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Abstract

We give a separability criterion for the polynomials of the form

ax2n+2 + (bx2m + c)(dx2k + e).

Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction
under which curves of the form

z2 = ax2n+2 + (bx2m + c)(dx2k + e)

have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of
hyperelliptic curves of the above form and show that there are infinitely many curves of the above form
that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.
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1. Introduction

Let V be a smooth geometrically irreducible variety defined over a global field k. A
fundamental problem in arithmetic geometry is to determine what the set of k-rational
points onV is. The problem is widely open even in the case whereV is an algebraic
irreducible curve. One of the most celebrated theorems dealing with the understanding
of the set of rational points on curves of genus greater than one is Faltings’ theorem, or
equivalently the Mordell conjecture, which says that an algebraic irreducible curve of
genus greater than one over a number field has finitely many rational points. Despite
this striking result, there exists no known algorithm that determines what the set of
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rational points on a curve looks like, or says whether or not an algebraic irreducible
curve over a number field possesses a rational point.

Take an algebraic irreducible curve C overQ, and for each prime p including p =∞,
let Q ↪→ Qp be the embedding of Q into Qp. Under these embeddings, one can view C
as a curve over Qp for each prime p, and one can ask what the relationship is between
the set of all Q-rational points on C and that of all Qp-rational points on C for each
prime p. It is not difficult to realize that if C(Qp) = ∅ for some prime p, then it follows
immediately that C has no Q-rational points. Thus, in an ideal setting and with some
skill, this fact provides a simple way to show that C(Q) is empty by proving that C
has no Qp-points for some prime p. To add some interest, we assume that C(Qp) , ∅
for each prime p including p =∞. The Hasse principle expects that C should have a
Q-rational point. The Hasse principle fails in general, and even does not hold in the
case where C is of genus one; for example, the Lind–Reichardt curve [9, 11] defined by

2z2 = x4 − 17

has points over each Qp including p =∞ whereas it possesses no points over Q.
Recall that the Hasse reciprocity law [12] states that the sequence of abelian groups

0→ Br(Q)→
⊕

p

Br(Qp)→ Q/Z→ 0

is exact, where the third map is the sum of the local invariant maps from local class
field theory. For each scheme X, we denote by Br(X) the Brauer group of X, and for a
commutative ring A, define

Br(A) := Br(Spec(A)).

In 1970, Manin [10], based on the Hasse reciprocity law, introduced the notion of
the Brauer–Manin obstruction. Roughly speaking, the Brauer–Manin obstruction
measures how badly the Hasse principle for varieties fails. Let AQ be the ring of
rational adeles, and let C(AQ) denote the set of adelic points on C. Assume further that
C is projective. It is well known [8] that

C(AQ) =
∏

p

C(Qp).

Manin [10] introduced a subset of C(AQ), say C(AQ)Br, such that

C(Q) ⊆ C(AQ)Br ⊆ C(AQ).

Here C(AQ)Br is defined to be the right kernel of the adelic Brauer–Manin pairing
(see [12])

E : Br(C) × C(AQ) −→ Q/Z (1.1)

(A, (Pp)p) 7→
∑

p

invp(A(Pp)),
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where for each prime p, invp : Br(Qp) −→ Q/Z is the invariant map of local class field
theory. We will say that C is a counterexample to the Hasse principle explained by the
Brauer–Manin obstruction if C(AQ)Br = ∅ but C(AQ) = ∅.

In this paper, we are interested in using the Brauer–Manin obstruction to study the
arithmetic of curves of the form

z2 = ax2n+2 + (bx2m + c)(dx2k + e), (1.2)

where (n,m, k) is a triple of positive integers, and a,b, c,d, e are some integers such that
a , 0. For each quintuple (a, b, c, d, e) with a , 0, we also assume that n > m + k − 1
and that the polynomial on the right-hand side of (1.2) is separable. These conditions
are equivalent to saying that the affine part is smooth so that the nonsingular projective
curve associated to (1.2) is of genus n. To add some interest to the arithmetic of curves
of the form (1.2), we require that they are everywhere locally solvable.

Before stating the main problem we are interested in, let us recall the following
definition.

Definition 1.1.

(i) Let C0 be the affine curve defined by the equation z2 = F(x), where F(x) ∈ Q[x] is
a polynomial of degree 2n + 2. Let C1 be the affine curve defined by the equation
v2 = u2n+2F(1/u). Throughout this paper, by the smooth projective model C of
the affine curve C0 we mean that C is the variety obtained by gluing together C0
and C1 via u = 1/x and v = z/xn+1.

(ii) Let C be the projective smooth model as in (i). A point at infinity on C is one of
the points on C1 with u = 0.

The main interest of this paper lies in partially answering the following problem.

Problem 1.2. Let (n,m, k) be a triple of positive integers such that n > m + k − 1.
Describe all the quintuples (a, b, c, d, e) of integers with a , 0 such that the smooth
projective model of the affine curve defined by

z2 = ax2n+2 + (bx2m + c)(dx2k + e)

is a counterexample to the Hasse principle explained by the Brauer–Manin obstruction.

Some results on Problem 1.2 are known when letting m = k = 1. The curves of the
form (1.2) with m = k = 1 first appeared in the work of Coray and Manoil [3] out of the
attempt to construct hyperelliptic curves of arbitrary genus greater than one violating
the Hasse principle. To be more precise, letting

a = 605 × 106

b = 18
c = −4400
d = 45
e = −8800,

(1.3)
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Coray and Manoil [3] showed that the family of hyperelliptic curves of varying genus
n ≥ 2 with fixed coefficients defined by

z2 = 605 × 106x2n+2 + (18x2 − 4400)(45x2 − 8800) (1.4)

for any integer n ≥ 2 is counterexamples to the Hasse principle explained by the
Brauer–Manin obstruction. Thus the quintuple (a, b, c, d, e) given by (1.3) satisfies
the conditions in Problem 1.2, where m = k = 1 and n is an arbitrary positive integer
greater than one. The main idea in the approach of Coray and Manoil is that they
define a Q-morphism from the curve given by (1.4) to the threefold in P5 defined byu2

1 − 5v2
1 = 2xy

u2
2 − 5v2

2 = 2(x + 20y)(x + 25y),

which was first studied by Colliot-Thélène et al. [2]. The latter is a counterexample to
the Hasse principle explained by the Brauer–Manin obstruction, and hence it follows
from functoriality that the curve defined by (1.4) is a counterexample to the Hasse
principle explained by the Brauer–Manin obstruction.

Upon directly studying the Brauer–Manin obstruction of curves of the form (1.2)
with m = k = 1 without relating them to certain threefolds in P5 in the same spirit as in
the approach of Coray and Manoil, the author [4] described infinitely many quintuples
(a,b, c,d, e) of integers satisfying the conditions in Problem 1.2, where n is an arbitrary
positive integer greater than one and m = k = 1. On the other hand, following the
approach of Coray and Manoil, the author [5] showed that there are certain rational
functions Pi(t) ∈ Q(t) for 1 ≤ i ≤ 5 such that curves defined by

z2 = P1(t)x2n+2 + (P2(t)x2 + P3(t))(P4(t)x2 + P5(t))

for each t ∈ Q are counterexamples to the Hasse principle explained by the Brauer–
Manin obstruction, where n is a positive integer such that n > 5 and n . 0 mod 4. In
other words, the author [5] described a one parameter family of quintuples (a, b, c, d, e)
satisfying the requirements in Problems 1.2, where m = k = 1 and n is a positive integer
such that n > 5 and n . 0 mod 4.

We are mainly concerned with investigating Problem 1.2 for curves of the form
(1.2), where m and k are arbitrary positive integers. Note that when m + k ≥ 3, it
seems that one cannot follow the approach of Coray and Manoil. The reason is that in
order to embed curves of the form (1.2) into a certain threefold in P5 of the same form
as that studied by Colliot-Thélène et al. [2], we must require that m + k = 2 so that the
threefold is the intersection of two quadrics.

For the rest of this section, for rational numbers a, b, c, d, e ∈ Q with a , 0, let
F(x) ∈ Q[x] be the polynomial defined by

F(x) := ax2n+2 + (bx2m + c)(dx2k + e) ∈ Q[x]. (1.5)

Now, fix a curve of the form z2 = F(x) for some a, b, c, d, e ∈ Q with a , 0, and
denote it by C. Under mild hypotheses, we will construct an explicit Azumaya

https://doi.org/10.1017/S1446788714000044 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000044


358 N. N. Dong Quan [5]

algebra on C, say A. The adelic Brauer–Manin pairing E defined as in (1.1)
defines the mapping EA : C(AQ) −→ Q/Z by sending an adelic point (Pp)p ∈ C(AQ)
to E(A, (Pp)p). Under certain conditions, we will show that EA((Pp)p) = 1/2 for each
(Pp)p ∈ C(AQ), and hence it follows that C(AQ)Br = ∅. This approach follows the same
spirit as that of the author in [4]. The main difference between this paper and [4] is
that in this paper the quintuples (a, b, c, d, e) run through a large infinite subset of Z5

and n,m, k are arbitrary positive integers such that n > min(m + 2k − 1, 2m + k − 1),
whereas in [4] m and k are equal to one and the choice of the quintuples (a, b, c, d, e)
is somehow restrictive.

