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ON REPRESENTATIONS OF A GENERALIZED METHOD
OF FIELD QUANTIZATION

R. KLEEMAN

Abstract

A new method of field quantization, in which the number operator has the form a*a, is
proposed. Representations of this method are considered, particularly in reference to
what conditions unique-vacuum state representations are required to satisfy.

1. Introduction

Over the past few years many different methods of generalized field quantiza-
tion have been considered. The most prominent of these have been the para-
field theories of Green [5], who assumes the following algebraic relations for the
creation and annihilation operators a* and a{:

\ai,\\a*ak\ 1 = 8uak)
a n d L ' 2 L J * J ± J - >J k \ (1 .1)

[<*,[«,, *]±]_-Q. J
with the + referring to para-Bose theories and the - to para-Fermi theories. In
addition, para-Fermi theories, which have finite dimensional irreducible repre-
sentations, have the following condition added:

( a , . y + 1 =0 and ( a ) V 0 for / < p, (1.2)

the corresponding theories being referred to as para-Fermi statistics of order/?.
The number operators for the para-field theories are taken to be

N,=\[a*,ai]±+b0, (1.3)

with the constant b0 being fixed by the particular representation under consider-
ation (for para-Fermi theories by the order of the theory).
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[21 On representations of field quantization 53

Equations (1.1) may be justified in a free field theory context in the following
manner. The field operator </>(*) is assumed to be given by

+ bf exp(-i(*/x,,))O>], (1.4)
j

where we are dropping any vector or spinor indices from <K-*)- The a, are the
annihilation operators for particles and the b* are creation operators for anti-
particles. The Uj and o, are appropriate normalizing coefficients for the discrete
Fourier transform (1.4).

Secondly, we assume that the momentum-energy operator of the field is given
by

i>" = 2 kfNr (1.5)
j

Finally, we assume that Heisenberg's principle, in the following form, holds:

[Pll,^x)] = -i^x). (1.6)

A short calculation from (1.4) and (1.5) now shows that, for this condition to
hold, it is sufficient that

["j>Nk]_=8Jkak and [bf, Nk]_ = -8Jkb*k. (1.7)

The adjoint to the first of these equations has the same form as the second
and so we will remove the algebraic distinction between particle and anti-
particle and simply write

[^ Nk]_= Sjkak. (1.8)

This equation merely expresses the fact that a, is an annihilation operator for the
j eigenstate of the field. Assumption of the form (1.3) for the number operator
then gives:

[ *[ ]]-fy*. (1-9)
The first of (1.1) has been obtained from (1.9) by Bialynicki-Birula [1] by
making the assumption that the form of (1.9) should not be affected if the
expansion functions of (1.4) are subject to a unitary transformation, the new
annihilation operators after this transformation being given by

< = 2 (So,+ ao)aj, (1.10)
j

where an infinitesimal unitary transformation is being considered and so atJ =
—a* is an anti-Hermitian matrix.

The second equation of (1.1) can be derived from the first by algebraic means.
The above justification for (1.1) is quite general, and it is only when one

identifies the number operators with the expressions in (1.3) that one obtains the
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54 R. Kleeman [3]

para-field theories. This raises the interesting question of whether other expres-
sions for the number operators are possible.

A natural way of considering this possibility is to examine the expressions for
the number operators of the usual Fermi and Bose quantization schemes. In
both these cases they are assumed to be given by (see [6])

*, = <*,• (1.11)

By use of the anti-commutation and commutation relations

assumed for the Fermi and Bose cases, respectively, (1.11) becomes

Ni=\[aT,ai}±-\, (1.12)

which is in the form of (1.3).
From a purely formal viewpoint then, it appears natural to assume that only

(1.11) holds. Equation (1.8) then becomes

[a,, a?a,]_ = 8^. (1.13)

Such schemes have been considered before, most notably by Roman and
Aghassi [7]. However, these authors also assume that the following commutation
relations hold, with/? having the same role as in (1.2):

which, as has been pointed out by Govorkov [4], are not invariant with respect
to the infinitesimal unitary transformations (1.10). The requirement that (1.13)
be invariant with respect to these transformations leads to [3]

We shall take this equation to be fundamental. In addition, we shall concern
ourselves with only finite dimensional representations and so we will assume
that (1.2) holds. This equation may be interpreted as a generalized exclusion
principle: only/? particles being allowed in one particular eigenstate of the field.

