶ x ↦ x�+1. Thus, the set in
question can be expressed as

{g ∈ F×�2 ∶ (g − 1)�+1 ∈ F×� , g�+1 ≡ k (mod �)} .

For each k coprime to �, there are exactly � + 1 choices of g ∈ F×�2 with g�+1 ≡ k
(mod �). In case k ≡ 1 (mod �), we have one less choice due to the constraint
(g − 1)�+1 ∈ F×� . ∎

4 Definitions of the constants

4.1 On the cyclicity constant

We keep the notation from Section 2.1. In this subsection, we introduce the definition
of the cyclicity constant Ccyc

E , given by Serre, and its average counterpart Ccyc. For
coprime integers n and k, we introduce the cyclicity constant for primes in arithmetic
progression Ccyc

E ,n ,k , given by Akbal and Güloğlu, and its average counterpart Ccyc
n ,k .

First of all, Serre [51, pp. 465–468] defined the cyclicity constant Ccyc
E to be

Ccyc
E ∶= ∑

n≥1

μ(n)
[Q(E[n]) ∶ Q] ,(18)
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where μ(⋅) denotes the Möbius function and Q(E[n]) is the nth division field of E.
He proved that, under GRH, Ccyc

E is the density of primes of cyclic reduction for E; see
Conjecture 1.1.

For a non-CM elliptic curve E/Q, Jones [31, p. 692] observed that (18) can be
expressed as an almost Euler product involving the adelic level of E. Specifically, he
showed that

Ccyc
E =
⎛
⎝ ∑d ∣mE

μ(d)
[Q(E[d]) ∶ Q]

⎞
⎠ ∏�∤mE

(1 − 1
∣GL2(Z/�Z)∣

) .(19)

The average counterpart of Ccyc
E is

Ccyc ∶= ∏
�

(1 − 1
∣GL2(Z/�Z)∣

) ≈ 0.813752.(20)

As mentioned in the introduction, Gekeler [26] demonstrated that Ccyc represents the
average cyclicity constant from the local viewpoint. Later, Banks and Shparlinski [6]
verified that the constant also describes the density of primes of cyclic reduction on
average in the global sense. Furthermore, Jones [31] verified that the average of Ccyc

E
coincides with Ccyc.

Let ζn denote a primitive nth root of unity, and let σk ∈ Gal(Q(ζn)/Q)map ζn ↦
ζ k

n . Define

γn ,k(Q(E[d])) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if σk fixes Q(E[d]) ∩Q(ζn) pointwise,
0 otherwise.

Akbal and Güloğlu [1] defined the constant Ccyc
E ,n ,k as follows,

Ccyc
E ,n ,k ∶= ∑

d≥1

μ(d)γn ,k(Q(E[d]))
[Q(E[d])Q(ζn) ∶ Q]

.(21)

They proved that this constant represents the density of primes p ≡ k (mod n) of
cyclic reduction for E, under GRH. Recently, Jones and the first author [33] demon-
strated that for a non-CM elliptic curve E/Q, this density can be expressed as an almost
Euler product as follows,

Ccyc
E ,n ,k =

⎛
⎝ ∑d ∣mE

μ(d)γn ,k(Q(E[d]))
[Q(E[d])Q(ζn) ∶ Q]

⎞
⎠ ∏

�∤mE
�∣(n ,k−1)

(1 − ϕ(�)
∣GL2(Z/�Z)∣

) ∏
�∤nmE

(1 − 1
∣GL2(Z/�Z)∣

) .

(22)

Finally, the average counterpart of Ccyc
E ,n ,k is given by

Ccyc
n ,k ∶=

1
ϕ(n) ∏�∣(n ,k−1)

(1 − ϕ(�)
∣GL2(Z/�Z)∣

)∏
�∤n
(1 − 1
∣GL2(Z/�Z)∣

) .(23)

Observe that (23) coincides with (22) if mE is taken to be 1. While mE = 1 is impossible
for any given elliptic curve over Q, it is plausible to think that the role of mE is
inconsequential when considered over the family of all elliptic curves ordered by
height. Indeed, as mentioned in the introduction, the first author [38] demonstrated
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that Ccyc
n ,k represents the average density of primes p ≡ k (mod n) of cyclic reduction

for the family of elliptic curves ordered by height.
We now prove a proposition that serves as a reasonableness check for Ccyc

n ,k . While
it can be derived from the main theorem of [38], we opt to include a self-contained
proof to draw a parallel with the upcoming Proposition 4.6.

Proposition 4.1 For any positive integer n, we have

∑
1≤k≤n
(n ,k)=1

Ccyc
n ,k = Ccyc ,

where Ccyc and Ccyc
n ,k are defined in (20) and (23), respectively.

Proof For notational convenience, we define

f (�) = 1 − ϕ(�)
∣GL2(Z/�Z)∣

.

It suffices to verify that

F(n) ∶= 1
ϕ(n) ∑1≤k≤n

(k ,n)=1

∏
�∣n

k≡1(�)

f (�) =∏
�∣n
(1 − 1
∣GL2(Z/�Z)∣

) .(24)

First, we prove that (24) holds for n = pa , a prime power. Observe that

F(pa) = 1
ϕ(pa) ∑1≤k≤pa

(k , pa)=1

∏
�∣pa

k≡1(�)

f (�)

= 1
ϕ(pa) (p

a−1 f (p) + pa−1(p − 2)) = 1 − 1
∣GL2(Z/pZ)∣

.

Now, we prove that F is multiplicative. Let pa be a prime power and n be a positive
integer coprime to p. Then

F(pa n) = 1
ϕ(pa n) ∑

1≤k≤pa n
(k , pa n)=1

∏
�∣pa n
k≡1(�)

f (�)

= 1
ϕ(pa) ⋅

1
ϕ(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
1≤k≤pa n
(k , pn)=1

k≡1(p)

f (p) ∏
�∣n

k≡1(�)

f (�) + ∑
1≤k≤pa n
(k , pn)=1

k/≡1(p)

∏
�∣n

k≡1(�)

f (�)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
(pa−1 + pa−1(p − 2))

ϕ(pa) ⋅ 1
ϕ(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑
1≤k≤n
(k ,n)=1

∏
�∣n

k≡1(�)

f (�)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= F(pa) ⋅ F(n).

This completes the proof. ∎
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4.2 On the Koblitz constant

We keep the notation from Section 2.1. Now we give the definition of the Koblitz
constant Cprime

E defined by Zywina and its average counterpart Cprime given by Balog,
Cojocaru, and David. Based on Zywina’s method, for coprime integers n and k, we
propose the Koblitz constant Cprime

E ,n ,k for primes in arithmetic progression and its
average counterpart Cprime

n ,k .
Let E/Q be a non-CM elliptic curve of conductor NE and m be a positive integer.

For p ∤ mNE , let Frobp be a Frobenius element at p in Gal(Q/Q) (see [50, Chapter
2.1, I-6] for the definition of Frobp). We have that

∣Ẽp(Fp)∣ ≡ det(I − ρE ,m(Frobp)) (mod m),(25)

by [52, Chapter V. Theorem 2.3.1]. Thus, we see that an odd prime p is of Koblitz
reduction if and only if the right-hand side of (25) is invertible modulo m, for every
m < ∣Ẽp(Fp)∣ such that gcd(p, m) = 1.4 For such an integer m, we set

Ψprime(m) ∶= {M ∈ GL2(Z/mZ) ∶ det(I −M) ∈ (Z/mZ)×} .(26)

Define the ratio

δprime
E (m) ∶= ∣GE(m) ∩Ψprime(m)∣

∣GE(m)∣
.

The Koblitz constant, proposed by Zywina [62], is defined by

Cprime
E ∶= lim

m→∞

δprime
E (m)

∏�∣m (1 − 1/�) ,(27)

where the limit is taken over all positive integers ordered by divisibility.
We start by proving some properties of δprime

E (⋅), which were originally remarked
in [62].

Proposition 4.2 Let E/Q be a non-CM elliptic curve of adelic level mE . Then δprime
E (⋅),

as an arithmetic function, satisfies the following properties:
(1) for any positive integer m, δprime

E (m) = δprime
E (rad(m));

(2) for any prime � ∤ mE and integer d coprime to �, δprime
E (d�) = δprime

E (d) ⋅
δprime

E (�).
Therefore, (27) can be expressed as follows,

Cprime
E = δprime

E (rad(mE))
∏�∣mE

(1 − 1/�) ⋅ ∏�∤mE

δprime
E (�)
1 − 1/� .(28)

Proof We first prove item (1). Let r = rad(m) and ϖ∶GE(m) → GE(r) be the
usual reduction map. In particular, ϖ is a surjective group homomorphism. We

4This biconditional statement fails if ∣Ẽp(Fp)∣ = pr for some integer r ≥ 2. However, this can only
happen if p = 2 due to the Hasse bound.
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will show that

ϖ−1 (GE(r) ∩Ψprime(r)) = GE(m) ∩Ψprime(m).(29)

Let M ∈ GE(r) ∩Ψprime(r) and M̃ ∈ ϖ−1(M). Recall that det(M − I) is invertible
modulo r and that m is only supported by the prime factors of r. Thus, det(M̃ − I)
is invertible modulo m and M̃ ∈ GE(m) ∩Ψprime(m). The other inclusion is obvious,
and hence (29) is obtained. Therefore,

δprime
E (m) =

∣GE(m) ∩Ψprime(m)∣
∣GE(m)∣

=
∣ϖ−1 (GE(r) ∩Ψprime(r))∣

∣ϖ−1 (GE(r))∣
= δprime

E (r).

We now prove item (2). By Lemma 2.2, we have an isomorphism,

GE(d�) ≃ GE(d) ×GL2(Z/�Z).(30)

It suffices to show that the isomorphism induces a bijection between the two sets

GE(d�) ∩Ψprime(d�) and (GE(d) ∩Ψprime(d)) × (GL2(Z/�Z) ∩Ψprime(�)) .
(31)

Take M ∈ GE(d�) ∩Ψprime(d�). By a similar argument to the proof of (1), we
have that Md ∈ GE(d) ∩Ψprime(d) and M� ∈ GL2(Z/�Z) ∩Ψprime(�). Now, let
M′ ∈ GE(d) ∩Ψprime(d) and M′′ ∈ GL2(Z/�Z) ∩Ψprime(�). Viewing (M′ , M′′) ∈
GE(d) ×GL2(Z/�Z), there exists a unique element M ∈ GE(d�) with Md = M′ and
M� = M′′ by (30). Since det(M′ − I) ∈ (Z/dZ)× and det(M′′ − I) ∈ (Z/�Z)×, we have
det(M − I) ∈ (Z/d�Z)×; in particular, M ∈ Ψprime(d�). Therefore, (31) is established.