To produce an Azumaya algebra on C, it is crucial that the curve C is smooth of
genus n; in other words, the polynomial F(x) defined by (1.5) is separable. Hence, one
of the main difficulties we need to solve is to find certain reasonably mild conditions on
a, b, c, d, e for which the polynomial F(x) defined by (1.5) is separable. Theorem 2.1
in Section 2 gives a sufficient condition for polynomials of the above form to have
distinct roots. This sufficient condition is easy to test, and is of independent interest.

The outline of the paper is as follows. In Section 2, we prove a separability criterion
for the polynomials F(x). The separability criterion depends on the lower bound of n,
and certain congruences modulo some prime dividing a. This is Theorem 2.1. The
conditions in Theorem 2.1 are mild, and allow one to produce a large class of smooth
curves of the form (1.2) of arbitrary genus greater than two that are counterexamples
to the Hasse principle in subsequent sections.

In Section 3, using the separability criterion in Section 2, we prove a sufficient
condition under which curves of the form (1.2) have no rational points. In the last two
sections, in order to prove that the sufficient condition in Section 3 can apply to a large
class of curves of the form (1.2), we construct infinitely many quintuples (a, b, c, d, e)
for which the curves of the form (1.2) are counterexamples to the Hasse principle
explained by the Brauer–Manin obstruction, where n,m, k are positive integers such
that

n > min(m + 2k − 1, 2m + k − 1).

The construction of such quintuples (a, b, c, d, e) depends on a theorem of Iwaniec
[7], which says that quadratic polynomials in two variables satisfying certain mild
conditions represent infinitely many primes.

2. A separability criterion

In this section, we will give a separability criterion for the polynomials defined by

ax2n+2 + (bx2m + c)(dx2k + e)

for some integers a, b, c, d, e and some positive integers n,m, k. The main result in this
section is the following theorem, which is a generalization of a lemma in the author’s
PhD Thesis (see [6, Lemma 4.1.1]).
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Theorem 2.1. Let n,m, k be positive integers, and let a, b, c, d, e be integers such that
a , 0. Let p be an odd prime such that p divides a. Let F(x) ∈ Q[x] be the polynomial
defined by

F(x) := ax2n+2 + (bx2m + c)(dx2k + e). (2.1)

Define
n1 := (m + k)(vp(a) − vp(bd)) + m + k − 1,
n2 := (m + k)(vp(a) − vp(b)) + m − 1,
n3 := (m + k)(vp(a) − vp(d)) + k − 1,
n4 := (m + k)vp(a) − 1,
n5 := vp(a) − vp(bd) + m + k − 1,

where vp denotes the p-adic valuation with the usual convention that vp(0) = ∞.
Suppose that the following are true:

(A1) n > m + k − 1 and n > max(n1, n2, n3, n4, n5);
(A2) ce . 0 mod p, km . 0 mod p, and bkem + (−1)m+k+1ckdm . 0 mod p.

Then F is separable: that is, it has exactly 2n + 2 distinct roots in C.

Proof. Assume the contrary, that is, there exists an element α in C such that

F(α) =
∂F
∂x

(α) = 0,

where ∂F/∂x denotes the formal derivative of F with respect to the variable x. We see
that

(2n + 2)F(α) − α
(
∂F
∂x

(α)
)

= 2(n − m − k + 1)bdα2(m+k) + 2(n − m + 1)beα2m

+ 2(n − k + 1)cdα2k + (2n + 2)ce = 0,

and hence
G(β) = 0, (2.2)

where G(x) is the polynomial in Q[x] defined by

G(x) := (n − m − k + 1)bdxm+k + (n − m + 1)bexm

+ (n − k + 1)cdxk + (n + 1)ce (2.3)

and β = α2. Since F(α) = 0, we see that

aβn+1 + (bβm + c)(dβk + e) = 0. (2.4)

Define K = Q(β), and let p be a prime of K above p. Let Kp be the completion of
K at p. Set f := vp(p), where vp denotes the extension of the p-adic valuation of Qp

to Kp. Recall that f is the ramification index of Kp over Qp, and that for each γ ∈ Q,
we have

vp(γ) = f vp(γ).
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Since the degree of G(x) is at most m + k, we see that the degree of Kp over Qp is at
most m + k. Furthermore, f satisfies

1 ≤ f ≤ m + k. (2.5)

We now prove that

n > max(n1, n2, n3, n4, n5) ≥ max(m1,m2,m3,m4), (2.6)

where

m1 := f (vp(a) − vp(bd)) + m + k − 1,
m2 := f (vp(a) − vp(b)) + m − 1,
m3 := f (vp(a) − vp(d)) + k − 1,
m4 := f vp(a) − 1.

By (A1), it suffices to show that

max(n1, n2, n3, n4, n5) ≥ max(m1,m2,m3,m4).

If vp(a) − vp(bd) ≥ 0, we deduce from (2.5) that

m1 = f (vp(a) − vp(bd)) + m + k − 1
≤ (m + k)(vp(a) − vp(bd)) + m + k − 1 = n1.

If vp(a) − vp(bd) < 0, we see that

m1 = f (vp(a) − vp(bd)) + m + k − 1 ≤ vp(a) − vp(bd) + m + k − 1 = n5.

Thus we deduce that

m1 ≤ max(n1, n5) ≤ max(n1, n2, n3, n4, n5). (2.7)

If vp(a) − vp(b) ≥ 0, we see that

m2 = f (vp(a) − vp(b)) + m − 1 ≤ (m + k)(vp(a) − vp(b)) + m − 1 = n2.

If vp(a) − vp(b) < 0, we deduce that

vp(b) > vp(a) ≥ 1,

and hence it follows that
b ≡ 0 mod p.

It follows from (A2) that

(−1)m+k+1ckdm . 0 mod p,

and thus d . 0 mod p. Therefore we see that

n5 = vp(a) − vp(bd) + m + k − 1
= vp(a) − vp(b) − vp(d) + m + k − 1
= vp(a) − vp(b) + m + k − 1.
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Since vp(a) − vp(b) < 0, we deduce that

m2 = f (vp(a) − vp(b)) + m − 1
≤ vp(a) − vp(b) + m − 1
< vp(a) − vp(b) + m + k − 1 = n5.

Therefore
m2 ≤ max(n2, n5) ≤ max(n1, n2, n3, n4, n5). (2.8)

We now prove that m3 ≤ max(n1, n2, n3, n4, n5). Indeed, if vp(a) − vp(d) ≥ 0, we see
that

m3 = f (vp(a) − vp(d)) + k − 1 ≤ (m + k)(vp(a) − vp(d)) + k − 1 = n3.

If vp(a) − vp(d) < 0, we deduce that vp(d) > vp(a) ≥ 1, and hence d ≡ 0 mod p. Using
(A2), it follows that b . 0 mod p. Therefore

n5 = vp(a) − vp(bd) + m + k − 1
= vp(a) − vp(b) − vp(d) + m + k − 1
= vp(a) − vp(d) + m + k − 1,

and thus it follows that

m3 = f (vp(a) − vp(d)) + k − 1
≤ vp(a) − vp(d) + k − 1
< vp(a) − vp(d) + m + k − 1 = n5.

Therefore
m3 ≤ max(n1, n2, n3, n4, n5). (2.9)

Finally we see that

m4 = f vp(a) − 1 ≤ (m + k)vp(a) − 1 = n4 ≤ max(n1, n2, n3, n4, n5). (2.10)

By (2.7)–(2.10), we deduce that

n > max(n1, n2, n3, n4, n5) ≥ max(m1,m2,m3,m4).

We prove that β is an integral element of Kp. Assume the contrary, that is, vp(β) < 0.
Since vp(β) is an integer, we see that vp(β) ≤ −1. We have that

vp(aβn+1) = f vp(a) + (n + 1)vp(β),

and it follows from (A2) that

vp((bβm + c)(dβk + e)) = vp(bβm + c) + vp(dβk + e)
≥ min(vp(bβm), vp(c)) + min(vp(dβk), vp(e))
≥ min( f vp(b) + mvp(β), 0) + min( f vp(d) + kvp(β), 0)
≥ min( f vp(bd) + (m + k)vp(β), f vp(b) + mvp(β), f vp(d)

+ kvp(β), 0).
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By (2.6), we see that

−(n − m − k + 1)vp(β) ≥ n − m − k + 1 > f (vp(a) − vp(bd)),

and hence

vp(aβn+1) = f vp(a) + (n + 1)vp(β) < f vp(bd) + (m + k)vp(β).

Similarly, we can show that

vp(aβn+1) < f vp(b) + mvp(β),
vp(aβn+1) < f vp(d) + kvp(β),
vp(aβn+1) < 0.