In the appendix it is shown that a certain "truncated" oscillator considered by
Buchdahl [2] has the same irreducible representations as our scheme with
i = j = k. In the next section we consider properties of representations of the
more general scheme.
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2. Representations

As stated in the introduction we shall be concerned with representations of
the following scheme

[ai,a*ak\=8iJak, {of*1 - 0, 1 ( 2 J )

(a,)' ¥= 0 for / < /> and JV, = a^at.\

We begin by making a few general observations. First, we have [N,, NJ\ = 0,
meaning we can choose a basis for representations in which all number opera-
tors are diagonal. We shall denote by |/,, i2, . . . ) normalized eigenvectors of
Nu N2, . . . which are in such a basis. These will be referred to as number states.

Secondly, we observe that the eigenvalues of A', are non-negative integers and
finally that aj\ix, i2, . . . , / } , . . . > is an eigenvector of W,, N2, • • • with eigenval-
ues /„ i2, . . . , ij — 1, . . . unless /, = 0 in which case it is zero. The last two
assertions will be proved in the appendix.

Our first result on representations of (2.1) concerns degeneracy of the vacuum,
that is, the existence of more than one linearly independent |0, 0, . . . > state:

THEOREM 1. If any of the number states are degenerate then the vacuum is
degenerate.

P R O O F . Let <f> and i// be two linearly independent |/,, i2, . . . , / / , . . . ) states;

then, since they are normalized, |(</>, \p)\l/2 ¥= 1. If w is any state denote by [«] a

normalized state. N o w

114*11 = \(a,<t>, a,<t>)\1/2 = |(fc a ; a / * ) | ' / 2 = (i ,) ' 7 2 . (2.2)

Hence

= (i,ri/2\(<t>, a?ait)\
x/2 = K*.

Thus [a,<j>] and [a,xj/] are linearly independent, showing that there must exist
more than one linearly independent |/,, i2, . . . , / , — 1, . . . > state. By applying
the appropriate sequence of annihilation operators and using the above argu-
ment repeatedly, we conclude that the vacuum must be degenerate.

This result contrasts with the situation in para-Fermi theory in which de-
gnerate number states are possible without a degenerate vacuum. The degener-
acy of the number states in this theory is usually taken to mean that non-identi-
cal particles are described. If we accept this interpretation here, we must
conclude that a representation of (2.1) with a unique vacuum state describes
identical particles.
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It is possible to use conditions on the eigenvalues of Nv N2,... to separate
the degenerate vacuum representations from the unique vacuum representations.
These conditions are as follows:

THEOREM 2. If there exists a\iu i2, • . . ) in the representation with

2 ij > P and im > 1 for some m, (2.3)
j

then the representation has a degenerate vacuum.

PROOF. Let <// be a |i,, i2, • •. > state satisfying the conditions of (2.3). Now,
apart from im, there must exist an /, ¥= 0 as, otherwise, we will have im> p which
means, by the observations made at the start of this section, that (amY+1\p ^ 0,
contradicting the second of (2.1). Now the first equation of (2.1) gives

am<M ~ < ¥ J = ad- (2-4)

If we assume that the first term on the left vanishes then (a*aiamip, a$) =
-(<*,<//, a,^) and so {a,am^, ama,$) = -i,. Using (2.2), \([a,amxp], [ama,\l>])\
= ' / / ' / • im = (/„)"'. which means that K K ^ ] , [amaM)\X/2 = ( /J" l / 2 ^ 1 and,
since [a,am\{/] and [ama,ip] have the same set of eigenvalues, it follows that the
representation containing ^ has a degenerate number state and consequently a
degenerate vacuum.