Along with (30), we obtain

δprime
E (d�) =

∣GE(d�) ∩Ψprime(d�)∣
∣GE(d�)∣

= ∣GE(d) ∩Ψprime(d)∣
∣GE(d)∣

⋅ ∣GL2(Z/�Z) ∩Ψprime(�)∣
∣GL2(Z/�Z)∣

= δprime
E (d) ⋅ δprime

E (�).

This completes the proof. ∎

Remark 4.3 Suppose that � ∤ mE and M ∈ GL2(Z/�Z). Note that det(M − I) ∈
(Z/�Z)× if and only if 1 is not an eigenvalue of M. One can check from Table 12.4
in [36, Chapter XVIII] that

#{M ∈ GL2(Z/�Z) ∶ M has eigenvalues 1 and k} =
⎧⎪⎪⎨⎪⎪⎩

�2 + � if k /≡ 1 (mod �),
�2 if k ≡ 1 (mod �).

Thus, we see that

δprime
E (�)
1 − 1/� = �

� − 1
⋅ (1 − (� − 2)(�2 + �) + �2

(�2 − 1)(�2 − �) ) = 1 − �2 − � − 1
(� − 1)3(� + 1) ∼ 1 − 1

�2 as �→∞,

(32)

and hence the infinite product in (28) converges absolutely.
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The average counterpart of Cprime
E is given by

Cprime ∶= ∏
�

(1 − �2 − � − 1
(� − 1)3(� + 1)) ≈ 0.505166.(33)

As mentioned earlier, Balog, Cojocaru, and David [5] demonstrated that Cprime

represents the average Koblitz constant, while Jones [31] verified that the average of
Cprime

E coincides with Cprime . Unlike for the cyclicity problem, the Koblitz problem
has not yet been studied for primes in arithmetic progressions. We construct Cprime

E ,n ,k
in a parallel way to Zywina’s method and propose a candidate for the average constant
Cprime

n ,k .
Let E/Q be a non-CM elliptic curve of conductor NE and m be a positive integer.

For a prime p ∤ nNE , let Frobp be a Frobenius element lying above p in Gal(Q/Q).
We have that

det(ρE ,n(Frobp)) ≡ p (mod n).
Along with (25), let us consider the set

Ψprime
n ,k (m) ∶= {M ∈ GL2(Z/mZ) ∶ det(I −M) ∈ (Z/mZ)× , det M ≡ k (mod gcd(m, n))} .

(34)

One may note that ρE ,m(Frobp) ∈ GE(m) ∩Ψprime
n ,k (m) if and only if p ≡ k

(mod gcd(n, m)) and ∣Ẽp(Fp)∣ is invertible Z/mZ. For this reason, we consider the
ratio

δprime
E ,n ,k (m) ∶=

∣GE(m) ∩Ψprime
n ,k (m)∣

∣GE(m)∣
.

Building upon Zywina’s approach, we are led to define

Cprime
E ,n ,k ∶= lim

m→∞

δprime
E ,n ,k (m)

∏�∣m (1 − 1/�) ,(35)

where the limit is taken over all positive integers, ordered by divisibility.
Proposition 4.4 Let E/Q be a non-CM elliptic curve of adelic level mE and n be a
positive integer. Let L be defined as in (7). Then, δprime

E ,n ,k (⋅), as an arithmetic function,
satisfies the following properties:
(1) Let L ∣ L′ ∣ L∞. Then, δprime

E ,n ,k (L) = δprime
E ,n ,k (L′);

(2) Let �α be a prime power and d be a positive integer with (�, Ld) = 1. Then,
δprime

E ,n ,k (d�a) = δprime
E ,n ,k (d) ⋅ δ

prime
E ,n ,k (�α).

(3) Let �α ∥ n and (�, L) = 1. Then, for any β > α, δprime
E ,n ,k (�β) = δprime

E ,n ,k (�α). Further, if
� ∤ nL, we have δprime

E ,n ,k (�β) = δprime
E (�).

Therefore, (35) can be expressed as follows,

Cprime
E ,n ,k =

δprime
E ,n ,k (L)

∏�∣L(1 − 1/�) ⋅ ∏�∤mE
�α∥n

δprime
E ,n ,k (�α)
1 − 1/� ⋅ ∏

�∤nmE

δprime
E (�)
1 − 1/� .(36)

and the infinite product converges absolutely.

Downloaded from https://www.cambridge.org/core. 19 Jul 2025 at 07:36:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Opposing average congruence class biases in the cyclicity and Koblitz conjectures 25

Proof Let us prove item (1). Consider the natural reduction map ϖ∶GE(L′) →
GE(L), which is a surjective group homomorphism. We will show that

ϖ−1 (GE(L) ∩Ψprime
n ,k (L)) = GE(L′) ∩Ψprime

n ,k (L
′).(37)

Let M ∈ GE(L) ∩Ψprime
n ,k (L) and M̃ ∈ ϖ−1(M). Recall that det(M − I) is invertible

modulo L and that L′ is only supported by the prime factors of L. Thus, det(M̃ − I)
is invertible modulo L′. Since gcd(n, L) = gcd(n, L′), we also have det M̃ ≡ k
(mod gcd(n, L′)). Thus, M̃ ∈ GE(L′) ∩Ψprime

n ,k (L′). The other inclusion is obvious,
and hence (37) is obtained. Therefore, we have

δprime
E ,n ,k (L

′) =
∣GE(L′) ∩Ψprime

n ,k (L′)∣
∣GE(L′)∣

=
∣ϖ−1 (GE(L) ∩Ψprime

n ,k (L))∣
∣ϖ−1(GE(L))∣

= δprime
E ,n ,k (L).

Let us prove item (2). By Lemma 2.2, we have an isomorphism,

GE(d�α) ≃ GE(d) ×GL2(Z/�αZ).(38)

It suffices to show that the isomorphism induces a map between the sets

GE(d�α) ∩Ψprime
n ,k (d�

α) and (GE(d) ∩Ψprime
n ,k (d)) × (GL2(Z/�αZ) ∩Ψprime

n ,k (�
α)) .

(39)

Say M ∈ GE(d�α) ∩Ψprime
n ,k (d�α). By a similar argument to the proof of (1), one may

see that Md ∈ GE(d) ∩Ψprime
n ,k (d) and M�α ∈ GL2(Z/�αZ) ∩Ψprime

n ,k (�α). Now, let
M′ ∈ GE(d) ∩Ψprime(d) and M′′ ∈ GL2(Z/�αZ) ∩Ψprime(�α). Viewing (M′ , M′′) ∈
GE(d) ×GL2(Z/�αZ), there exists a unique element M ∈ GE(d�α) with Md = M′

and M�α = M′′ by (38). Note that since det(M′ − I) ∈ (Z/dZ)× and det(M′′ − I) ∈
(Z/�αZ)×, we have det(M − I) ∈ (Z/d�αZ)×; in particular, M ∈ Ψprime

n ,k (d�α). There-
fore, (39) is established.

Along with (38), we obtain

δprime
E ,n ,k (d�α) =

∣GE(d�α) ∩ Ψprime
n ,k (d�α)∣

∣GE(d�α)∣

= ∣GE(d) ∩ Ψprime(d)∣
∣GE(d)∣ ⋅ ∣GL2(Z/�α

Z) ∩ Ψprime(�α)∣
∣GL2(Z/�αZ)∣ = δprime

E ,n ,k (d) ⋅ δprime
E ,n ,k (�

α).

Finally, let us prove item (3). Since � ∤ mE , by Lemma 2.2, GE(�α) and GE(�β) are
the full groups, GL2(Z/�αZ) and GL2(Z/�βZ). Let ϖ∶GL2(Z/�βZ) → GL2(Z/�αZ)
be the natural reduction map which is a surjective group homomorphism. By a similar
argument as in the proof of item (1), it suffices to check that

ϖ−1 (Ψprime
n ,k (�

α)) = Ψprime
n ,k (�

β).(40)

Take M ∈ Ψprime
n ,k (�α) and let M̃ ∈ ϖ−1(M). By the same reasoning in the proof

of item (1), det(M̃ − I) is invertible modulo �β . Since gcd(n, �α) = gcd(n, �β) = �α ,
we also have det M̃ ≡ k (mod �α). The other inclusion is obvious, and hence (40) is
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obtained. Thus, we have

δprime
E ,n ,k (�

β) =
∣Ψprime

n ,k (�β)∣
∣GL2(Z/�βZ)∣ =

∣ϖ−1 (Ψprime
n ,k (�α))∣

∣ϖ−1 (GL2(Z/�αZ))∣ = δprime
E ,n ,k (�

α).

In case � ∤ nL, let ϖ∶GL2(Z/�βZ) → GL2(Z/�Z). It suffices to check

ϖ−1 (Ψprime(�)) = Ψprime
n ,k (�

β).(41)

Note that the condition det M ≡ k (mod gcd(n, �)) is trivial, and hence Ψprime
E ,n ,k (�) =

Ψprime
E (�). Let M ∈ Ψprime

E (�). Note that every lifting M̃ ∈ ϖ−1(M) belongs to
Ψprime

E ,n ,k (�β). The other inclusion is obvious, and hence (41) is obtained. Thus, we have

δprime
E ,n ,k (�

β) =
∣Ψprime

n ,k (�β)∣
∣GL2(Z/�βZ)∣ =

∣ϖ−1 (Ψprime(�))∣
∣ϖ−1(GL2(Z/�Z))∣

= δprime
E (�).

By grouping the prime factors of M in (35) according to whether they divide L or not,
we obtain (36). The absolute convergence of (36) follows from Remark 4.3. ∎

The following lemma allows us to express Cprime
E ,n ,k more explicitly.

Lemma 4.5 Suppose �α ∥ n and � ∤ mE . Then

δprime
E ,n ,k (�α)
1 − 1/� =

⎧⎪⎪⎨⎪⎪⎩

1
ϕ(�α) (1 −

�
∣GL2(Z/�Z)∣) if k ≡ 1 (mod �),

1
ϕ(�α) (1 −

�2+�
∣GL2(Z/�Z)∣) if k /≡ 1 (mod �).

Proof By the assumption, we have GE(�α) ≃ GL2(Z/�αZ). Recall that

Ψprime
n ,k (�α) = {M ∈ GL2(Z/�α

Z) ∶ det(M − I) ∈ (Z/�α
Z)× , det M ≡ k (mod gcd(n, �α))} ,

whose cardinality was determined in Corollary 3.4. A brief calculation reveals the
desired result. ∎

Let E/Q be a non-CM elliptic curve of adelic level mE . Let n = n1n2 where n1 =
gcd(n, m∞

E ) and (n2 , mE) = 1. By (32), (36), and Lemma 4.5, we have

Cprime
E ,n ,k =

δprime
E ,n ,k (L)

∏�∣L(1 − 1/�) ⋅
1

ϕ(n2)
∏
�∤mE
�∣n

�∤k−1

(1 − �2 + �
∣GL2(Z/�Z)∣

) ∏
�∤mE

�∣(n ,k−1)

(1 − �

∣GL2(Z/�Z)∣
)

⋅ ∏
�∤nmE

(1 − �2 − � − 1
(� − 1)3(� + 1)) .