Thus we deduce that

vp(aβn+1) < min( f vp(bd) + (m + k)vp(β), f vp(b) + mvp(β), f vp(d) + kvp(β), 0)
≤ vp((bβm + c)(dβk + e)),

and hence it follows from (2.4) that

+∞ = vp(0) = vp(aβn+1 + (bβm + c)(dβk + e))
= vp(aβn+1) = f vp(a) + (n + 1)vp(β) ≤ f vp(a) − (n + 1),

which is a contradiction. Therefore β is an integral element of Kp.
Taking (2.4) modulo p and noting that p is a prime over p and p divides a, we see

that
(bβm + c)(dβk + e) ≡ 0 mod p,

and hence we deduce that
bβm ≡ −c mod p (2.11)

or
dβk ≡ −e mod p. (2.12)

Suppose that (2.11) holds. Taking (2.2) modulo p, we see that

0 = G(β)
≡ −(n − m − k + 1)cdβk − (n − m + 1)ce + (n − k + 1)cdβk + (n + 1)ce
≡ cdmβk + cem mod p,

and it follows from (A2) that
dβk ≡ −e mod p.

Thus we deduce from (2.11) and the last congruence that

bkdmβmk ≡ (−1)kckdm ≡ (−1)mbkem mod p,

and hence
(−1)mbkem − (−1)kckdm ≡ 0 mod p.
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Therefore we see that

bkem + (−1)m+k+1ckdm ≡ 0 mod p,

which contradicts (A2).
Suppose that (2.12) holds. Taking (2.2) modulo p, we see that

0 = G(β)
≡ −(n − m − k + 1)beβm + (n − m + 1)beβm − (n − k + 1)ce + (n + 1)ce
≡ kbeβm + cek mod p,

and hence it follows from (A2) that

bβm ≡ −c mod p.

Using the same arguments as above, we deduce that

bkem + (−1)m+k+1ckdm ≡ 0 mod p,

which contradicts (A2).
Therefore we see that F is separable. �

3. Nonexistence of rational points on certain hyperelliptic curves
In this section, using Theorem 2.1, we give a sufficient condition under which

certain curves C of the form

C : z2 = ax2n+2 + (bx2m + c)(dx2k + e)

satisfy C(AQ)Br = ∅. We begin by proving the following lemma, which shows how to
construct an Azumaya algebra on the curves C of the form as above.

Lemma 3.1. We maintain the notation and assumptions of Theorem 2.1. Assume (A1)
and (A2) in Theorem 2.1. Suppose that the following are true:

(A3) a = a1a2
2, where a1, a2 are relatively prime integers such that a1 is a positive

squarefree integer and a1 ≡ 1 mod 8;
(A4) b , 0.

Let C be the smooth projective model of the affine curve defined by

z2 = F(x), (3.1)

where F(x) ∈ Q[x] is the polynomial defined by (2.1). Let A be the class of the
quaternion algebra (a1, bx2m + c) in Br(Q(C)), where Q(C) denotes the function field
of C. Then the quaternion algebras

B := (a1, dx2k + e)

and

E :=
(
a1,

bx2m + c
x2m

)
represent the same class as A in Br(Q(C)). Furthermore A,B,E together define an
Azumaya algebra on C.
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Proof. Throughout the proof, let C0 and C1 be the affine curves associated to C as in
part (i) of Definition 1.1. Recall that C0 is given by the equation z2 = F(x) and C1 is
given by the equation v2 = u2n+2F(1/u), where u = 1/x and v = z/xn+1.

We will prove that there is a Zariski open covering {Ui} of C such thatA extends to
an element Br(Ui) for each i. We see that (3.1) can be written in the form

(bx2m + c)(dx2k + e) = z2 − a1a2
2x2n+2 = NormQ(

√
a1)/Q(z −

√
a1a2xn+1). (3.2)

Hence it follows that A + B = 0. Furthermore, since x2m is a square, we have
A − E = (a1, x2m) = 0. Since A, B and E belong to the 2-torsion part of Br(Q(C)),
this implies thatA = B = E.

Now let U1 be the largest open subvariety of C in which the rational function
F := bx2m + c has neither a zero nor a pole, and let U2 be the largest open subvariety
of C in which G := dx2k + e has neither a zero nor a pole. Since A = B, we have that
A is an Azumaya algebra on U1 and also on U2. We prove that in the open subset C0
of C, the locus where both F and G have a zero is empty. Assume the contrary, that is,
there is a point (x, z) on C0 such that

bx2m + c = dx2k + e = 0.

Hence we deduce that

bkdmx2km = (−1)kckdm = (−1)mbkem,

and it follows that
(−1)mbkem − (−1)kckdm = 0.

Thus we see that
bkem + (−1)m+k+1ckdm = 0,

which contradicts (A2). Therefore, in the open subset C0 of C, the locus where both F
and G have a zero is empty.

Let H := (bx2m + c)/x2m be a rational function in Q(C). Since u = 1/x, the rational
function H can be written in the form H = b + cu2m. Let ∞ be a point at infinity on
C. By part (ii) of Definition 1.1 and the equation of C1, we know that ∞ = (u, v) =

(0,±
√

a). Thus we see that
H(∞) = b , 0.

Hence H is regular and nonvanishing at the points at infinity on C.
Now let U3 be the largest open subvariety of C in which H has neither a zero nor a

pole. SinceA = E, we deduce thatA is an Azumaya algebra on U3. By what we have
shown, we see that C = U1 ∪ U2 ∪ U3 and A is an Azumaya algebra on each Ui for
i = 1, 2, 3. ThereforeA is an Azumaya algebra of C. �

Theorem 3.2. We maintain the notation and assumptions of Lemma 3.1. Assume that
a1 , 1, and write

a1 = p1 p2 . . . ph,

where h is a positive integer and p1, p2, . . . , ph are the distinct primes dividing a1.
Assume (A1)–(A4), and suppose further that the following are true:
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(A5) there are positive integers h1, h2, h3 such that 1 ≤ h1 ≤ h2 ≤ h3 ≤ h and
h1 + h3 − h2 is odd; furthermore, gcd(c, pi) = 1 for each 1 ≤ i ≤ h2, gcd(e, pi) = 1
for each h2 + 1 ≤ i ≤ h,( c

pi

)
=

−1 if 1 ≤ i ≤ h1,

1 if h1 + 1 ≤ i ≤ h2,

and ( e
pi

)
=

−1 if h2 + 1 ≤ i ≤ h3,

1 if h3 + 1 ≤ i ≤ h,

where (·/·) denotes the Jacobi symbol;
(A6) for each odd prime l dividing a2, a1 is a square modulo l;
(A7) for each odd prime l dividing bkem + (−1)m+k+1ckdm such that a1 and l are

relatively prime, l does not divide gcd(c, e) or a1 is a quadratic residue modulo l;
(A8) b ≡ 0 mod pi for each 1 ≤ i ≤ h2 and d ≡ 0 mod pi for each h2 + 1 ≤ i ≤ h.

Let C be the smooth projective model as in Lemma 3.1. Then C(AQ)Br = ∅.

Proof. We maintain the notation of the proof of Lemma 3.1. Set

P := {p1, p2, . . . , ph1} ∪ {ph2+1, ph2+2, . . . , ph3}. (3.3)

We will prove that for any Pl ∈ C(Ql),

invl(A(Pl)) =

0 if l < P,
1
2 if l ∈ P.

(3.4)

Since C0 is smooth and C is the smooth projective model of C0, we know that
C0(Ql) is l-adically dense in C(Ql). It is well known [13, Lemma 3.2] that invl(A(Pl))
is a continuous function on C(Ql) with the l-adic topology. Hence it suffices to prove
(3.4) for Pl ∈ C0(Ql). We consider the following cases.

Case 1: l =∞, 2 or l is an odd prime such that gcd(a1, l) = 1 and a1 is a square in Q×l .
We see that the Hilbert symbol (a1, t)l is one for any t ∈ Q×l . Hence invl(A(Pl)) is

zero.

Case 2: l is an odd prime such that gcd(a1, l) = 1 and a1 is not a square in Q×l .
In this case, we consider the following subcases.

Subcase 2(i): vl(x) ≥ 0.
We contend that at least one of bx2m + c and dx2k + e is nonzero modulo l. Assume

the contrary, that is,
bx2m + c ≡ dx2k + e ≡ 0 mod l. (3.5)

Hence we see that

bkdmx2mk ≡ (−1)kckdm ≡ (−1)mbkem mod l,

https://doi.org/10.1017/S1446788714000044 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000044


366 N. N. Dong Quan [13]

and hence
(−1)mbkem − (−1)kckdm ≡ 0 mod l.

Therefore we see that

bkem + (−1)m+k+1ckdm ≡ 0 mod l.

By (A7) and since a1 is not a square modulo l, we deduce from the congruence above
that l does not divide gcd(c, e).

On the other hand, we see from (3.5) and (3.2) that

z2 ≡ a1a2
2x2n+2 mod l.