If the first term of (2.4) does not vanish, then we have a*a,\l/ ¥= 0 which
means, using the fact that â J is a creation operator for the mth eigenstate, that
there exists a \p' in the representation with the eigenvalue set /„ i2, . . . , im +
1, . . . , / / - 1, . . . .

Applying the above argument to [«//] with / changed so that i, ¥= 0, and
iterating this argument in the obvious way, we conclude eventually that if there
is a unique vacuum state then there must exist a state for which i, = 0 for all
I ¥= m which, as we have seen above, is not possible.

Thus the possible number states in unique vacuum state representations are
those satisfying

2')</». (2-5)
j

together with Fermi-like states which have in = 0, 1 for all n. That all number
states satisfying (2.5) are allowable in unique vacuum state representations can
be seen by considering the following representation. We define the action of a,
and af as follows:

a,\ix, i2, . . . , / „ . . . > = (//)
1/2|/1, i2, . . . , / / - 1, . . . >,

a?\ix, i2, . . . , /„ . . . > = A ( 2 '})(/, + 1)1/2|«-,, '2> - . . , / / + 1, • • • > (2.6)
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with A(x) = 1 for x <p, and A(x) = 0 for x >p. We also assume that there is a
unique |/,, i2, . . . > for each different choice of /„ i2, . . . satisfying 2 , i} < p.

It is an easy matter to show that (2.6) is a representation of (2.1). The
Fermi-like states are allowable by virtue of the fact that Fermi-quantization is
included in (2.1).

We now prove a result which gives a clearer idea of what the unique vacuum
state representations of (2.1) are.

THEOREM 3. For p > 1 all states satisfying the condition (2.5) are in unique
vacuum state representations of (2.1). Furthermore these are the only states in such
representations.

PROOF. We begin by proving the first part of the result. First, we note that we
need prove only that all states satisfying the equality of (2.5) are included. This
follows since all other states may be obtained by an appropriate sequence of
annihilation operators. We now prove two lemmas.

LEMMA 1. / / the state <j> = \blt b2, • . • , bt, . . . , bk_l, 0, . . . > exists in a repre-
sentation with b, ^ 0, then the state $' = \bx, b2, . . . , bt — I, . . ., bk_x, 1, . . . >
does also.

PROOF. Apply [ak, a* a,] = a, to <>. Then aka^a^ — a^afi,^ = a$, and so
akakat<$> = a,</> ̂ = 0. Thus a*a,<> ¥= 0, meaning that </>' exists.

LEMMA 2. / / the states <j>1 = \bv b2, . . . , bi, + 1, . . . , bk - 1,. . . > and <f>2 =
\bv b2, . . . ,bj, . . . ,bk, . . . ) , with bt, bk =£ 0, are in the representation, then the
state <j>3 = \bv b2, . . . , b/ — I, . . . , bk + I, . . . y is also.

PROOF. We introduce the following notation:

4>4 = \bx, b3,...,bl-l,...,bk,...\

4>5 = \bx, b2,...,bi-\,...,bk-\,...
s>,

<t>6 = \blt b2, . . ., b,,.. ., bk - 1, . . . >.

We now note that if a,<f>k = n<j>m then af$m = /!<£*. This follows since 11^*11 =
ql/2, where a,*a,<t>k = q<f>k, meaning that a,<f>k = Tql/2<pm, with | T | = 1. q<j>k =

a^a,<j>k = af<j>mTql/2, which means af<j>m = rql/2<j>k, as required. Thus we can
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introduce the following relations:

aft2 = a<}>4; a*<t>4 = &<i>2\

,6 , 5n.m = YG> *
| T I T *

J.4 5 * 5 ~J.4

In addition, we have aa = b,, 0ft = bk, yy = 6,, 65̂  = bi-, + 1 and ec = Z .̂
Because of these relations, it is evident that all </>* exist except possibly for <j>3.
We assume that it does not and arrive at a contradiction. We apply [fl* a,-, a*] =
a* to <j>6, obtaining 56y3 — yea = j3, and so /? = yea/bt. Secondly, we apply
[ak, a^at] = a, to <j>2, noting that (/>3 is assumed not to exist. This gives -fiye — a.
Upon substituting the result for ft above, we obtain bk = - 1 , which is clearly not
possible, and so the lemma is proved.