We now propose the average counterpart of Cprime
E ,n ,k ,

Cprime
n ,k ∶= 1

ϕ(n) ∏�∣n
�∤k−1

(1 − �2 + �
∣GL2(Z/�Z)∣

) ∏
�∣(n ,k−1)

(1 − �

∣GL2(Z/�Z)∣
)∏

�∤n
(1 − �2 − � − 1

(� − 1)3(� + 1)
) .

(42)
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The formula for Cprime
n ,k coincides with Cprime

E ,n ,k if one takes mE = 1, similar to the case
for Ccyc

n ,k in (23). Parallel to Proposition 4.1, we show that Cprime
n ,k behaves as expected

when we sum over k.

Proposition 4.6 For any positive integer n, we have

∑
1≤k≤n
(n ,k)=1

Cprime
n ,k = Cprime ,

where Cprime and Cprime
n ,k are defined in (33) and (42), respectively.

Proof For notational convenience, we define

f1(�) = 1 − �2 + �
∣GL2(Z/�Z)∣

, f2(�) = 1 − �

∣GL2(Z/�Z)∣
.

To show the desired equation, we need to verify that

F(n) ∶= 1
ϕ(n) ∑1≤k≤n

(k ,n)=1

∏
�∣n

k/≡1(�)

f1(�) ∏
�∣n

k≡1(�)

f2(�) =∏
�∣n
(1 − �2 − � − 1
(� − 1)3(� + 1)) .(43)

First, we prove that (43) is true for n = pa , a prime power. Observe that

F(pa) = 1
ϕ(pa) (p

a−1( f1(p)(p − 2) + f2(p)))

= pa−1

ϕ(pa) [(p − 2)(1 − p2 + p
∣GL2(Z/pZ)∣

) + (1 − p
∣GL2(Z/pZ)∣

)]

= 1 − p2 − p − 1
(p − 1)3(p + 1) .

Let us prove that F is multiplicative. Let n be coprime to pa , a prime power. We see
that

F(pa n) = 1
ϕ(pa n) ∑

1≤k≤pa n
(k , pn)=1

∏
�∣pn

k/≡1(�)

f1(�) ∏
�∣pn

k≡1(�)

f2(�)

= 1
ϕ(pa)

1
ϕ(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
1≤k≤pa n
(k , pn)=1

k/≡1(p)

f1(p) ∏
�∣n

k/≡1(�)

f1(�) ∏
�∣n

k≡1(�)

f2(�) + ∑
1≤k≤pa n
(k , pn)=1

k≡1(p)

f2(p) ∏
�∣n

k/≡1(�)

f1(�) ∏
�∣n

k≡1(�)

f2(�)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f1(p)(p − 2)pa−1

ϕ(pa)
1

ϕ(n) ∑
1≤k≤n
(k ,n)=1

∏
�∣n

k/≡1(�)

f1(�) ∏
�∣n

k≡1(�)

f2(�)

+ f2(p)pa−1

ϕ(pa)
1

ϕ(n) ∑
1≤k≤n
(k ,n)=1

∏
�∣n

k/≡1(�)

f1(�) ∏
�∣n

k≡1(�)

f2(�)

= 1
ϕ(pa)

(pa−1( f1(p)(p − 2) + f2(p))) ⋅ F(n) = F(pa)F(n).

This completes the proof. ∎
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4.3 Applying Zywina’s approach for the cyclicity problem

Zywina [62] refined the Koblitz conjecture by improving the heuristic explanation for
the constant Cprime

E . In essence, he interprets the desired property of a prime of Koblitz
reduction in terms of Galois representations, examines the ratio of elements with the
desired property in each finite level GE(m), and considers the limit of that ratio as
m approaches infinity. In this subsection, we apply Zywina’s approach to determine
the heuristic densities of primes of cyclic reduction for E and verify their concurrence
with the densities proposed by Serre and Akbal–Güloğlu.

Let E/Q be a non-CM elliptic curve and fix a good prime p ≠ 2. We now give a
criterion for p to be a prime of cyclic reduction for E.5 Let Frobp denote a Frobenius
element in Gal(Q/Q) at p. By [20, Lemma 2.1], we have that

Ẽp(Fp) is cyclic ⇐⇒ ∀ primes � ≠ p, Ẽp(Fp)
does not contain a subgroup isomorphic to Z/�Z⊕ Z/�Z

⇐⇒ ∀ primes � ≠ p, ρE ,�(Frobp) /≡ I (mod �)
⇐⇒ ∀m ∈ N with p ∤ m and ∀ prime � ∣ m, ρE ,�(Frobp) /≡ I (mod �).

Drawing a parallel to (26), we consider the set

Ψcyc(m) ∶= {M ∈ GL2(Z/mZ) ∶ M /≡ I (mod �) for all � ∣ m} ,

and the ratio

δcyc
E (m) ∶=

∣GE(m) ∩Ψcyc(m)∣
∣GE(m)∣

.

Taking the limit of δcyc
E (m) over all positive integers, ordered by divisibility, we expect

to obtain the heuristic density of primes of cyclic reduction.

Proposition 4.7 Let E/Q be a non-CM elliptic curve of adelic level mE . Then δcyc
E (⋅),

as an arithmetic function, satisfies the following properties:
(1) for any positive integer m, δcyc

E (m) = δcyc
E (rad(m));

(2) for any prime � ∤ mE and integer d coprime to �, δcyc
E (d�) = δcyc

E (d) ⋅ δ
cyc
E (�).

Therefore, the heuristic density of primes of cyclic reduction can be expressed as follows,

lim
m→∞

δcyc
E (m) = δcyc

E (rad(mE)) ⋅ ∏
�∤mE

δcyc
E (�).

Proof Follows similarly to the proof of Proposition 4.2. ∎
Remark 4.8 One can easily check that for � ∤ mE ,

δcyc
E (�) = 1 − 1

∣GL2(Z/�Z)∣
∼ 1 − 1

�4 , as �→∞(44)

and hence the infinite product converges absolutely.

We now verify that the limit limm→∞ δcyc
E (m) appearing in Proposition 4.7 coin-

cides with the cyclicity constant Ccyc
E originally defined by Serre [51, pp. 465–468].

5Note that if p = 2 is a prime of good reduction for E, then Ẽ2(F2) is necessarily cyclic.
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Proposition 4.9 Let E/Q be a non-CM elliptic curve. Then we have

Ccyc
E = δcyc

E (rad(mE)) ⋅ ∏
�∤mE

(1 − 1
∣GL2(Z/�Z)∣

) .

Proof Let R = rad(mE). By (19) and (44), it suffices to check

∑
d ∣mE

μ(d)
[Q(E[d]) ∶ Q] = δcyc

E (R).

Let m be a positive integer and d ∣ m. We define

S′E(m) ∶= {M ∈ GE(m) ∶ M /≡ I (mod �) for all � ∣ m}
S(d)

E (m) ∶= {M ∈ GE(m) ∶ M ≡ I (mod d)}.

From the definition, one may observe that GE(R) ∩Ψcyc(R) = S′E(R). Thus, we have

δcyc
E (R) =

∣S′E(R)∣
∣GE(R)∣

.

Also, note that S(d)
E (d) = {I}. Let ϖ∶GE(m) → GE(d) be the natural reduction map.

Then,

∣S(d)
E (m)∣
∣GE(m)∣

=
∣ϖ−1(S(d)

E (d))∣
∣ϖ−1(GE(d))∣

=
∣S(d)

E (d)∣
∣GE(d)∣

= 1
∣GE(d)∣

.

Observe that S′E(R) = GE(R) − ⋃�∣R S(�)E (R). By the principle of inclusion–exclusion,
we obtain

δcyc
E (R) =

∣S′E(R)∣
∣GE(R)∣

= ∑
d ∣R

μ(d)
∣GE(d)∣

= ∑
d ∣mE

μ(d)
[Q(E[d]) ∶ Q] .

This completes the proof. ∎

Now, we construct a heuristic density of primes of cyclic reduction that lie in an
arithmetic progression. Consider

Ψcyc
n ,k(m) ∶= {M ∈ GL2(Z/mZ) ∶ M /≡ I (mod �) for all � ∣ m, det M ≡ k (mod gcd(m, n))} .

We define

δcyc
E ,n ,k(m) ∶=

∣GE(m) ∩Ψcyc
n ,k(m)∣

∣GE(m)∣
.

Drawing parallels from Zywina/s approach, we consider the limit

lim
m→∞

δcyc
E ,n ,k(m),(45)

where the limit is taken over all positive integers, ordered by divisibility. We’ll prove
in Proposition 4.12 that (45) coincides with Ccyc

E ,n ,k as defined in [1]. To do so, we’ll first
give some properties of δcyc

E ,n ,k(⋅).
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Proposition 4.10 Let E/Q be a non-CM elliptic curve of adelic level mE . Fix a positive
integer n. Set L as in (7). Then, δcyc

E ,n ,k(⋅), as an arithmetic function, satisfies the following
properties:
(1) Let L ∣ L′ ∣ L∞. Then, δcyc

E ,n ,k(L) = δcyc
E ,n ,k(L′);

(2) Let �α be a prime power and d be a positive integer with (�, Ld) = 1. Then,
δcyc

E ,n ,k(d�a) = δcyc
E ,n ,k(d) ⋅ δ

cyc
E ,n ,k(�α).

(3) Let �α ∥ n and (�, L) = 1. Then, for any β > α, δcyc
E ,n ,k(�β) = δcyc

E ,n ,k(�α). Further, if
� ∤ nL, we have δcyc

E ,n ,k(�β) = δcyc
E (�).

Therefore, (45) can be expressed as follows,

lim
m→∞

δcyc
E ,n ,k(m) = δcyc

E ,n ,k(L) ⋅ ∏
�∤mE
�α∥n

δcyc
E ,n ,k(�

α) ⋅ ∏
�∤nmE

δcyc
E (�).(46)

and the product converges absolutely.

Proof One can argue similarly to the proof of Proposition 4.4 to obtain the desired
results. The absolute convergence of (46) follows from Remark 4.8. ∎

The next lemma allows us to describe (46) explicitly.

Lemma 4.11 Let E/Q be a non-CM elliptic curve of adelic level mE . Suppose �a ∥ n
and � ∤ mE . For any k coprime to n, we have

δcyc
E ,n ,k(�

a) =
⎧⎪⎪⎨⎪⎪⎩

1
ϕ(�a) if � ∣ n and � ∤ (k − 1)

1
ϕ(�a) (1 −

ϕ(�)
∣GL2(Z/�Z)∣) if � ∣ (n, k − 1).