By (A6) and since a1 is not a square modulo l, we deduce that l does not divide a2.
Since a1 is a quadratic nonresidue modulo l, it follows from the last congruence that
x ≡ z ≡ 0 mod l. Hence we deduce from (3.5) that c ≡ e ≡ 0 mod l, and hence l divides
gcd(c, e), which is a contradiction. Thus, at least one of bx2m + c and dx2k + e is
nonzero modulo l, say U. Hence the local Hilbert symbol (a1,U)l is one. Therefore
invl(A(Pl)) is zero.

Subcase 2(ii): ε := vl(x) < 0.
By (A6) and since a1 is not a square modulo l, we deduce that l does not divide a2.

By (A1) and (3.1), we see that

vl(z) =
vl(z2)

2
=

vl(a1a2
2x2n+2)
2

= (n + 1)ε.

Hence there exist elements x0, z0 ∈ Z
×
l such that

x = x0lε ,
z = z0l(n+1)ε .

Hence we see from (3.1) that

z2
0l2(n+1)ε = a1a2

2x2n+2
0 l(2n+2)ε + (bx2m

0 l2mε + c)(dx2k
0 l2kε + e),

and hence

z2
0 = a1a2

2x2n+2
0 + l−2(n−m−k+1)ε(bx2m

0 + cl−2mε)(dx2k
0 + el−2kε).

Taking the above equation modulo l and noting that n − m − k + 1 is greater than zero,
we deduce that

z2
0 ≡ a1a2

2x2n+2
0 mod l.

By (A6), we easily see that a2 . 0 mod l. Thus it follows that

a1 ≡

( z0

a2xn+1
0

)2
mod l,

which is a contradiction since a1 is not a square modulo l. Therefore, in any event, we
see that invl(A(Pl)) is zero.
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Case 3: l is an odd prime such that l divides a1.
By assumption, we see that l = pi for some 1 ≤ i ≤ h. We contend that vpi (x) ≥ 0.

Assume the contrary, that is, vpi (x) < 0. Set ε = vpi (x). We see that

vpi ((bx2m + c)(dx2k + e)) = vpi (bx2m + c) + vpi (dx2k + e)
≥ min(2mε + vpi (b), vpi (c)) + min(2kε + vpi (d), vpi (e))
≥ min(2mε, 0) + min(2kε, 0)
≥ 2mε + 2kε
≥ 2(m + k)ε.

Since n > m + k − 1, we deduce that

−2(n − m − k + 1)ε ≥ 2 > 1,

and hence

vpi (ax2n+2) = 1 + 2(n + 1)ε < 2(m + k)ε ≤ vpi ((bx2m + c)(dx2k + e)).

By (3.1), we see that

2vpi (z) = vpi (z
2) = vpi (ax2n+2) = 1 + (2n + 2)ε,

which is a contradiction since the left-hand side is an even integer whereas the right-
hand side is odd. Therefore vpi (x) ≥ 0.

We now consider the following subcases.

Subcase 3(i): 1 ≤ i ≤ h1 or h2 + 1 ≤ i ≤ h3.
If the integer i satisfies 1 ≤ i ≤ h1, then by (A5) and (A8) we see that (c/pi) = −1

and b ≡ 0 mod pi. Thus we deduce that

bx2m + c ≡ c . 0 mod pi.

Since a1 = pia∗1, where a∗1 is an integer such that gcd(a∗1, pi) = 1, it follows from
[1, Theorem 5.2.7] that the local Hilbert symbol (a1, bx2m + c)pi satisfies

(a1, bx2m + c)pi =

( c
pi

)
= −1.

Therefore we deduce that invpi (A(Ppi )) is 1/2.
If the integer i satisfies h2 + 1 ≤ i ≤ h3, then using the same arguments as above, we

see from (A5) and (A8) that the local Hilbert symbol (a1, dx2k + e)pi satisfies

(a1, dx2m + e)pi =

( e
pi

)
= −1.

SinceA and B represent the same class in Br(Q(C)), we deduce that

invpi (A(Ppi )) = 1/2.
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Subcase 3(ii): h1 + 1 ≤ i ≤ h2 or h3 + 1 ≤ i ≤ h.
If the integer i satisfies h1 + 1 ≤ i ≤ h2, then by (A5) and (A8) we see that (c/pi) = 1

and b ≡ 0 mod pi. Thus we deduce that

bx2m + c ≡ c . 0 mod pi.

Since a1 = pia∗1, where a∗1 is an integer such that gcd(a∗1, pi) = 1, it follows from
[1, Theorem 5.2.7] that the local Hilbert symbol (a1, bx2m + c)pi satisfies

(a1, bx2m + c)pi =

( c
pi

)
= 1.

Therefore we deduce that
invpi (A(Ppi )) = 0.

If the integer i satisfies h3 + 1 ≤ i ≤ h, then using the same arguments as above, we
see from (A5) and (A8) that the local Hilbert symbol (a1, dx2m + e)pi satisfies

(a1, dx2m + e)pi =

( e
pi

)
= 1.

SinceA and B represent the same class in Br(Q(C)), we deduce that

invpi (A(Ppi )) = 0.

By what we have shown and since h1 + h3 − h2 is odd, we see that for any (Pl)l ∈

C(AQ), the sum
∑

l invlA(Pl) satisfies∑
l

invlA(Pl) =
∑

1≤i≤h1

invpiA(Ppi ) +
∑

h2+1≤i≤h3

invpiA(Ppi )

=
∑

1≤i≤h1

1
2 +

∑
h2+1≤i≤h3

1
2

= 1
2 modZ,

which proves that C(AQ)Br = ∅. �

Using Theorem 3.2, we reprove the following result, which is the main assertion of
[4, Theorem 1.2].

Corollary 3.3 [4, Theorem 1.2]. Let p be a prime such that p ≡ 1 mod 8 and let n be
a positive integer such that n ≥ 3. Assume that the following are true:

(i) there is an integer d∗ such that d∗ is a quadratic nonresidue in F×p , d∗ is odd and
gcd(d∗, n) = 1;

(ii) there is a nonzero integer m∗ such that m∗ is even and q = d2
∗ + pm2

∗ is a prime.

Let X be the smooth projective model of the affine curve given by

X : z2 = pq2x2n+2 + (d∗(p + d∗)x2 − q)(pm2
∗(p + d∗)x2 − d∗q). (3.6)

Then X(AQ)Br = ∅.
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Proof. Let
h1 = h2 = h3 = h = 1,

a1 := p,
a2 := q,
a := a1a2

2,

b := pm2
∗(p + d∗),

c := −d∗q,
d := d∗(p + d∗),
e := −q,

and
m = k = 1.

By (i) and (ii) in Corollary 3.3, one can verify that the quintuple (a, b, c, d, e) defined
as above satisfies (A1)–(A8). Hence Theorem 3.2 implies that X(AQ)Br = ∅, and thus
our contention follows. �

4. Certain hyperelliptic curves violating the Hasse principle

In this section, using Theorem 3.2, we will construct certain hyperelliptic curves
of arbitrary genus greater than two having no Q-rational points. To add some interest
to these curves, we require that they are everywhere locally solvable, that is, they are
counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.

Let h be a positive integer, and let p1, p2, . . . , ph be distinct odd primes. Define

a1 := p1 p2 . . . ph. (4.1)

Let q1, q2, q3 be nonzero odd integers, and define

a2 := q1q2q3. (4.2)

Let c1, e1 be nonzero integers, and let n,m, k be positive integers. Suppose that the
following are true:

(B1) gcd(a2, c1) = gcd(a2, e1) = gcd(c1, e1) = 1 and gcd(a2, pi) = gcd(c1, pi) =

gcd(e1, pi) = 1 for each 1 ≤ i ≤ h;
(B2) there exist integers h1, h2, h3 such that h1 + h3 − h2 is odd, 1 ≤ h1 ≤ h2 ≤ h3 ≤ h,(c1

pi

)
=

(e1

pi

)
=

−1 if 1 ≤ i ≤ h1,

1 if h1 + 1 ≤ i ≤ h2,

and (c1

pi

)
=

(e1

pi

)
=

−1 if h2 + 1 ≤ i ≤ h3,

1 if h3 + 1 ≤ i ≤ h;

(B3) pi ≡ 1 mod 4 for each 1 ≤ i ≤ h and a1 ≡ 1 mod 8.
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(B4) for each 1 ≤ i ≤ h, the prime pi is a square modulo l, where l is any odd prime
dividing a2;

(B5) q1 = ∆c2
1 + Φe2

1, where

Φ :=
h2∏
i=1

pi (4.3)

and

∆ :=
h∏

i=h2+1

pi; (4.4)

(B6) n − m + 1 . 0 mod l for each odd prime l dividing c1;
(B7) n − k + 1 . 0 mod l for each odd prime l dividing e1;
(B8) there is some integer t with 1 ≤ t ≤ h such that km . 0 mod pt;
(B9) let t be the integer in (B8). Thenn > m + 2k − 1 if 1 ≤ t ≤ h2,

n > 2m + k − 1 if h2 + 1 ≤ t ≤ h.

Define 

a := a1a2
2

b := Φ(a1 − c1e1q2q3)e1q2

c := c1q1q2
2q3

d := −∆(a1 − c1e1q2q3)c1q3

e := −e1q1q2q2
3.