We now note that the third equation of (2.1) implies that the following state
must be in a representation: |0, 0, . . . ,p, 0, 0, . . . >, with the/7 occurring in an
arbitrary position. Suppose now we have an arbitrary state |c,, c2, . . . , c,, . . . >
satisfying S, c, = p. Further suppose that c, is the first non-zero eigenvalue of
the state and ck the second. Then, by virtue of Lemmas 1 and 2, the following
sequence of states must exist:

\cx, c2, . . . , Cj_x,p, . . ., ck_x, 0, . . . >,

(c , , c2, . . . , c , _ , = 0 ; c , + l, ...,ck_x = 0)

\cx, c2, . . . , c,_,,/7 - 1, . . . , ck_x, 1, 0, . . . >,

\cx, c2, . . . , C)_x,p - ck, . . . , ck_x, ck, 0, 0, . . . >.

Assume that c, is the next non-zero eigenvalue of the state; then the existence
sequence continues as

\cx, c2, . . . , ct_x,p — ck, . . . , ck_x, ck, ck + x, . . . , c,_x, 1, 0, . . . >

w i t h e r , , . . . ,c,_x =0,

\CX, C2, . . . , Cj_x,p — Ck — C/, . . . , Ck_x, Ck, Ck+X, . . . , C / . , , C,, 0, . . . >.

By continuing this procedure it is easy to see that the arbitrary state belongs to
the representation.

We now prove the second part of the result. From the discussion of allowable
states given above it is evident that we need show only that a Fermi-like state
not satisfying the condition (2.5) is not allowable in the representation. Suppose
<j> = \bx, b2, . . . y is such a state and it is contained in the representation. Then,
by applying an appropriate sequence of annihilation operators, it follows that
<j>' = |c,, c2, . . . ) exists with 2, c, = p + 1. Now lei k =£ I ¥=m be such that
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ck = ci = cm = 1. a n d aPP!y K> a*am\ = 0 to </>' to get akafam$ = afamak$.
The left hand side of this expression vanishes because of (2.5). The right hand
side, however, cannot vanish since, if it did, then there would have to be two
states with cm = ck = 0, c, = 1 (with all other c,'s identical with those for <£') one
which af sent to zero and the other which af would send to a state with
cm = ck = 0, c, = 2 (again with the other c,'s identical with those of <>') which
must exist because of the first part of our result. This situation is not possible
without a degenerate vacuum, and so we have a contradiction.

We now prove an interesting result concerning degenerate vacuum representa-
tions:

THEOREM 4. There exists a degenerate number state which contains three vectors
not scalar multiples of each other. These vectors are obtainable by applying creation
and annihilation operators to one eigenvector <j> of the representation. Furthermore,
the vectors obey a linear relation and so span a 2-dimensional space only.

PROOF. In proving Theorem 2, we essentially proved that there must exist an
eigenvector in the representation with i, ^ 0 and im > 1 such that the first term
on the left hand side of (2.4) vanishes. Let this vector be <f>. Hence [a,am<t>] and
[ama,<i>] are not scalar multiples of each other. (They are also non-zero by the
final observation at the beginning of this section.) Now (2.5) implies that

-<aiam<t> = °&- (2-7)

Fur thermore , (2.1) shows that a,(am<j>) = ama*a,(am<t>) - a*a,am(am<t>) and, using
(2.7),

(2.8)

Now the second term on the right cannot vanish as, otherwise, [ama^>] and
[a,am<t>] would be scalar multiples. Also it cannot be a scalar multiple of either of
these vectors for the same reason. Finally, it belongs to the same number state as
[a,am<j>] and [ama$] by observation of its form.