Proof Since � ∤ mE , we have GE(�a) ≃ GL2(Z/�aZ), and hence ∣GE(�a)∣ = (�2 −
1)(�2 − �)�4(a−1). Applying Corollary 3.2, we obtain the desired results. ∎

Let E/Q be a non-CM elliptic curve of adelic level mE . Let n = n1n2 where n1 =
gcd(n, m∞

E ) and (n2 , mE) = 1. By (44), (46), and Lemma 4.11, we obtain

lim
m→∞

δcyc
E ,n ,k(m) =

δcyc
E ,n ,k(L)
ϕ(n2)

∏
�∤mE

�∣(n ,k−1)

(1 − ϕ(�)
∣GL2(Z/�Z)∣

) ∏
�∤nmE

(1 − 1
∣GL2(Z/�Z)∣

) .

(47)

We now prove that (47) equals the cyclicity constant proposed by Akbal and Gülğlu.

Proposition 4.12 Let E/Q be a non-CM elliptic curve of adelic level mE and n be a
positive integer. Let n = n1n2 where n1 = gcd(n, m∞

E ) and (n2 , mE) = 1. Then we have

Ccyc
E ,n ,k =

δcyc
E ,n ,k(L)
ϕ(n2)

∏
�∤mE

�∣(n ,k−1)

(1 − ϕ(�)
∣GL2(Z/�Z)∣

) ∏
�∤nmE

(1 − 1
∣GL2(Z/�Z)∣

) .

Proof Define

S′E ,n ,k(m) ∶= {σ ∈ Gal(Q(E[m])Q(ζn)/Q) ∶ σ ∣Q(ζn) = σk , σ ∣Q(E[�]) /≡ 1 for all � ∣ m}.
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Let R = rad(mE). By [33, p. 13], (22) can be expressed as follows,

∣S′E ,n ,k(R)∣
∣Gal(Q(E[R])Q(ζn)/Q)∣

∏
�∤mE

�(n ,k−1)

(1 − ϕ(�)
∣GL2(Z/�Z)∣

) ∏
�∤nmE

(1 − 1
∣GL2(Z/�Z)∣

) .

(48)

Thus, it suffices to verify that

∣S′E ,n ,k(R)∣
∣Gal(Q(E[R])Q(ζn))/Q∣

=
δcyc

E ,n ,k(L)
ϕ(n2)

.

By the Weil pairing, we have Q(ζn2) ⊆ Q(E[n2]). Thus, we see that Q(E[R])Q(ζn1)
and Q(ζn2)must be linearly disjoint by Lemma 2.2, and hence

Gal(Q(E[R])Q(ζn)/Q) ≃ Gal(Q(E[R]Q(ζn1))/Q) ×Gal(Q(ζn2)/Q).

Under the isomorphism, the set S′E ,n ,k(R) can be identified as S′E ,n1 ,k(R) × {σk}, and
hence ∣S′E ,n ,k(R)∣ = ∣S′E ,n1 ,k(R)∣. Thus, we have

∣S′E ,n ,k(R)∣
∣Gal(Q(E[R])Q(ζn)/Q)∣

= 1
ϕ(n2)

⋅
∣S′E ,n1 ,k(R)∣

∣Gal(Q(E[R])Q(ζn1)/Q)∣
.

Remark thatQ(E[R]) ⊆ Q(E[L]) andQ(ζn1) ⊆ Q(E[L]) by the definition of L. Thus,
the usual restriction ϖ∶GE(L) → Gal(Q(E[R])Q(ζn1)/Q) gives a surjective group
homomorphism.

Viewing GE(L) as a subgroup of GL2(Z/LZ), we may observe that

ϖ−1(S′E ,n1 ,k(R)) = {σ̃ ∈ GE(L) ∶ σ̃ ∣Q(ζn1 )
= σk , σ̃ ∣Q(E[�]) /≡ 1 (mod �) for all � ∣ L}

= GE(L) ∩ {M ∈ GL2(Z/LZ) ∶ det M ≡ k (mod n1), M /≡ I (mod �) for all � ∣ L}
= GE(L) ∩ Ψcyc

n ,k(L).

Therefore,

∣S′E ,n1 ,k(R)∣
∣Gal(Q(E[R])Q(ζn1)/Q)∣

=
∣ϖ−1 (S′E ,n1 ,k(R))∣

∣ϖ−1(Gal(Q(E[R])Q(ζn1)/Q))∣
=
∣GE(L) ∩ Ψcyc

n ,k(L)∣
∣GE(L)∣

= δcyc
E ,n ,k(L).

This completes the proof. ∎

Remark 4.13 As one may have observed from Conjectures 1.1 and 1.3, the conjectural
growth rates of πcyc

E (x) and πprime
E (x) are different. Thus, there is an intrinsic

difference between Ccyc
E and Cprime

E . In particular, Ccyc
E can be interpreted as the

(conjectural) density of primes of cyclic reduction for E whereas Cprime
E should not be

interpreted analogously. A similar remark holds for πcyc
E (x; n, k) and πprime

E (x; n, k)
and their respective constants.

5 On the cyclicity and Koblitz constants for Serre curves

We begin by fixing some notation that will hold throughout the section. Let E/Q be a
Serre curve of discriminant ΔE , n be a positive integer, and k be an integer coprime to
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n. Let Δ′ be the squarefree part of ΔE . By Proposition 2.4, we have

mE =
⎧⎪⎪⎨⎪⎪⎩

2∣Δ′∣ if Δ′ ≡ 1 (mod 4),
4∣Δ′∣ otherwise.

Let L be defined as in (7). The goal of this section is to develop formulas for Ccyc
E ,n ,k

and Cprime
E ,n ,k with our assumption that E is a Serre curve. By Propositions 4.4 and 4.10,

it suffices to compute δcyc
E ,n ,k(L) and δprime

E ,n ,k (L).
For an integer n, we set n = n1n2 where n1 = (n, m∞

E ) and (n2 , mE) = 1. There are
two cases to consider: mE ∤ L and mE ∣ L. The former occurs if and only if one of the
following holds:
• Δ′ ≡ 3 (mod 4) and 2 ∤ n;
• Δ′ ≡ 2 (mod 4) and 4 ∤ n.
We write L = 2α ⋅ Lodd where Lodd is an odd integer; observe that ∣Δ′∣ divides Lodd. We
now define two sign functions that depend on Δ′ , k and appear in Theorem 1.7.

Definition 5.1 Let E/Q be a Serre curve of discriminant ΔE . Let Δ′ and k defined as
above. Assume mE ∣ L. We define τ = τ(Δ′ , k) as follows.
• If Δ′ ≡ 1 (mod 4), we define τ = −1.
• If Δ′ ≡ 3 (mod 4), then 4 ∣ n. We define

τ =
⎧⎪⎪⎨⎪⎪⎩

−1 if k ≡ 1 (mod 4),
1 if k ≡ 3 (mod 4).

• If Δ′ ≡ 2 (mod 8), then 8 ∣ n. We define

τ =
⎧⎪⎪⎨⎪⎪⎩

−1 if k ≡ 1, 7 (mod 8),
1 if k ≡ 3, 5 (mod 8).

• If Δ′ ≡ 6 (mod 8), then 8 ∣ n. We define

τ =
⎧⎪⎪⎨⎪⎪⎩

−1 if k ≡ 1, 3 (mod 8),
1 if k ≡ 5, 7 (mod 8).

Finally, we define τX ∶= τX(Δ′ , n, k) ∈ {±1} as follows,

τcyc ∶= τ ∏
�∣Lodd

�∤n

(−1) ∏
�∣(n ,Lodd)
�∤k−1

( k
�
) ,

τprime ∶= −τ ∏
�∣(n ,Lodd)
�∤k−1

( k
�
) .

Having defined τcyc and τprime , the rest of the section is devoted to proving
Theorem 1.7. First, suppose mE ∤ L. Then, by Proposition 2.4, we have GE(L) ≃
GL2(Z/LZ) ≃ ∏�α∥L GL2(Z/�αZ). One can check that the isomorphism induces
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bijections between the sets,

ΨX
n ,k(L) and ∏

�α∥L
ΨX

n ,k(�α),(49)

for X ∈ {cyc, prime}. Let � be a prime factor of L. If � ∤ n, then we have α = 1 by (7).
The condition det M ≡ k (mod gcd(n, �)) becomes trivial, and hence we have

ΨX
n ,k(�α) = ΨX(�)

for X ∈ {cyc, prime}.
On the other hand, suppose �α ∥ n. We have already determined the size of

ΨX
n ,k(�α) in Corollaries 3.2 and 3.4. Based on those counts, we obtain the following.

Lemma 5.2 We have

(1) Ψcyc
n ,k(L) = ∏

�∣L
�∤n

((�2 − 1)(�2 − �) − 1) ∏
�α∥(L ,n)
�∣k−1

(�3(α−1)(�3 − � − 1)) ∏
�α∥(L ,n)
�∤k−1

(�3(α−1)(�3 − �)).

(2) Ψprime
n ,k (L) = ∏

�∣L
�∤n

(�(�3 − 2�2 − � + 3)) ∏
�α∥(L ,n)
�∣k−1

(�3(α−1)(�3 − �
2 − �)) ∏

�α∥(L ,n)
�∤k−1

(�3(α−1)(�3 − �
2 − 2�)).

Based on Lemma 5.2.(1), we obtain

δcyc
E ,n ,k(L) = ∏

�α∥(n ,L)
�∣k−1

�3(α−1)(�3 − � − 1)
∣GL2(Z/�αZ)∣ ∏

�α∥(n ,L)
�∤k−1

�3(α−1)(�3 − �)
∣GL2(Z/�αZ)∣ ∏�∣L

�∤n

(1 − 1
∣GL2(Z/�Z)∣

)

= ∏
�α∥(n ,L)

1
�α−1 ∏

�∣(n ,L)
�∣k−1

( 1
� − 1

− 1
∣GL2(Z/�Z)∣

) ∏
�∣(n ,L)
�∤k−1

( 1
� − 1

)∏
�∣L
�∤n

(1 − 1
∣GL2(Z/�Z)∣

)(50)

= 1
ϕ(n1) ∏

�∣(n ,L)
�∣k−1

(1 − ϕ(�)
∣GL2(Z/�Z)∣

)∏
�∣L
�∤n

(1 − 1
∣GL2(Z/�Z)∣

) .

Thus, (47) and (50) give

Ccyc
E ,n ,k =

1
ϕ(n1)

∏
�∣L

k≡1(�)

(1 − ϕ(�)
∣GL2(Z/�Z)∣

)∏
�∣L
�∤n

(1 − 1
∣GL2(Z/�Z)∣

)

⋅ 1
ϕ(n2)

∏
�∤mE

�∣(n ,k−1)

(1 − ϕ(�)
∣GL2(Z/�Z)∣

) ∏
�∤nmE

(1 − 1
∣GL2(Z/�Z)∣

)

= 1
ϕ(n) ∏�∣(n ,k−1)

(1 − ϕ(�)
∣GL2(Z/�Z)∣

)∏
�∤n
(1 − 1
∣GL2(Z/�Z)∣

) = Ccyc
n ,k .