(4.5)

The following result is the main theorem in this section.

Theorem 4.1. We maintain the notation and assumptions as above. Assume (B1)–(B9).
LetD be the smooth projective model of the affine curve defined by

D : z2 = ax2n+2 + (bx2m + c)(dx2k + e). (4.6)

Then D is a counterexample to the Hasse principle explained by the Brauer–Manin
obstruction.

For the proof of Theorem 4.1, we need the following lemmas.

Lemma 4.2. We maintain the notation as in Theorem 4.1, and assume that (B1)–(B9)
hold. Then (A1), (A2) in Theorem 3.2 hold, where p is taken to be pt in (A1).

Proof. Using (4.5) and noting that a1 − c1e1q2q3 ≡ −c1e1q2q3 . 0 mod pt, we see that

vpt (a) = 1,
vpt (bd) = vpt (−a1c1e1q2q3(a1 − c1e1q2q3)2) = vpt (a1) = 1.

Furthermore, we see that

vpt (b) =

1 if 1 ≤ t ≤ h2,

0 if h2 + 1 ≤ t ≤ h,
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and

vpt (d) =

0 if 1 ≤ t ≤ h2,

1 if h2 + 1 ≤ t ≤ h.

Letting n1, n2, n3, n4, n5 as in Theorem 2.1 with p replaced by pt, we note that

n1 = n4 = n5 = m + k − 1,

n2 =

m − 1 if 1 ≤ t ≤ h2,

2m + k − 1 if h2 + 1 ≤ t ≤ h,

and

n3 =

m + 2k − 1 if 1 ≤ t ≤ h2,

k − 1 if h2 + 1 ≤ t ≤ h.

Thus we deduce that

max(n1, n2, n3, n4, n5) =

m + 2k − 1 if 1 ≤ t ≤ h2,

2m + k − 1 if h2 + 1 ≤ t ≤ h.

Therefore, we deduce from (B9) that

n > max(n1, n2, n3, n4, n5).

Furthermore, it follows from (B9) that

n > min(m + 2k − 1, 2m + k − 1) > m + k − 1.

Thus (A1) in Theorem 2.1 holds.
We now prove that (A2) is true. We easily see from (4.5) and (B1) that

ce . 0 mod pt. By (B8), it is clear that km . 0 mod pt. We contend that bkem +

(−1)m+k+1ckdm . 0 mod pt. If 1 ≤ t ≤ h2, then it follows from (4.5) that a1 ≡ 0 mod pt
and b ≡ 0 mod pt. Hence we deduce from (4.4) and (B1) that

bkem + (−1)m+k+1ckdm ≡ (−1)m+k+1ckdm

≡ (−1)m+k+1(c1q1q2
2q3)k(∆c2

1e1q2q2
3)m

. 0 mod pt.

If h2 + 1 ≤ t ≤ h, then it follows from (4.5) that a1 ≡ 0 mod pt and d ≡ 0 mod pt.
Hence we deduce from (4.3) and (B1) that

bkem + (−1)m+k+1ckdm ≡ bkem

≡ (−c1e2
1q2

2q3Φ)k(−e1q1q2q2
3)m

. 0 mod pt.

Therefore (A2) in Theorem 3.2 holds. Hence our contention follows. �

Lemma 4.3. We maintain the notation in Theorem 4.1, and assume that (B1)–(B9) hold.
LetD be the curve in Theorem 4.1. ThenD is everywhere locally solvable.

https://doi.org/10.1017/S1446788714000044 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000044


372 N. N. Dong Quan [19]

Proof. By Lemma 4.2, we know that (A1), (A2) in Theorem 3.2 hold. Set

F(x) = ax2n+2 + (bx2m + c)(dx2k + e) ∈ Q[x].

Let D0,D1 be the affine curves associated to D as in part (i) of Definition 1.1.
Recall that D0 is given by the equation z2 = F(x) and D1 is given by the equation
v2 = u2n+2F(1/u), where u = 1/x and v = z/xn+1.

Since (A1), (A2) hold, it follows from Theorem 2.1 that F(x) is separable, and
henceD is smooth of genus n.

We now prove that D is everywhere locally solvable. For any odd prime l not
dividing a1c1e1q2q3, note that since

a1(−c1e1q2q3)(−a1c1e1q2q3) = (a1c1e1q2q3)2

is a square in Q×l , we deduce that at least one of a1,−c1e1q2q3,−a1c1e1q2q3 is a square
in Q×l . Hence it suffices to consider the following cases.

Case 1: l = 2, l =∞ or l is any odd prime such that gcd(l, a1) = 1 and a1 is a square
in Q×l .

Let ∞ be a point at infinity on D. By part (ii) of Definition 1.1, we see that ∞ is
one of the points onD1 with u = 0, that is,

∞ = (u, v) = (0,±
√

a) = (0,±a2
√

a1).

Since a1 ≡ 1 mod 8, we know that a1 is a square in Q×2 . Furthermore, we also know
that a1 is a square in R. Thus we see that ∞ belongs to D(Ql). Therefore D is locally
solvable at l.

Case 2: l is any odd prime such that gcd(l, c1e1q2q3) = 1 and −c1e1q2q3 is a square
in Q×l .

We see that the point P1 = (x, z) = (0, q1q2q3
√
−c1e1q2q3) belongs to D(Ql), which

proves thatD is locally solvable at l.

Case 3: l is any odd prime such that gcd(l, a1c1e1q2q3) = 1 and −a1c1e1q2q3 is a
square in Q×l .

Using (4.5) and (4.1), we see that

bd = −a1c1e1q2q3(a1 − c1e1q2q3)2.

By (4.5), we deduce that

a + ce + be + cd = a1q2
1q2

2q2
3 − c1e1q2

1q3
2q3

3 − e2
1q1q2

2q2
3Φ(a1 − c1e1q2q3)

− c2
1q1q2

2q2
3∆(a1 − c1e1q2q3),

and hence it follows from (B5) that

a + ce + be + cd = q2
1q2

2q2
3(a1 − c1e1q2q3) − q1q2

2q2
3(a1 − c1e1q2q3)(∆c2

1 + Φe2
1)

= q1q2
2q2

3(a1 − c1e1q2q3)[q1 − (∆c2
1 + Φe2

1)]
= 0.
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Thus we deduce that

a + (b + c)(d + e) = a + bd + be + cd + ce
= bd + (a + ce + be + cd)
= bd
= −a1c1e1q2q3(a1 − c1e1q2q3)2,

(4.7)

which proves that the point P2 = (x, z) = (1, [a1 − c1e1q2q3][−a1c1e1q2q3]1/2) belongs
toD(Ql). ThereforeD is locally solvable at l.

Case 4: l = pi for some 1 ≤ i ≤ h.
By (B2) and (B3), we easily see that(

−c1e1

pi

)
=

(
−1
pi

)(c1

pi

)(e1

pi

)
= 1.

We prove that q2, q3 are squares modulo pi. We first show that q2 is a square
modulo pi. Write

q2 = δ
∏
l∗ |q2

lvl∗ (q2)
∗ ,

where the product is taken over all the primes l∗ dividing q2 and δ is either 1 or −1.
Note that by (B3) we know that (

δ

pi

)
= 1.

By (B3), (B4) and the quadratic reciprocity law, we see that(q2

pi

)
=

(δ∏l∗ |q2
lvl∗ (q2)
∗

pi

)
=

(
δ

pi

)∏
l∗ |q2

( l∗
pi

)vl∗ (q2)
=

∏
l∗ |q2

( pi

l∗

)vl∗ (q2)
= 1,

and it thus follows that q2 is a square modulo pi. Repeating the same arguments as
above, we can show that q3 is a square modulo pi. Therefore we deduce that(

−c1e1q2q3

pi

)
= 1,

which proves that −c1e1q2q3 is a square in Q×pi
. Therefore the point P1 in Case 2

belongs toD(Qpi ). HenceD is locally solvable at pi.

Case 5: l is an odd prime such that l divides q2q3.
By (B4), we see that pi is a square modulo l for each 1 ≤ i ≤ h. Hence it follows

from (4.5) that (a1

l

)
=

h∏
i=1

( pi

l

)
= 1,

which proves that a1 is a square in Q×l . Thus we see that the point at infinity∞ in Case
1 belongs toD(Ql). ThereforeD is locally solvable at l.
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Case 6: l is an odd prime such that l divides c1.
Recall that F(x) = ax2n+2 + (bx2m + c)(dx2k + e) is the polynomial defining the

curveD. We consider the following system of equations:F(x) ≡ 0 mod l
∂F
∂x

(x) . 0 mod l.

Note that
∂F
∂x

(x) = (2n + 2)ax2n+1 + 2mbx2m−1(dx2k + e) + 2kdx2k−1(bx2m + c).

Since c1 ≡ 0 mod l, it follows from (4.7) that

F(1) = a + (b + c)(d + e) = −a1c1e1q2q3(a1 − c1e1q2q3)2 ≡ 0 mod l.