By using the proof of Theorem 1, it is clear that the degenerate vacuum also
has the property of Theorem 4.

3. Existence of representations

A question that needs to be asked is the following. Does the algebraic system
(2.1) have any representation apart from the obvious Fermi representation of
p = 1? The answer to this question is clearly affirmative. For the case of the
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unique vacuum state situation, (2.6) implicitly defines such a representation and
it is not hard to see how this definition could be made completely explicit. For
the case of a degenerate vacuum we present the following example. As yet the
author has not been able to obtain a simple ansatz for obtaining such represen-
tations explicitly. We present the representation diagramatically in Figure 1.

The dots in the diagram represent normalized state vectors, the arrowed lines
show the action of a*, j = 1, 2, on states at the base of the lines, while the
unarrowed lines represent both the actions of a* and a,. The factors beside the
lines give the factor by which the resultant state is multiplied after the action of
af and a, on the initial state. That this diagram is indeed a representation of
(2.1) can be verified quite simply, albeit tediously. It is perhaps worthwhile
pointing out that Theorem 4 of Section 2 apphes to the degenerate states of the
diagram which are consequently all linearly dependent.

Vacuum

FIG. 1. An example of a degenerate vacuum representation. Each dot is an eigenstate of Nt = a*ax

4. Conclusions

The most significant conclusions to be drawn from the above discussion
concerns representations of (2.1) with a unique vacuum state. These have been
seen to describe identical particles only. Furthermore, if we take the representa-
tion (2.6) as being the most natural of such representations, then we see that a
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peculiar new form of the exclusion principle emerges: namely that the number
of particles in the totality of eigenstates is bounded. This contrasts with the
usual form which says that the number of particles in each eigenstate is bounded
whereas there still may be an infinite number in the totahty of eigenstates.
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Appendix

Buchdahl [2] has considered a truncated oscillator in which the basic commu-
tation relation between raising and lowering operators is given by

[a, a*] = \ - MK, (A.I)

with K2 = K ¥= 0, Ka = 0 and M > 1 is an integer.
We shall show that upon reinterpretation of the raising and lowering opera-

tors as creation and annihilation operators, respectively, the irreducible repre-
sentations of (A.I) are the same as those for the scheme

[a, a*a] = a, aM = 0 and a' ¥= 0 for / < M. (A.2)

This is just the scheme (2.1) with / = j = k and M = p + I.
We begin by proving the last two observations made at the beginning of

Section 2.
First, equation (1.8) shows that a,\ix, i2, . . . , / , , . . . ) is an eigenvector of

Nv N2, . . . with eigenvalues /,, /2, . . . , / , — 1, . . . and that af\ix,
i2, . . . , / , , . . . ) has the set /„ i2, . . . , / , + 1, . . . ; the only exceptions to this
evidently being when they vanish. Because of (2.2), this occurs for a,\ix,
i2, . . . , / , , . . . ) only when /, = 0.

Secondly, let y be a normalized eigenvector of Nt with eigenvalue q; then
0 < (a,y, a,y) = (y, afa,y) = q, showing that the eigenvalues of TV, are non-
negative. Also, because of the action of a,, q, q — 1, q — 2, . . . are eigenvalues
of N,. This sequence must terminate at zero, otherwise negative eigenvalues of N,
will occur. Thus q must be an integer.

We move on to our main result. Consider an irreducible representation A of
(A.2). We may write [a, a*] = 1 - M*, and need show only that K is the
required projection operator. First, we observe that (1 — MK)a = [a, a*]a =
[a, a*a] = a and so Ka = 0 as required. We now show that K is projective. To
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begin with, we have

[aa*, a*a] = a[a*, a*a] + [a, a*a]a* = -aa* + aa* = 0.