Hence, we obtain that Ccyc
E ,n ,k = Ccyc

n ,k if mE ∤ L.
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Similarly, for the Koblitz case, applying Lemma 5.2.(2), we see

δprime
E ,n ,k (L)

∏�∣L(1 − 1/�)
= ∏

�α∥(n ,L)
�∤k−1

� ⋅ �3(α−1) ⋅ (�3 − �2 − 2�)
(� − 1)∣GL2(Z/�αZ)∣ ∏

�α∥(n ,L)
�∣k−1

� ⋅ �3(α−1) ⋅ (�3 − �2 − �)
(� − 1)∣GL2(Z/�αZ)∣ ∏

�∣L
�∤n

(1 − �2 − � − 1
(� − 1)3(� + 1)

)

(51)

= 1
ϕ(n1)

∏
�∣(n ,L)
�∤k−1

(1 − �2 + �

∣GL2(Z/�Z)∣
) ∏

�∣(n ,L)
�∣k−1

(1 − �

∣GL2(Z/�Z)∣
)∏

�∣L
�∤n

(1 − �2 − � − 1
(� − 1)3(� + 1)

) .

Thus, Proposition 4.4, Lemma 4.5, and (51) give

Cprime
E ,n ,k =

1
ϕ(n1)

∏
�∣(n ,L)
�∣k−1

(1 − �

∣GL2(Z/�Z)∣
) ∏

�∣(n ,L)
�∤k−1

(1 − �2 + �
∣GL2(Z/�Z)∣

)∏
�∣L
�∤n

(1 − �2 − � − 1
(� − 1)3(� + 1)

)

⋅ 1
ϕ(n2)

∏
�∤mE
�∣n

�∣k−1

(1 − �

∣GL2(Z/�Z)∣
) ∏

�∤mE
�∣n

�∤k−1

(1 − �2 + �
∣GL2(Z/�Z)∣

) ∏
�∤nmE

(1 − �2 − � − 1
(� − 1)3(� + 1)

)

=Cprime
n ,k .

This completes the proof of the theorem for the case where mE ∤ L.
Now, suppose that mE ∣ L. This case is a bit more involved. First, we recall from

Section 2.2 the definition of ψ�α and the fact that GE(L) = ker ψL . By [31, Lemma 16]
and (49) we have

∣GE(L) ∩ΨX
n ,k(L)∣ =

1
2
⎛
⎝
∣ΨX

n ,k(L)∣ + ∏
�α∥L
(∣YX

�α ,+∣ − ∣YX
�α ,−∣)
⎞
⎠

,(52)

for X ∈ {cyc, prime}, where
Y cyc
�α ,± ∶= {M ∈ GL2(Z/�α

Z) ∶ ψ�α (M) = ±1, M /≡ I (mod �), det M ≡ k (mod gcd(�α , n))} ,

Y prime
�α ,± ∶= {M ∈ GL2(Z/�α

Z) ∶ ψ�α (M) = ± 1, det(M − I) /≡ 0 (mod �), det M ≡ k (mod gcd(�α , n))}.

The sets Y cyc
�α ,+, Y cyc

�α ,−, Y prime
�α ,+ , and Y prime

�α ,− all depend on n and k, though we do not
include this dependence in the notation for brevity. We first focus on the size of
∣YX

�α ,+∣ − ∣YX
�α ,−∣ for primes � dividing Lodd.

Lemma 5.3 We have
(1)

∏
�α∥Lodd

(∣Y cyc
�α ,+∣ − ∣Y

cyc
�α ,−∣) =

∏
�∣Lodd

�∤n

(−1) ∏
�α∥(n ,Lodd)

�∣k−1

�3(α−1)(�3 − � − 1) ∏
�α∥(n ,Lodd)

�∤k−1

( k
�
) �3(α−1)(�3 − �).

(2)

∏
�α∥Lodd

(∣Y prime
�α ,+ ∣ − ∣Y

prime
�α ,− ∣) =

∏
�∣Lodd

�∤n

� ∏
�α∥(n ,Lodd)

�∣k−1

�3(α−1)(�3 − �2 − �) ∏
�α∥(n ,Lodd)

�∤k−1

( k
�
) �3(α−1)(�3 − �2 − 2�).
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Proof From the definition of ψ�α for an odd prime � ∣ L, we have

∣Y cyc
�α ,±∣ = #{M ∈ GL2(Z/�αZ) ∶ (det M

�
) = ±1, M /≡ I (mod �), det M ≡ k (mod �α)} ,

∣Y prime
�α ,± ∣ = #{M ∈ GL2(Z/�αZ) ∶ (det M

�
) = ±1, det(M − I) /≡ 0 (mod �), det M ≡ k (mod �α)} .

By Corollaries 3.2 and 3.4, it is easy to check that

∣Y cyc
�α ,+∣ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�3(α−1) (�3 − � − 1) if � ∣ n and k ≡ 1 (mod �),
�3(α−1)(�3 − �) if � ∣ n, k /≡ 1 (mod �), and ( k

�
) = 1,

0 if � ∣ n, ( k
�
) = −1,

(�2−�)(�2−1)
2 − 1 if � ∤ n,

∣Y cyc
�α ,−∣ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if � ∣ n and ( k
�
) = 1,

�3(α−1)(�3 − �) if � ∣ n and ( k
�
) = −1,

(�2−�)(�2−1)
2 if � ∤ n,

∣Y prime
�α ,+ ∣ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�3(α−1)(�3 − �2 − �) if � ∣ n and k ≡ 1 (mod �)
�3(α−1)(�3 − �2 − 2�) if � ∣ n and k /≡ 1 (mod �), and ( k

�
) = 1,

0 if � ∣ n and ( k
�
) = −1,

(�−1)(�3−�2−2�)
2 + � if � ∤ n,

∣Y prime
�α ,− ∣ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if � ∣ n and ( k
�
) = 1,

�3(α−1)(�3 − �2 − 2�) if � ∣ n and ( k
�
) = −1,

(�−1)(�3−�2−2�)
2 if � ∤ n.

The result now follows from some simple computations. ∎
Finally, we evaluate ∣YX

�α ,+∣ − ∣YX
�α ,−∣ when � = 2.

Lemma 5.4 For fixed Δ′ and k, let τ be defined as in Definition 5.1. Then
(1) ∣Y cyc

2α ,+∣ − ∣Y
cyc
2α ,−∣ = τ ⋅ 23(α−1)

(2) ∣Y prime
2α ,+ ∣ − ∣Y

prime
2α ,− ∣ = −(2τ) ⋅ 23(α−1).

Proof First, we assume Δ′ ≡ 1 (mod 4). Then, by the definition of ψ2α(⋅),
Y cyc

2α ,± = {M ∈ GL2(Z/2αZ) ∶ ε(M2) = ±1, M /≡ I (mod 2), det M ≡ k (mod 2α)} ,

Y prime
2α ,± = {M ∈ GL2(Z/2αZ) ∶ ε(M2) = ±1, det(M − I) /≡ 0 (mod 2), det M ≡ k (mod 2α)} .

Let hcyc
± = ∣Y cyc

2,± ∣. In the case where α = 1, it is clear that hcyc
+ = 2 and hcyc

− = 3. For
α ≥ 2, by Lemma 3.1, we obtain

∣Y cyc
2α ,±∣ = hcyc

± ⋅ 23(α−1)

and hence ∣Y cyc
2α ,+∣ − ∣Y

cyc
2α ,−∣ = −23(α−1).

Let us check the size of Y prime
2α ,± . In the case where α = 1, we have that

Y prime
2,+ = {(1 1

1 0) ,(0 1
1 1)} and Y prime

2,− = ∅.
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Setting hprime
± ∶= ∣Y prime

2,± ∣, we see that hprime
+ = 2 and hprime

− = 0. By Lemma 3.1, we
obtain

∣Y prime
2α ,± ∣ = hprime

± ⋅ 23(α−1)

and hence ∣Y prime
2α ,+ ∣ − ∣Y

prime
2α ,− ∣ = 2 ⋅ 23(α−1) .

Next, we assume Δ′ ≡ 3 (mod 4). Then, by the definition of ψ2α(⋅), we have

Y cyc
2α ,± = {M ∈ GL2(Z/2αZ) ∶ ε(M2)χ4(k) = ±1, M /≡ I (mod 2), det M ≡ k (mod 2α)} ,

Y prime
2α ,± = {M ∈ GL2(Z/2αZ) ∶ ε(M2)χ4(k) = ±1, det(M − I) /≡ 0 (mod 2), det M ≡ k (mod 2α)} .

Then

∣Y cyc
2α ,+∣ − ∣Y

cyc
2α ,−∣ =

⎧⎪⎪⎨⎪⎪⎩

−23(α−1) if k ≡ 1 (mod 4),
23(α−1) if k ≡ 3 (mod 4).

∣Y prime
2α ,+ ∣ − ∣Y

prime
2α ,− ∣ =

⎧⎪⎪⎨⎪⎪⎩

23α−2 if k ≡ 1 (mod 4),
−23α−2 if k ≡ 3 (mod 4).

Similar arguments can be applied to deduce the results for Δ′ ≡ 2 (mod 8) and Δ′ ≡ 6
(mod 8). ∎

With the results of the above lemmas in hand, we now determine ∣GE(L) ∩ΨX
n ,k ∣.

Let us treat the cyclicity case first. By Lemma 5.4 and (52), we find that

∣GE(L) ∩ Ψcyc
n ,k ∣ =

1
2
⎛
⎝
∣Ψcyc

n ,k(L)∣ + ∏
�α∥L

(∣Y cyc
�α ,+∣ − ∣Y

cyc
�α ,−∣)

⎞
⎠

= 1
2

⎛
⎜⎜⎜⎜
⎝

∏
�α∥(L ,n)

�∣k−1

�
3(α−1)(�3 − � − 1) ∏

�α∥(L ,n)
�∤k−1

�
3(α−1)(�3 − �)∏

�∣L
�∤n

(∣GL2(Z/�Z)∣ − 1)

+ 23(α−1)τ ∏
�α∥(n ,Lodd)

�∣k−1

�
3(α−1)(�3 − � − 1) ∏

�α∥(n ,Lodd)
�∤k−1

( k
�
) �3(α−1)(�3 − �) ∏

�∣Lodd
�∤n

(−1)
⎞
⎟⎟⎟⎟
⎠

= 1
2 ∏

�α∥(L ,n)
�

3(α−1) ∏
�∣(Lodd ,n)

�∣k−1

(�3 − � − 1) ∏
�∣(Lodd ,n)

�∤k−1

(�3 − �)
⎛
⎜⎜⎜⎜
⎝

5 ∏
�∣Lodd
�∤n

(∣GL2(Z/�Z)∣ − 1) + τcyc

⎞
⎟⎟⎟⎟
⎠

.