Using (4.5) and the fact that c1 ≡ 0 mod l, we see that

∂F
∂x

(1) ≡ (2n + 2)a + 2ma1e1q2Φ(−e1q1q2q2
3)

≡ (2n + 2)a1q2
1q2

2q2
3 − 2ma1e2

1q1q2
2q2

3Φ

≡ a1q1q2
2q2

3((2n + 2)q1 − 2mΦe2
1) mod l.

Since
q1 = ∆c2

1 + Φe2
1 ≡ Φe2

1 mod l,

we deduce from (4.3), (B1) and (B6) that

∂F
∂x

(1) ≡ a1q1q2
2q2

3((2n + 2)Φe2
1 − 2mΦe2

1)

≡ 2(n − m + 1)a1e2
1q1q2

2q2
3Φ

. 0 mod l.

It thus follows from Hensel’s lemma thatD is locally solvable at l.

Case 7: l is an odd prime such that l divides e1.
We maintain the same notation as in Case 6. We see that

F(1) = a + (b + c)(d + e) = −a1c1e1q2q3(a1 − c1e1q2q3)2 ≡ 0 mod l.

Using (4.5) and the fact that e1 ≡ 0 mod l, we see that

∂F
∂x

(1) ≡ (2n + 2)a + 2kcd

≡ (2n + 2)a1q2
1q2

2q2
3 − 2ka1c2

1q1q2
2q2

3∆

≡ a1q1q2
2q2

3((2n + 2)q1 − 2k∆c2
1).

Since
q1 = ∆c2

1 + Φe2
1 ≡ ∆c2

1 mod l,
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we deduce from (4.4), (B1) and (B7) that

∂F
∂x

(1, 0) ≡ a1q1q2
2q2

3((2n + 2)∆c2
1 − 2k∆c2

1)

≡ 2(n − k + 1)a1c2
1q1q2

2q2
3∆

. 0 mod l.

Thus it follows from Hensel’s lemma thatD is locally solvable at l.
By what we have shown, we deduce thatD is everywhere locally solvable. �

We now prove Theorem 4.1.

Proof of Theorem 4.1. We will use Theorem 3.2 to prove that D(AQ)Br = ∅. By
Lemma 4.2, it suffices to show that conditions (A3)–(A8) in Theorem 3.2 hold. By
(4.1), (4.2), (4.5), (B1) and (B3), we see that (A3) holds trivially. We contend that
a1 − c1e1q2q3 is nonzero modulo p1. Assume the contrary, that is, a1 − c1e1q2q3 ≡

0 mod p1, and hence it follows from (4.1) that

c1e1q2q3 ≡ 0 mod p1,

which is in contradiction to (B1). Therefore one sees that a1 − c1e1q2q3 . 0 mod p1,
and hence a1 − c1e1q2q3 , 0. Thus we see from (4.5) that b , 0. Thus (A4) holds.

Now we prove that (A5) is true. Indeed, we know from Case 4 of the proof of
Lemma 4.3 that q2 and q3 are squares modulo pi for each 1 ≤ i ≤ h. Using the same
arguments as in Case 4 of the proof of Lemma 4.3, we can show that q1 is a square
modulo pi for each 1 ≤ i ≤ h. Hence we deduce from (B2) and (B3) that( c

pi

)
=

(c1q1q2
2q3

pi

)
=

(c1

pi

)(q1q2
2q3

pi

)
=

−1 if 1 ≤ i ≤ h1,

1 if h1 + 1 ≤ i ≤ h2,

and ( e
pi

)
=

(−e1q1q2q2
3

pi

)
=

(
−1
pi

)(e1

pi

)(q1q2q2
3

pi

)
=

−1 if h2 + 1 ≤ i ≤ h3,

1 if h3 + 1 ≤ i ≤ h.

Therefore (A5) follows.
Let l be any odd prime such that l divides a2. By (B4), we see that(a1

l

)
=

h∏
i=1

( pi

l

)
= 1,

and hence it follows that a1 is a square modulo l. Thus (A6) holds. By (4.5), we easily
see that (A8) holds trivially.

We now prove that (A7) is true. Let l be an odd prime such that gcd(l, a1) = 1 and l
divides bkem + (−1)m+k+1ckdm. Assume further that l divides gcd(c, e). Since c1, e1 are
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relatively prime, we see that gcd(c, e) = q1q2q3 = a2. Hence l divides a2, and thus it
follows from (B4) that (a1

l

)
=

h∏
i=1

( pi

l

)
= 1.

Therefore a1 is a square modulo l, and thus (A7) holds. Applying Theorem 3.2 for the
curveD, we deduce thatD(AQ)Br = ∅.

By Lemma 4.3, we know that D is everywhere locally solvable, and thus D is a
counterexample to the Hasse principle explained by the Brauer–Manin obstruction.
Thus our contention follows. �

5. Infinitude of the quintuples (a, b, c, d, e) satisfying (B1)–(B9)

In this section, we will show how to produce families of hyperelliptic curves of
arbitrary genus greater than two violating the Hasse principle explained by the Brauer–
Manin obstruction. Using Theorem 4.1, it suffices to prove that there are infinitely
many quintuples (a, b, c, d, e) satisfying (B1)–(B9). Following [4], we will make use
of a theorem of Iwaniec on the representation of primes using quadratic polynomials
to show the existence of infinitely many quintuples (a, b, c, d, e) satisfying (B5). The
other conditions in Theorem 4.1 will follow immediately. Note that by introducing
two more parameters q2 and q3 in Theorem 4.1 and imposing mild conditions on them,
the number of the quintuples (a, b, c, d, e) satisfying (B1)–(B9) is large. We begin by
recalling the following definition in [7].

Definition 5.1. Let P(x, y) ∈ Q[x, y] be a quadratic polynomial in two variables x and
y. We say that P depends essentially on two variables if ∂P/∂x and ∂P/∂y are linearly
independent as elements of the Q-vector space Q[x, y].

Theorem 5.2 (Iwaniec [7, page 435]). Let P(x, y) = ax2 + bxy + cy2 + ex + f y + g ∈
Z[x, y] be a quadratic polynomial defined over Z, and assume that the following are
true:

(i) a, b, c, e, f , g are in Z and gcd(a, b, c, e, f , g) = 1;
(ii) P(x, y) is irreducible in Q[x, y], represents arbitrarily large odd numbers, and

depends essentially on two variables;
(iii) D = a f 2 − be f + ce2 + (b2 − 4ac)g = 0 or ∆ = b2 − 4ac is a perfect square.

Then
N log−1 N �

∑
p≤N, p=P(x,y)

p prime

1.

We now prove the main result in this section.

Lemma 5.3. Let n,m, k be positive integers such that n > min(m + 2k − 1, 2m + k − 1).
Let h be a positive integer, and let h1, h2, h3 be positive integers. Assume that the
following are true:
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(H1) 1 ≤ h1 ≤ h2 ≤ h3 ≤ h;
(H2) h1 + h3 − h2 is odd; and
(H3) if h2 = h, then n > m + 2k − 1.

Then there are infinitely many quintuples (a, b, c, d, e) that satisfy (B1)–(B9) in
Theorem 4.1.

Proof. Define

t =

1 if min(m + 2k − 1, 2m + k − 1) = m + 2k − 1,
h if min(m + 2k − 1, 2m + k − 1) = 2m + k − 1 and m , k.

(5.1)

Set

P :=
{
l odd prime | n − m + 1 ≡ 0 mod l or n − k + 1 ≡ 0 mod l

}
, (5.2)

and define
ε :=

∏
l∈P

l. (5.3)

Note that since n > min(m + 2k − 1, 2m + k − 1), it follows that n − m + 1 , 0 and
n − k + 1 , 0. Hence the set P is of finite cardinality.

We now define the odd primes p1, p2, . . . , ph. If h = 1, we simply choose p1 to be
an odd prime satisfying the following:

(C1∗) p1 ≡ 1 mod 8, km . 0 mod p1 and p1 ≡ 1 mod l for each l ∈ P.

If h ≥ 2, we let p1, ph be odd primes satisfying the following:

(C1) p1 ≡ 1 mod 4, ph ≡ 1 mod 4, p1 ph ≡ 1 mod 8;
(C2) km . 0 mod p1 and km . 0 mod ph;
(C3) p1 ≡ 1 mod l and ph ≡ 1 mod l for each l ∈ P;
(C4) p1 is a square modulo ph.

Such odd primes p1, ph exist. Indeed, using the Chinese Remainder Theorem,
Dirichlet’s theorem on primes in arithmetic progressions, and noting that P is of
finite cardinality, we deduce that there is an odd prime ph such that ph ≡ 1 mod 4,
km . 0 mod ph and ph ≡ 1 mod l for each l ∈ P. Similarly, there exists an odd prime p1
such that p1 and km are relatively prime, p1 ≡ 1 mod l for each l ∈ P,

p1 ≡

1 mod 8 if ph ≡ 1 mod 8,
5 mod 8 if ph ≡ 5 mod 8,

(5.4)

and p1 is a quadratic residue modulo ph. It is easy to see that p1 ph ≡ 1 mod 8, and
hence p1, ph satisfy (C1)–(C4) above. Using similar arguments, there exist distinct
odd primes p2, p3, . . . , ph2 such that the following are true:

(C5) pi ≡ 1 mod 4 for each 2 ≤ i ≤ h2 and( ∏
1≤i≤h2,

i,h

pi

)
ph ≡ 1 mod 8;
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(C6) pi ≡ 1 mod l for each l ∈ P and each 2 ≤ i ≤ h2 with i , h;
(C7) pi is a quadratic residue modulo ph for each 2 ≤ i ≤ h2 with i , h.