This means that there is a basis for A on which a*a and aa* are diagonal.
Because of the second equation of (A.2), at least one of the basis vectors must
have an eigenvalue of M — 1 for a*a. Let /5 be a normalized basis vector with
this property. Now define x C A to be the subspace generated by the sequence
of vectors

p,a/3,a%...,aM-% (A.3)

The following lemma applies to x-

LEMMA 3. If r\ belongs to the basis discussed above and

(i) (/ TJ G x tnen <nj6X and #**) ^ X> ana"
(ii) if-q&x {hen aij & x or ' ' 's zero, and likewise for a*t\.

PROOF, (i) The first part is obvious because awj8 = 0. For the second part, TJ

may be written as TJ = 2?iV c,(a)'y8, with c, being constants, and so

a*V = coa*/3 + 2 c,(M - 1 - «)(«)'" '£

Now, if a*fS ̂  0, it is an eigenvector of a*a with value M, which means that
aM(a*/3) ¥^ 0, contradicting (A.2). Hence a*rj G x-

(ii) Suppose arj ¥= 0 G x- Then a*at\ = AC'TJ with A:' =£ 0. But a*(o7j) G x from
(i), which is a contradiction since 7) = (k')~xa*cn} & x- Similarly, suppose a*i\ =£
0 G x- Then aa*r\ = A:"TJ with /t" ^ 0 because ||a*Tj|| = |(TJ, aa*7j)\l/2. But
a(a*i}) G x from (i), which again is a contradiction because TJ = {k")~xaa*i} £ x-

Define now the map P as follows, with T; the same as in Lemma 3: Pr\ = TJ for
TJ G x and Prj = 0 for TJ 6 x- I* is clear that Lemma 3 implies that [/*, a] =
[/•, a*] = 0. Thus P commutes with every element of the algebra for a and a*
and hence by Schur's Lemma must be a multiple of the identity. This is only
possible if x = A.

Now, since the vectors of (A.3) are orthogonal, corresponding to different
eigenvalues of a*a, they may serve as a basis set for A. Thus, in order to show
that K is projective and non-zero, we need show only that Kfi = /?, because
K(ay/3 = 0 for i > 1. From above we have a*p = 0 and so (1 - MK)0 =
- a*ap = (1 - M)P. Hence A0 = /3 as required.

Consider now an irreducible representation A' of (A.1), First, we have
[a, a*a] = [a, a*]a = (1 — MK)a = a. Thus it remains to be shown that the
second equation of (A.2) holds on A'. Now, as before, we have [aa*, a*a\ = 0,
from which we deduce, with the help of (A.I), that [K, a*a] = [K, aa*] = 0.
This allows us to choose a basis for A' in which a*a, aa* and K are diagonal.
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Denote by \nmk} a normalized basis vector with n, m and k being the eigenval-
ues of a*a, aa* and K, respectively. Using (A.I) we see that Ka*a = MK1 - K
= (M — \)K. Applying \nmky to this equation we are led to

kn = (M - l)k. (AA)

Now K is projective so k = 0, 1. Hence, for k = 1, (A.4) shows that n = M — 1.
Applying \nmky to (A.I) gives m — n = 1 — Mk. This shows that, when k = 1,
n = M - 1 and w = 0. Since K ¥= 0 there must therefore be a | M - 1, 0, 1>.
Call one such vector ft' and define the subspace x' of A' as that generated by the
vectors

P',a/3',a2l3',...,aM-ll3'. (A.5)

Notice that aM($' = 0 because of the fact that [a, a*a] = a holds on A'.
Lemma 3, proved above for x, is easily seen to hold for x'; the only non-trivial

aspect is showing that a* ft' = 0. This can be seen to be true because

||a*0|| = |<1, 0, M - \\aa*\ M - 1, 0, 1>|1/2 = 0.

Defining a P' as P was defined above, we are led as before to [P\ a] = [P', a*]
= 0 and so, via Schur's Lemma, to the fact that x' = A'. From the remark made
following (A.5), it is now trivial to see that the second of (A.2) holds on x' = A'.
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