Since we are assuming that mE ∣ L, GE(L) must be an index 2 subgroup of
GL2(Z/LZ). Thus, we have

∣GE(L)∣ =
1
2
⋅ ∏
�α∥L
∣GL2(Z/�αZ)∣ = 1

2
⋅ ∏
�α∥L

�4(α−1)∣GL2(Z/�Z)∣.(53)
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Along with Proposition 4.10 and Lemma 4.11, a short computation reveals that

Ccyc
E ,n ,k =

∣GE(L) ∩Ψcyc
n ,k(L)∣

∣GE(L)∣
∏
�∤mE
�α∥n

δcyc
E ,n ,k(�

α) ∏
�∤nmE

δcyc
E (�)

= Ccyc
n ,k

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 + τcyc 1
5 ∏
�∣Lodd

�∤n

(∣GL2(Z/�Z)∣ − 1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Now we move on to the Koblitz case. By Lemma 5.4, we have ∣Y prime
2α ,+ ∣ − ∣Y

prime
2α ,− ∣ =

−τ23α−2. Hence, by (52), a simple calculation reveals that ∣GE(L) ∩Ψprime
n ,k (L)∣ equals

1
2
⎛
⎝
∣Ψprime

n ,k (L)∣ + ∏
�α∥L

(∣Y prime
�α ,+ ∣ − ∣Y

prime
�α ,− ∣)

⎞
⎠

= 1
2

⎛
⎜⎜⎜
⎝

∏
�α∥(L ,n)
�∣k−1

�3(α−1)(�3 − �2 − �) ∏
�α∥(L ,n)
�∤k−1

�3(α−1)(�3 − �2 − 2�)∏
�∣L
�∤n

�(�3 − 2�2 − � + 3)

−23α−2τ ∏
�α ∣(n ,Lodd)

�∣k−1

�3(α−1)(�3 − �2 − �) ∏
�α ∣(n ,Lodd)

�∤k−1

( k
�
) �3(α−1)(�3 − �2 − 2�) ∏

�∣Lodd

�∤n

�

⎞
⎟⎟⎟
⎠

= 1
2 ∏�α∥L

�3(α−1) ∏
�∣(L ,n)
�∣k−1

(�3 − �2 − �) ∏
�∣(L ,n)
�∤k−1

(�3 − �2 − 2�)
⎛
⎜⎜
⎝
∏
�∣L
�∤n

�(�3 − 2�2 − � + 3) + τprime ∏
�∣L
�∤n

�

⎞
⎟⎟
⎠

.

Finally, by Proposition 4.4, Lemma 4.5, (51), and (53), we get

Cprime
E ,n ,k =

∣GE(L) ∩Ψprime
n ,k (L)∣

∣GE(L)∣ ⋅ ∏�∣L(1 − 1/�) ∏�∤mE
�α∥n

δprime
E ,n ,k (�α)
1 − 1/� ∏

�∤nmE

δprime
E (�)
1 − 1/�

= Cprime
n ,k

⎛
⎜⎜⎜⎜⎜
⎝

1 +

τprime ⋅ ∏
�∣L
�∤n

�

∏
�∣L
�∤n

�(�3 − 2�2 − � + 3)

⎞
⎟⎟⎟⎟⎟
⎠

= Cprime
n ,k

⎛
⎜⎜⎜⎜⎜
⎝

1 + τprime

∏
�∣L
�∤n

(�3 − 2�2 − � + 3)

⎞
⎟⎟⎟⎟⎟
⎠

.

This completes the proof of Theorem 1.7.

6 On the Koblitz constant for non-Serre curves

6.1 Bounding the Koblitz constant for non-CM, non-Serre curves

In this subsection, we will determine an upper bound for Cprime
E ,n ,k in the case of non-

CM, non-Serre curves.
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Let E/Q be a non-CM, non-Serre curve, defined by the model (4), of adelic
level mE . Let L be defined as in (7). Then we write L = L1L2 such that L2 is the
product of prime powers �α ∥ L with � /∈ {2, 3, 5} and GE(�) ≃ GL2(Z/�Z). By [17,
Appendix, Theorem 1], GE(L2) ≃ GL2(Z/L2Z). Let ϖ∶GL2(Z/LZ) → GL2(Z/L2Z)
be the natural reduction map. Note that

ϖ (GE(L) ∩Ψprime
n ,k (L)) ⊆ GE(L2) ∩Ψprime

n ,k (L2).

Since ϖ is a surjective group homomorphism, we have

δprime
E ,n ,k (L) =

∣GE(L) ∩Ψprime
n ,k (L)∣

∣GE(L)∣

≤
∣ϖ−1 (GE(L2) ∩Ψprime

n ,k (L2))∣
∣ϖ−1(GE(L2))∣

=
∣GE(L2) ∩Ψprime

n ,k (L2)∣
∣GE(L2)∣

= δprime
E ,n ,k (L2).

(54)

Since ρE ,L2 is surjective, we apply the same argument as in the proof of Lemma 4.5
and obtain

δprime
E ,n ,k (L2)

∏�∣L2(1 − 1/�) ≤ 1.

Before proceeding to bound the constant Cprime
E ,n ,k , we first state a standard analytic

result.

Lemma 6.1 For any positive integer M, we have

∏
�∣M
(1 − 1

�
)
−1
≪max{1, log log M}.

Proof Follows from Mertens’ theorem [44, p. 53, (15)]. See [62, p. 767] for the
argument. ∎

From Lemma 4.5, Lemma 6.1, (32), (36), and (54), we obtain

Cprime
E ,n ,k =

δprime
E ,n ,k (L)

∏�∣L(1 − 1/�) ∏�α∥n
�∤mE

δprime
E ,n ,k (�α)
1 − 1/� ∏

�∤nmE

δprime
E ,n ,k (�)
1 − 1/�

≤ 1
∏�∣L1(1 − 1/�) ⋅

δprime
E ,n ,k (L2)

∏�∣L2(1 − 1/�) ≤ ∏�∣L1

1
1 − 1/� ≪max{1, log log rad(L1)}.

(55)

Our next task is to bound rad(L1) in terms of a and b appearing in the short
Weierstrass model (4) of E. Write jE ∈ Q to denote the j-invariant of E and h ∶= h( jE)
for the Weil height of jE . If � ∣ L1, then either � ≤ 5 or ρE ,� is not surjective. By the main
theorem of [41], there exist absolute constant κ and λ for which ρE ,� is surjective for
all � > κ(max{1, h})λ . Since rad(L1) is squarefree, we have
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rad(L1) ≤ 30 ∏
�≤κ(max{1,h})λ

�

-⇒ log rad(L1) ≪ ∑
�≤κ(max{1,h})λ

log �≪ (max{1, h})λ log max{1, h}.(56)

Since E is given by the model (4), we have that

h = h( jE) ≪ log max{∣a∣3 , ∣b∣2}.(57)

Combining (55), (56), and (57), we obtain the following result.

Proposition 6.2 Let E/Q be a non-CM, non-Serre curve given by (4). Then we have

Cprime
E ,n ,k ≪ log log max{∣a∣3 , ∣b∣2}.

6.2 Bounding the Koblitz constant for CM curves

In this subsection, we focus on CM elliptic curves E/Q. The goal is to show that the
constant Cprime

E ,n ,k is bounded independent of the choice of the CM curve (Proposition
6.7). We keep the notation from Section 2.3.

Let E/Q be an elliptic curve with CM by an order O in an imaginary quadratic field
K = Q(

√
−D). Let p be a prime of Koblitz reduction for E/Q. Since [K ∶ Q] = 2, the

prime p either splits completely, stays inert, or ramifies over K/Q.
If p does not split over K/Q, then by Deuring’s criterion [23], p is a supersingular

prime for E and we have ap(E) = 0. Therefore,

∣Ẽp(Fp)∣ = p + 1,

which is an even number if p > 2. Thus, an odd supersingular prime cannot be a prime
of Koblitz reduction for E.

Now suppose p splits completely in K and let p be a prime lying above p. We
consider two cases depending on the value of D modulo 4. Following the notation
of [58, Chapter 2.2], when D ≡ 1, 2 (mod 4), let M , N ∈ Z be such that p is generated
by M + N

√
−D for some M , N ∈ Z. In this case, the Frobenius trace satisfies ap(E) =

2M, so ∣Ẽp(Fp)∣ = p + 1 − ap(E) is always even for odd primes p. Therefore, πprime
E (x)

is uniformly bounded.
On the other hand, if D ≡ 3 (mod 4), then we can let M , N ∈ Z be such that M +

N(1 +
√
−D)/2 generates p. Let us define a binary quadratic form

fD(x , y) = x2 + x y + ( 1 + D
4
) y2 ∈ Z[x , y].

Then, one can check

p = NK/Q(p) = fD(M , N) and ∣Ẽp(Fp)∣ = fD(M − 1, N).

Thus, we see that this is related to studying integer pairs (M , N) ∈ Z2 for which both
fD(M , N) and fD(M − 1, N) are primes. This setup is a special case of the multivariate
Bateman–Horn conjecture [7], which generalizes the Hardy–Littlewood conjecture to
the setting of several variables [29].
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This idea can be used to note additional CM curves for which πprime
E (x) is bounded.

Suppose D ≡ 7 (mod 8). (In fact, K = Q(
√
−7) is the only CM field satisfying the

property.) A direct calculation shows that there are no integer pairs (M , N) for which
both fD(M , N) and fD(M − 1, N) are odd, and thus prime. Consequently, for this
curve πprime

E (x) is uniformly bounded. An alternative way to see this is to observe
that every elliptic curve E with CM field Q(

√
−7) has torsion subgroup Z/2Z.

We now turn to our original formulation of the prime-counting function. Note
that Fp ≃ Fp and the Ẽp is isomorphic to Ẽp as an elliptic curve over the base field. In
particular,

∣Ẽp(Fp)∣ = ∣Ẽp(Fp)∣.

Thus, we obtain

πprime
E (x; n, k) ∶= #{p ≤ x ∶ p ∤ NE , ∣Ẽp(Fp)∣ is prime, p ≡ k (mod n)}

= #{p ≤ x ∶ p ∤ NE , ∣Ẽp(Fp)∣ is prime,
p splits over K/Q, p ≡ k (mod n)} +O(1)

= 1
2

#{p ∶ NK/Q(p) ≤ x , NK/Q(p) ∤ NE , ∣Ẽp(Fp)∣ is prime,

NK/Q(p) is a rational prime, NK/Q(p) ≡ k (mod n)} +O(1).
The Koblitz conjecture in arithmetic progressions for CM elliptic curves can be
formulated as follows.