Similarly, there exist distinct odd primes ph2+1, ph2+2, . . . , ph−1 such that the following
are true:

(C8) pi ≡ 1 mod 4 for each h2 + 1 ≤ i ≤ h − 1 and
∏h

i=1 pi ≡ 1 mod 8;
(C9) pi ≡ 1 mod l for each h2 + 1 ≤ i ≤ h − 1 and each l ∈ P;
(C10) p j is a square modulo pi for each 1 ≤ i ≤ h2 and each h2 + 1 ≤ j ≤ h − 1.

Define
a1 := p1 p2 . . . ph. (5.5)

Since t is either 1 or h, it follows from the choice of p1 and ph that km . 0 mod pt,
and hence (B8) holds. It is clear that (B3) is true.

We prove that (B9) is true. Indeed, if h2 = h, then it follows from (H3) that
n > m + 2k − 1. Thus (B9) follows immediately. Assume now that h2 < h. If t = 1,
then it follows from (5.1) that n > m + 2k − 1, and thus (B9) holds. If t = h, then it
follows from (5.1) that n > 2m + k − 1. Since h2 < t = h, we deduce that (B9) is true.
Therefore, in any event, (B9) holds.

Since P ∩ {p1, p2, . . . , ph} is empty and P is a finite set of odd primes, we deduce
that there are nonzero integers c∗1, e

∗
1 such that the following are true:

(C11) c∗1, e∗1 are odd and gcd(c∗1, e
∗
1) = 1;

(C12) c∗1 ≡
1
4 mod l and e∗1 ≡ 1 mod l for each l ∈ P, where P is defined by (5.2);

(C13) gcd(c∗1, pi) = gcd(e∗1, pi) = 1 for each 1 ≤ i ≤ h,

(c∗1
pi

)
=

(e∗1
pi

)
=

−1 if 1 ≤ i ≤ h1,

1 if h1 + 1 ≤ i ≤ h2,

and (c∗1
pi

)
=

(e∗1
pi

)
=

−1 if h2 + 1 ≤ i ≤ h3,

1 if h3 + 1 ≤ i ≤ h.

Set

Φ :=
h2∏
i=1

pi, (5.6)

∆ :=
h∏

i=h2+1

pi, (5.7)

and define the quadratic polynomial P(x, y) ∈ Z[x, y] by

P(x, y) := 16∆(εa1x + c∗1)2 + Φ(2εa1y + e∗1)2,
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where ε is defined as in (5.3). Expanding P(x, y) in the form Ax2 + Bxy + Cy2 + Ex +

Fy + G, we see that

A = 16a2
1ε

2∆,
B = 0,
C = 4a2

1ε
2Φ,

E = 32a1c∗1ε∆,
F = 4a1e∗1εΦ,
G = 16c∗1

2∆ + e∗1
2Φ.

We prove that gcd(A, B,C, E, F,G) = 1. Since ∆ and Φ are relatively prime, we
see that gcd(A,C) = 4a2

1ε
2. Hence it suffices to prove that gcd(4a2

1ε
2,G) = 1, that is,

G . 0 mod 2, G . 0 mod pi for each 1 ≤ i ≤ h and G . 0 mod l for each l ∈ P. Since e∗1
is odd, it is obvious that G ≡ 1 mod 2. By the definition of ∆ and Φ, it follows from
(C13) that

G = 16c∗1
2
∆ + e∗1

2
Φ ≡ 16c∗1

2
∆ . 0 mod pi

for each 1 ≤ i ≤ h2, and

G = 16c∗1
2
∆ + e∗1

2
Φ ≡ e∗1

2
Φ . 0 mod pi

for each h2 + 1 ≤ i ≤ h. Hence it remains to show that G . 0 mod l for each l ∈ P. By
(C3), (C6), (C9), (C12), (5.6) and (5.7) and since l is odd for each l ∈ P, we deduce
that

G = 16c∗1
2
∆ + e∗1

2
Φ ≡ 1 + 1 ≡ 2 . 0 mod l

for each l ∈ P. Thus it follows that gcd(4a2
1ε

2,G) = 1, and hence gcd(A,C,G) = 1.
Therefore gcd(A, B,C, E, F,G) = 1, and thus condition (i) in Theorem 5.2 is true. One
can verify that

D = AF2 − BEF + CE2 + (B2 − 4AC)G = 0,

and hence condition (iii) in Theorem 5.2 holds. Furthermore, since Φ(2εa1y + e∗1)2 is
an odd integer, we see that P(x, y) represents arbitrarily large odd numbers. It is clear
that P(x, y) is irreducible in Q[x, y], and that it depends essentially on two variables.
Thus condition (ii) in Theorem 5.2 is true. Hence Theorem 5.2 says that there are
infinitely many odd primes q such that q = P(x, y) for some x, y ∈ Z. Take such integers
x, y, and define

c1 := 4(εa1x + c∗1), (5.8)
e1 := 2εa1y + e∗1, (5.9)

and
q1 := P(x, y) = ∆c2

1 + Φe2
1. (5.10)

Let S be the set of odd primes l satisfying the following conditions:

(i) gcd(l, c1) = gcd(l, e1) = 1 and gcd(l, pi) = 1 for each 1 ≤ i ≤ h;
(ii) l is a square modulo pi for each 1 ≤ i ≤ h.
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We see that the set S is of infinite cardinality. Let I and J be (possibly empty) finite
subsets ofS. For each l ∈ I, take a positive integer ml, and for each l ∈ J, take a positive
integer nl. Define

q2 :=
∏
l∈I

lml , (5.11)

and
q3 :=

∏
l∈J

lnl . (5.12)

We set
a2 := q1q2q3, (5.13)

where q1, q2, q3 are defined by (5.10)–(5.12), respectively.
Recall that we have shown above that (B3), (B8) and (B9) are true. It remains to

prove that (B1), (B2) and (B4)–(B7) are true. By (5.6), (5.7) and (5.10), we see that
(B5) holds trivially. By (5.8), (5.9), we see that

c1 = 4(εa1x + c∗1) ≡ 4c∗1 . 0 mod pi

and
e1 = 2εa1y + e∗1 ≡ e∗1 . 0 mod pi

for each 1 ≤ i ≤ h. By (5.10) and since q1 is an odd prime, we deduce that gcd(c1,q1) =

gcd(e1, q1) = gcd(c1, e1) = 1. It is easy to see from (5.10) that gcd(q1, pi) = 1 for each
1 ≤ i ≤ h. By the definition of S, it is now clear that (B1) holds.

Since c1 ≡ 4c∗1 mod pi for each 1 ≤ i ≤ h, we see that(c1

pi

)
=

(4c∗1
pi

)
=

( 4
pi

)(c∗1
pi

)
=

(c∗1
pi

)
=

−1 if 1 ≤ i ≤ h1,

1 if h1 + 1 ≤ i ≤ h2.

Since e1 ≡ e∗1 mod pi for each 1 ≤ i ≤ h, using the same arguments as above, we deduce
that (e1

pi

)
=

(e∗1
pi

)
=

−1 if 1 ≤ i ≤ h1,

1 if h1 + 1 ≤ i ≤ h2.

Similarly, one can show that(c1

pi

)
=

(e1

pi

)
=

−1 if h2 + 1 ≤ i ≤ h3,

1 if h3 + 1 ≤ i ≤ h.

Therefore (B2) holds.
We now prove that (B4) is true. Let l be any odd prime dividing a2. If l divides

q2q3, then we see that l belongs to the set S. By the definition of S, we deduce
that l is a square modulo pi for each 1 ≤ i ≤ h. By the quadratic reciprocity law and
since pi ≡ 1 mod 4 for each 1 ≤ i ≤ h, we deduce that pi is a square modulo l for
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each 1 ≤ i ≤ h. If l divides q1, then it follows that l = q1 since q1 is an odd prime. By
(5.10), we see that

q1 ≡

∆c2
1 mod pi if 1 ≤ i ≤ h2,

Φe2
1 mod pi if h2 + 1 ≤ i ≤ h.

We contend that ∆ is a square modulo pi for each 1 ≤ i ≤ h2 and Φ is a square modulo
pi for each h2 + 1 ≤ i ≤ h. Indeed, by (C4), (C7) and the quadratic reciprocity law, we
know that ph is a square modulo pi for each 1 ≤ i ≤ h2. Thus it follows from (C10) that
p j is a square modulo pi for each 1 ≤ i ≤ h2 and h2 + 1 ≤ j ≤ h. Using the quadratic
reciprocity law and noting that pi ≡ 1 mod 4 for each 1 ≤ i ≤ h, we deduce that pi is a
square modulo p j k for each 1 ≤ i ≤ h2 and h2 + 1 ≤ j ≤ h. Thus it follows from (5.6),
(5.7) that ∆ is a square modulo pi for each 1 ≤ i ≤ h2 and Φ is a square modulo pi for
each h2 + 1 ≤ i ≤ h. Therefore we deduce that(q1

pi

)
=

(∆c2
1

pi

)
=

(
∆

pi

)
= 1

for each 1 ≤ i ≤ h2, and that (q1

pi

)
=

(Φe2
1

pi

)
=

(
Φ

pi

)
= 1

for each h2 + 1 ≤ i ≤ h. Thus, in any case, q1 is a quadratic residue modulo pi for each
1 ≤ i ≤ h, and hence it follows from the quadratic reciprocity law that pi is a square
modulo q1 for each 1 ≤ i ≤ h. Therefore (B4) holds.

We prove that (B6) is true. Assume the contrary, that is, there is an odd prime l
dividing c1 such that n − m + 1 ≡ 0 mod l. It follows that l belongs to P, where P is
defined by (5.2). Hence it follows from (5.3) that ε ≡ 0 mod l. By (5.8) and (C12), we
see that

c1 = 4(εa1x + c∗1) ≡ 4c∗1 ≡ 1 mod l,

which is a contradiction since c1 ≡ 0 mod l. Thus n − m + 1 . 0 mod l, and therefore
(B6) holds.

We now show that (B7) holds. Assume the contrary, that is, there is an odd prime
l dividing e1 such that n − k + 1 ≡ 0 mod l. It follows that l belongs to P, and hence
ε ≡ 0 mod l. By (5.9) and (C12), we deduce that

e1 = 2εa1y + e∗1 ≡ e∗1 ≡ 1 mod l,

which is a contradiction since e1 ≡ 0 mod l. Thus n − k + 1 . 0 mod l, and therefore
(B7) holds.

Now let (a, b, c, d, e) be the quintuple defined as in (4.5). By what we have shown,
we see that the quintuple (a,b, c,d, e) satisfies (B1)–(B9) in Theorem 4.1, which proves
our contention. �
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Corollary 5.4. Let k,m, n be positive integers such that

n > min(2m + k − 1,m + 2k − 1).

Then there exist infinitely many quintuples (a,b, c,d, e) of integers such that the smooth
projective modelD(n,m,k)

(a,b,c,d,e) of the affine curve defined by

D
(n,m,k)
(a,b,c,d,e) : z2 = ax2n+2 + (bx2m + c)(dx2k + e)

is of genus n and a counterexample to the Hasse principle explained by the Brauer–
Manin obstruction.

Proof. Let h be any positive integer, and let h1, h2, h3 be positive integers satisfying
(H1), (H2), (H3) in Lemma 5.3. Using Lemma 5.3 and Theorem 4.1, our contention
follows immediately. �

Remark 5.5. For positive integers k,m, n with

n > min(2m + k − 1,m + 2k − 1),

Corollary 5.4 says that there are infinitely many hyperelliptic curves of genus n
that are counterexamples to the Hasse principle explained by the Brauer–Manin
obstruction. The construction of such hyperelliptic curves are explicit, and the proof
of Lemma 5.3 can be viewed as an algorithm for producing hyperelliptic curves of
arbitrary genus greater than two violating the Hasse principle explained by the Brauer–
Manin obstruction. We will use the proof of Lemma 5.3 to produce families of
hyperelliptic curves of arbitrary genus greater than two with fixed coefficients in the
example below.

Example 5.6. Let h = 2, and let (h1, h2, h3) = (1, 2, 2). Let p1 = 17 and p2 = 89. Let
c1 = 44, e1 = 5, and let q1 = 39 761. We see that

q1 = 39 761 = 442 + 17 × 89 × 52 = c2
1 + p1 p2e2

1.

Following the proof of Lemma 5.3, let S be the set of odd primes l satisfying the
following conditions:

(i) l . 0 mod 5, l . 0 mod 11, l . 0 mod 17 and l . 0 mod 89;
(ii) l is a quadratic residue modulo 17;
(iii) l is a quadratic residue modulo 89.

Note that S is of infinite cardinality. For example, the set consisting of the primes 47,
53, 67, 157, 179, 223, 251, 257, 263, 271, 307, 331, 373, 409, 443, 461, 463, 467 is a
subset of S consisting of the primes in S that are less than 500.

Let I and J be (possible empty) finite subsets of S. For each l ∈ I, choose a positive
integer ml, and for each l ∈ J, take a positive integer nl. We define

q2 :=
∏
l∈I

lml (5.14)
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and
q3 :=

∏
l∈J

lnl . (5.15)

We set
a1 := p1 p2 = 1513

and
a2 := q1q2q3 = 39 761

(∏
l∈I

lml

)(∏
l∈J

lnl

)
.

Following (4.5) and the proof of Lemma 5.3, we define

a := a1a2
2 = 2 391 957 864 073q2

2q2
3

b := p1 p2(a1 − c1e1q2q3)e1q2 = 7565q2(1513 − 220q2q3)
c := c1q1q2

2q3 = 1 749 484q2
2q3

d := −(a1 − c1e1q2q3)c1q3 = −44q3(1513 − 220q2q3)
e := −e1q1q2q2

3 = −198 805q2q2
3.

(5.16)

LetZ be the set of triples (n,m, k) of positive integers satisfying the following four
conditions:

(i) n − m + 1 . 0 mod 11;
(ii) n − k + 1 . 0 mod 5;
(iii) km . 0 mod 17 and km . 0 mod 89;
(iv) n > m + 2k − 1.

By condition (iv) above, we see that conditions (H1), (H2), (H3) in Lemma 5.3 are
true. As shown in the proof of Lemma 5.3, we see that the quintuple (a, b, c, d, e)
defined by (5.16) satisfies (B1)–(B9) in Theorem 4.1.

Let (n,m, k) ∈ Z, and let D(n,m,k)
(a,b,c,d,e) be the smooth projective model of the affine

curve defined by

D
(n,m,k)
(a,b,c,d,e) : z2 = ax2n+2 + (bx2m + c)(dx2k + e).

Then it follows from Theorem 4.1 that D(n,m,k)
(a,b,c,d,e) is a counterexample to the Hasse

principle explained by the Brauer–Manin obstruction.
In Table 1, we list the curves D(n,m,k)

(a,b,c,d,e) for a few special values of (a, b, c, d, e),
where (n,m, k) is an arbitrary triple inZ.

Remark 5.7. We contend that for a positive integer n ≥ 3, there exists a pair (m, k)
of positive integers such that the triple (n,m, k) belongs to the set Z in Example 5.6.
Indeed, if n . 0 mod 11 and n . 0 mod 5, then letting k = m = 1, one can verify that the
triple (n,m, k) satisfies conditions (i)–(iv) of the set Z. Hence (n,m, k) belongs to Z.
It remains to consider the case when n ≡ 0 mod 11 or n ≡ 0 mod 5. Assume first that
n ≡ 0 mod 11. We see that n ≥ 11. Let k be a positive integer such that 1 ≤ k ≤ 4 and
k . n + 1 mod 5, and let m = 2. We see that

m + 2k − 1 = 2 + 2k − 1 = 2k + 1 ≤ 9 < n.
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Table 1. Certain hyperelliptic curvesD(n,m,k)
(a,b,c,d,e) with (n,m, k) ∈ Z violating the Hasse principle.

q2 q3 D
(n,m,k)
(a,b,c,d,e)

1 1 z2 = 239 195 786 4073x2n+2

−(9 781 545x2m + 1 749 484)(56 892x2k + 198 805)
1 47 z2 = 5 283 834 921 737 257x2n+2

−(66 776 255x2m − 82 225 748)(18 254 236x2k − 439 160 245)
53 1 z2 = 6 719 009 640 181 057x2n+2

−(4 068 388 915x2m − 4 914 300 556)(446 468x2k − 10 536 665)

Hence the triple (n,m, k) satisfies condition (iv) of the set Z. One can show that
(n,m, k) satisfies conditions (i)–(iii) ofZ, and thus (n,m, k) ∈ Z.

Assume now that n ≡ 0 mod 5 and n . 0 mod 11. We see that n ≥ 5. Letting m = 1
and k = 2, we deduce that

m + 2k − 1 = 4 < n.

Thus the triple (n,m, k) satisfies condition (iv) of Z. It is not difficult to see that
(n,m, k) satisfies conditions (i)–(iii) ofZ, and thus (n,m, k) ∈ Z.

Remark 5.8. Remark 5.7 says that for a given positive integer n ≥ 3 there is a pair
(m, k) of positive integers such that the triple (n,m, k) belongs to Z. Hence the genus
of the curves in Example 5.6 ranges over the set of positive integers greater than 2.
Thus Example 5.6 produces families of hyperelliptic curves of arbitrary genus greater
than 2 that are counterexamples to the Hasse principle explained by the Brauer–Manin
obstruction.
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