Conjecture 6.3 Let E/Q be an elliptic curve with CM by an order O in an imaginary
quadratic field K. Let mE be as in Lemma 2.6, n be a positive integer, and k be an integer
coprime to n. Then there exists a constant Cprime

E/K ,n ,k defined in (62) such that

πprime
E (x; n, k) ∼

Cprime
E/K ,n ,k

2
⋅ x

log2 x
as x →∞.(58)

If the constant vanishes, we interpret (58) as stating that there are only finitely many
primes p ≡ k (mod n) of Koblitz reduction for E.

Comparing with Conjecture 1.6, we have

Cprime
E ,n ,k =

Cprime
E/K ,n ,k

2
,(59)

where Cprime
E/K ,n ,k is defined in (60).

We now introduce some notation used to determine the constant Cprime
E/K ,n ,k .

For a positive integer m, let us fix a Z/mZ-basis of O/mO. This allows us to
view GL1(O/mO) = (O/mO)× a subgroup of GL2(Z/mZ). Let det∶ (O/mO)× →
(Z/mZ)× be the determinant map, defined in the natural way. Fixing a standard
orthogonal basis of O/mO, N is identified with the determinant map. Thus, drawing
a parallel from (34), we are led to define

Ψprime
K ,n ,k (m) = {g ∈ (O/mO)× ∶ det(g − 1) ∈ (Z/mZ)× , det g ≡ k (mod gcd(m, n))} .
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Observe that ρE ,m(Frobp) ∈ GE(m) ∩Ψprime
K ,n ,k (m) if and only if ∣Ẽp(Fp)∣ is invertible

in Z/mZ and det(ρE ,m(Frobp)) ≡ k (mod gcd(m, n)). Hence, we are led to define

δprime
E/K ,n ,k(m) ∶=

∣GE(m) ∩Ψprime
K ,n ,k (m)∣

∣GE(m)∣
.

Drawing a parallel from (35), we set

Cprime
E/K ,n ,k ∶= lim

m→∞

δprime
E/K ,n ,k(m)
∏�∣m(1 − 1/�) ,(60)

where the limit is taken over all positive integers ordered by divisibility.
Lemma 6.4 Let E/Q be an elliptic curve with CM by an order O of conductor f in an
imaginary quadratic field K. Let mE be as in Lemma 2.6. and χ ∶= χK be given as in (17).
For each rational prime � ∤ f mE and � ∤ n, we have

δprime
E/K ,n ,k(�)

1 − 1/� = 1 − χ(�) �2 − � − 1
(� − χ(�))(� − 1)2 .

For each prime � ∤ f mE and �α ∥ n, we have

δprime
E/K ,n ,k(�

α)
1 − 1/� =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ϕ(�α) (1 − χ(�) 1

(� − χ(�))(� − 1)) if �α ∥ n and k ≡ 1 (mod �),

1
ϕ(�α) (1 − χ(�) � + 1

(� − χ(�))(� − 1)) if �α ∥ n and k /≡ 1 (mod �).

Proof First, we consider the case where � ∤ n f mE . By Lemma 2.6, we have GE(�) ≃
(OK/�OK)× and the condition det g ≡ k (mod gcd(�, n)) trivially holds. Hence

GE(�) ∩Ψprime
K ,n ,k (�) = {g ∈ (OK/�OK)× ∶ det(g − 1) /≡ 0 (mod �)}.

Therefore, by Corollary 3.6, we get

∣Ψprime
K ,n ,k (�)∣ = (� − 2)2 or ∣Ψprime

K ,n ,k (�)∣ = �
2 − 2

depending on whether � splits or is inert in K.
Now we assume �α ∥ n. Similarly, we have GE(�α) ≃ (OK/�αOK)× and hence

GE(�α) ∩Ψprime
K ,n ,k (�

α) = Ψprime
K ,n ,k (�

α).
Then the condition det g ≡ k (mod gcd(�α , n)) becomes det g ≡ k (mod �α). So we
get

Ψprime
K ,n ,k (�

α) = {g ∈ (OK/�αOK)× ∶ det(g − 1) /≡ 0 (mod �), det g ≡ k (mod �α)} .

If k ≡ 1 (mod �), then by Corollary 3.6,

∣Ψprime
K ,n ,k (�

α)∣ = �α−1(� − 2) or ∣Ψprime
K ,n ,k (�

α)∣ = �α

depending on whether � splits or is inert in K. If k /≡ 1 (mod �), then

∣Ψprime
K ,n ,k (�

α)∣ = �α−1(� − 3) or ∣Ψprime
K ,n ,k (�

α)∣ = �α−1(� + 1),
depending on whether � splits or is inert in K. ∎
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For a CM elliptic curve E/Q with CM by an order O of conductor f, we set

L ∶= ∏
�∣ f mE

�α� , where α� =
⎧⎪⎪⎨⎪⎪⎩

v�(n) if � ∣ n,
1 otherwise.

(61)

To save notation, we will write �α instead of �α� .

Proposition 6.5 Let E/Q have a CM by an order O of conductor f in an imaginary
quadratic field K. Let χ ∶= χK be as given in (17). Let mE be as in Lemma 2.6. Let L be
defined as in (61). Fix a positive integer n. Then, δprime

E/K ,n ,k(⋅), as an arithmetic function,
satisfies the following properties:
(1) Let L ∣ L′ ∣ L∞. Then, δprime

E/K ,n ,k(L) = δprime
E/K ,n ,k(L

′);
(2) Let �α be a prime power and d be a positive integer with (�, Ld) = 1. Then,

δprime
E/K ,n ,k(d�

α) = δprime
E/K ,n ,k(d) ⋅ δ

prime
E/K ,n ,k(�

α).
(3) Let �α ∥ n and (�, L) = 1. Then, for any β > α, δprime

E/K ,n ,k(�
β) = δprime

E/K ,n ,k(�
α). Fur-

ther, if � ∤ nL, we have δprime
E/K ,n ,k(�

β) = δprime
E/K ,n ,k(�).

Therefore, (60) can be expressed as

Cprime
E/K ,n ,k =

δprime
E/K ,n ,k(L)
∏�∣L(1 − 1/�) ⋅ ∏�∤ f mE

�α∥n

δprime
E/K ,n ,k(�

α)
1 − 1/� ⋅ ∏

�∤n f mE

(1 − χ(�) �2 − � − 1
(� − χ(�))(� − 1)2 ) .

(62)

Proof One can prove (1)–(3) following the same strategy as in the proof of Propo-
sition 4.4. One only needs to replace mE by f mE and GL2(Z/�αZ) by (O/�αO)×.
Therefore, from these results, we get

Cprime
E/K ,n ,k =

δprime
E/K ,n ,k(L)
∏�∣L(1 − 1/�) ⋅ ∏�∤ f mE

�α∥n

δprime
E/K ,n ,k(�

α)
1 − 1/� ⋅ ∏

�∤n f mE

δprime
E/K ,n ,k(�)

1 − 1/� .

Now, we see that (62) follows from Lemma 6.4. ∎

Remark 6.6 Given that � ∤ n f mE , we observe that

δprime
E/K ,n ,k(�)

1 − 1/� = 1 − χK(�)
�2 − � − 1

(� − χK(�))(� − 1)2

= (1 − χK(�)
�
+O( 1

�2 ))

= (1 − χK(�)
�
)(1 +O( 1

�2 )) .

Thus, we have

∏
�∤ f mE n

(1 − χK(�)
�2 − � − 1

(� − χK(�))(� − 1)2 ) = ∏�∤ f mE n
(1 − χK(�)

�
)(1 +O( 1

�2 )) .
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Note that this is a product of an Euler factorization of L(s, χK)−1 at s = 1 (with some
correction factor) and an absolutely convergent product. Since L(1, χK) ≠ 0 for a non-
trivial character χK , the infinite product in (62) is conditionally convergent.

By (58), (59), Lemma 6.4, and Proposition 6.5, we can explicitly formulate the
conjectural Koblitz constant for CM elliptic curves. Let n = n1n2 where n1 ∣ ( f mE)∞
and (n2 , f mE) = 1. (In particular, n2 is the product of �α for which �α ∥ n with � ∤ L.)
We have

Cprime
E ,n ,k =

1
2
⋅ 1

ϕ(n2)
⋅

δprime
E/K ,n ,k(L)
∏�∣L(1 − 1/�) ⋅ ∏�α∥n

�∤L
�∣k−1

(1 − χK(�)
�

(� − χK(�))(� − 1))

⋅ ∏
�α∥n
�∤L

�∤k−1

(1 − χK(�)
� + 1

(� − χK(�))(� − 1))

⋅ ∏
�∤n f mE

(1 − χK(�)
�2 − � − 1

(� − χK(�))(� − 1)2 ) .

(63)

Proposition 6.7 For any CM elliptic curve E/Q, we have

Cprime
E ,n ,k ≪n 1.

Proof Note that the finite product terms in (63) are all bounded by 1. By definition,
we have

δprime
E/K ,n ,k(L) ≤ 1,

and hence,

δprime
E/K ,n ,k(L)
∏�∣L(1 − 1/�) ≪max{1, log log rad( f mE)} ≪ 1,

by Proposition 2.8 and Lemma 6.1. Finally, the infinite product, up to a correction
factor depending on n, is universally bounded, since there are only finitely many
possibilities for K. ∎

7 Moments

The goal of this section is to complete the proof of Theorem 1.9. We begin by setting
forth the general strategy. Let x > 0 and A = A(x) and B = B(x) be positive real-
valued functions such that A(x) → ∞ and B(x) → ∞ as x →∞. LetEa ,b be an elliptic
curve given by the model

Ea ,b ∶Y 2 = X3 + aX + b,

for some a, b ∈ Z and 4a3 + 27b2 ≠ 0. Define

F ∶= F(x) = {Ea ,b ∶ ∣a∣ ≤ A, ∣b∣ ≤ B} .
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Our objective is to compute, for any positive integer t, the tth moment
1
∣F∣ ∑E∈F

∣CX
E ,n ,k − CX

n ,k ∣ t ,(64)

where X denotes either “cyc” or “prime.” We know that (64) can be expressed as

1
∣F∣

⎛
⎜⎜⎜⎜
⎝

∑
E∈F

E is Serre

∣CX
E ,n ,k − CX

n ,k ∣ t + ∑
E∈F

E is non-CM
E is non-Serre

∣CX
E ,n ,k − CX

n ,k ∣ t + ∑
E∈F

E is CM

∣CX
E ,n ,k − CX

n ,k ∣ t

⎞
⎟⎟⎟⎟
⎠

,

where “E is Serre” indicates that “E is a Serre curve,” etc. In order to bound (64), we
are going to bound each of the three sums separately.

For the first sum, recall that we proved explicit formulas for the constants CX
E ,n ,k

for Serre curves in Section 5 and found that these constants closely align with their
average counterparts CX

n ,k . For the second and third sums, we will use the fact due
to Jones [32] that non-Serre curves are rare. For the cyclicity case, we will use the fact
that Ccyc

E ,n ,k is bounded above by 1/ϕ(n), which follows from (48) (and is sensible, since
under GRH, Ccyc

E ,n ,k describes the density of some subset of the primes congruent to k
modulo n). However, for the Koblitz case it is not clear that Cprime

E ,n ,k should be bounded
by a constant independent of E, so we will instead employ the bounds of Propositions
6.2 and 6.7.

We first deal with the moments computation for Serre curves. LetEa ,b/Q be a Serre
curve defined by the model

Ea ,b ∶Y 2 = X3 + aX + b,

of adelic level mEa ,b . Let Δ′
a ,b denote the squarefree part of the discriminant of Ea ,b .

Recall that mEa ,b is only supported by 2 and the prime factors of Δ′
a ,b (see Proposition

(2.4)). Set

LEa ,b =
∣Δ′

a ,b ∣
gcd(∣Δ′

a ,b ∣, n) .

By Theorem 1.7, we have

∣Ccyc
Ea ,b ,n ,k − Ccyc

n ,k ∣ ≤
1
5

Ccyc
n ,k ∏

�∣m
Ea ,b

�∤2n

1
�4 − �3 − �2 + � − 1

≪ 1
rad(mEa ,b)3

≪ 1
L3
Ea ,b

,

∣Cprime
Ea ,b ,n ,k − Cprime

n ,k ∣ ≤ Cprime
n ,k ∏

�∣m
Ea ,b

�∤2n

1
�3 − 2�2 − � + 3

≪ 1
rad(mEa ,b)2

≪ 1
L2
Ea ,b

.

Let us set rcyc = 3 and rprime = 2. Then, we obtain

∣CX
Ea ,b ,n ,k − CX

n ,k ∣ ≪
1

LrX
Ea ,b

=
⎛
⎝

gcd (∣Δ′
a ,b ∣, n)

∣Δ′
a ,b ∣

⎞
⎠

rX

,

given that Ea ,b/Q is a Serre curve.
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Observing that ∣F∣ ∼ 4AB as x →∞, we have for any A, B, Z ≥ 2 and t ≥ 1,
1
∣F∣ ∑E∈F

E is Serre

∣CX
E ,n ,k − CX

n ,k ∣ t ≪
1

AB ∑
∣a∣≤A
∣b∣≤B

Δ′a ,b≠0
∣Δ′a ,b ∣

(∣Δ′a ,b ∣,n)
<Z

1 + 1
AB ∑

∣a∣≤A
∣b∣≤B

Δ′a ,b≠0
∣Δ′a ,b ∣

(∣Δ′a ,b ∣,n)
≥Z

1
Z rX t .(65)

Lemma 7.1 With the notation above, we have

∑
∣a∣≤A
∣b∣≤B

Δ′a ,b≠0
∣Δ′a ,b ∣

(∣Δ′a ,b ∣,n)
<Z

1≪ n log B ⋅ A ⋅ log7 A ⋅ Z + B.

Proof It follows similarly to the argument given in [31, Section 4.2]. ∎

Let Z = (B/n log B log7 A)1/(rX t+1)
. By (65) and Lemma 7.1, we see that

1
∣F∣ ∑

E∈F
E is Serre

∣CX
E ,n ,k − CX

n ,k ∣ t ≪ ( 1
A
+ nZ log B log7 A

B
) + 1

ZrX t ≪ (n log B log7 A
B

)
rX t

rX t+1

.

(66)

By [31, Theorem 25] and (66), there exists γ > 0 such that for any positive integer t,

1
∣F∣ ∑E∈F

∣Ccyc
E ,n ,k − Ccyc

n ,k ∣
t ≪t max

⎧⎪⎪⎨⎪⎪⎩
(n log B log7 A

B
)

3t
3t+1

, logγ(min{A, B})√
min{A, B}

⎫⎪⎪⎬⎪⎪⎭
.

This completes the proof for the cyclicity case.
For primes of Koblitz reduction, by Propositions 6.2 6.7 and [31, Theorem 25], there

exists γ > 0 such that for any positive integer t,

1
∣F∣ ∑

E∈F
E is non-CM
E is non-Serre

∣Cprime
E ,n ,k − Cprime

n ,k ∣
t ≪t log log(max{A3 , B2})t logγ(min{A, B})√

min{A, B}
,

1
∣F∣ ∑E∈F

E is CM

∣Cprime
E ,n ,k − Cprime

n ,k ∣
t ≪t ,n

logγ(min{A, B})√
min{A, B}

.

Therefore, we obtain the inequality claimed in the statement of Theorem 1.9.

8 Numerical examples

8.1 Example 1

Let E be the elliptic curve with LMFDB [53] label 1728.w1, which is given by

E∶ y2 = x3 + 6x − 2.
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From the curve’s LMFDB page, we note that it is a Serre curve with adelic level mE = 6.
Zywina [62, Section 5] computed the Koblitz constant of E,

Cprime
E ≈ 0.561296.

Running either our Magma functions KoblitzAP or SerreCurveKoblitzAP
[39] on E with modulus n = 6, we find that

Cprime
E ,6,1 = Cprime

E and Cprime
E ,6,5 = 0.

This result can be verified “manually” by studying the mod 6 Galois image of E, as we
now discuss.

The mod 6 Galois image GE(6) is an index 2 subgroup of GL2(Z/6Z) generated
by

GE(6) = ⟨(
1 1
0 5) ,(1 0

5 5) ,(5 0
5 1)⟩ .

From this description, we compute that

{tr M (mod 6) ∶ M ∈ GE(6) and det M ≡ 5 (mod 6)} = {0, 2, 4} .

Thus, if p is a good prime for E that is congruent to 5 modulo 6, then

∣Ẽp(Fp)∣ ≡ p + 1 − tr ρE ,6(Frobp) ≡ 1 + 1 − 0 ≡ 0 (mod 2).

Hence ∣Ẽp(Fp)∣ is even for all good primes p congruent to 5 modulo 6. By Hasse’s
bound and computing a few values of ∣Ẽp(Fp)∣, we find that ∣Ẽp(Fp)∣ is never 2 for
such primes p. Thus, the only good primes p for which ∣Ẽp(Fp)∣ is prime are congruent
to 1 modulo 6.

8.2 Example 2

Let E be the elliptic curve with LMFDB label 200.e1, which is given by

E∶ y2 = x3 + 5x − 10.

From this curve’s LMFDB page, we learn that E is a Serre curve with adelic level mE =
8. Running our Magma functionSerreCurveKoblitzAP on E with n = 8, we find
that

Cprime
E ,8,1 = Cprime

E ,8,3 = 1
2 Cprime

E and Cprime
E ,8,5 = Cprime

E ,8,7 = 0,

where

Cprime
E ≈ 0.505166.

Running our Magma function SerreCurveCyclicityAP on E with n = 8, we
find that

Ccyc
E ,8,1 = Ccyc

E ,8,3 = 1
5 Ccyc

E and Ccyc
E ,8,5 = Ccyc

E ,8,7 = 3
10 Ccyc

E ,

where

Ccyc
E ≈ 0.813752.
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The values obtained above align well with numerical data for the curve. Among
all primes of Koblitz reduction for E up to 107, 11114 are congruent to 1 modulo 8 and
11259 are congruent to 3 modulo 8; none are congruent to 5 or 7 modulo 8. Among
all primes of cyclic reduction for E up to 107, 108096 are congruent to 1 modulo 8,
108251 are congruent to 3 modulo 8, 162234 are congruent to 5 modulo 8, and 162286
are congruent to 7 modulo 8.

8.3 Example 3

Let E be the elliptic curve with LMFDB label 864.a1, which is given by

E∶ y2 = x3 − 216x − 1296.

This curve does not have complex multiplication and is not a Serre curve. Its adelic
index is 24 and adelic level is mE = 12. Running our Magma function KoblitzAP
on E with n = 12, we find that

Cprime
E ,12,1 = 3

7 Cprime
E , Cprime

E ,12,5 = 0, Cprime
E ,12,7 = 4

7 Cprime
E , Cprime

E ,12,11 = 0,

where

Cprime
E ≈ 0.785814.

Running our Magma function CyclicityAP on E with n = 12, we find that

Ccyc
E ,12,1 = 3

19 Ccyc
E , Ccyc

E ,12,5 = 6
19 Ccyc

E , Ccyc
E ,12,7 = 4

19 Ccyc
E , Ccyc

E ,12,11 = 6
19 Ccyc

E ,

where

Ccyc
E ≈ 0.789512.

As with the previous example, these values agree well with the numerical data for the
curve, which is available through our GitHub repository [39].

8.4 Example 4

Let n = 6 and E be the CM elliptic curve with LMFDB label 432.d1 defined by

y2 = x3 − 4.(67)

We keep the notation from Section 2.3. From the LMFDB, we know that

(1) E has CM by the maximal order O = Z [ 1+
√
−3

2 ] of the CM field K = Q(
√
−3).

(2) E has discriminant ΔE = −2833. So 2 and 3 are the only primes of bad reduction
for E.

(3) The map

ρE ,� ∶ Gal(K/K) 4→ (O/�O)×

is surjective for all primes �.
Invoking the proof of [62, Proposition 2.7], we see that mE is only supported by 2 and
3. Further,

f = 1, L = n1 = n = 6, n2 = 1.
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Therefore, for k coprime to 6, by (63),

Cprime
E ,6,k =

3
2
⋅
∣GE(6) ∩Ψprime

K ,6,k (6)∣
∣GE(6)∣

⋅∏
�∤6
(1 − χK(�)

�2 − � − 1
(� − χK(�))(� − 1)2 ) .

By adapting Suther land’s Galrep code [56], we compute GE(6) in Magma and find
that

∣Ψprime
K ,6,k (6) ∩GE(6)∣ =

⎧⎪⎪⎨⎪⎪⎩

2 if k ≡ 1 (mod 6),
0 if k ≡ 5 (mod 6).

Thus, we conclude that

Cprime
E ,6,1 = Cprime

E and Cprime
E ,6,5 = 0,

where

Cprime
E = 1

2
⋅∏
�∤6
(1 − χK(�)

�2 − � − 1
(� − χK(�))(� − 1)2 ) ≈ 0.505448.

In fact, we can verify that Cprime
E ,6,5 = 0 using Deuring’s criterion. If p is a rational

prime such that p ≡ 5 (mod 6), then p is inert in the CM field Q(
√
−3). By Deuring’s

criterion, p is supersingular, and hence ∣Ẽp(Fp)∣ = p + 1. Since p is an odd prime, we
see that p cannot be a prime of Koblitz reduction for E.
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