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We consider local and nonlocal Cahn–Hilliard equations with constant mobility and singular potentials including,
e.g., the Flory–Huggins potential, subject to no-flux (or periodic) boundary conditions. The main goal is to show
that the presence of a suitable class of reaction terms allows to establish the existence of a weak solution to the
corresponding initial and boundary value problem even though the initial condition is a pure state. This fact was
already observed by the authors in a previous contribution devoted to a specific biological model. In this context, we
examine the essential assumptions required for the reaction term to ensure the existence of a weak solution. Also,
we explore the scenario involving the nonlocal Cahn–Hilliard equation and provide some illustrative examples that
contextualize within our abstract framework.

1. Introduction

Phase separation is a relevant phenomenon which appears in a number of different contexts (see, for
instance, [20, 22] and references therein). In particular, it has recently become a paradigm in Cell Biology
(see, e.g., [7, 19, 44]). Phase separation takes place whenever two (or more) species interact in a way that
can be described as a competition between mixing entropy and a demixing effect due to the attraction
of particles of the same species. As a prototypical example, one may think of oil and vinegar. From the
mathematical viewpoint, a fairly good description of such phenomenon is given by the so-called Cahn–
Hilliard equation (see [8, 9], see also [52] and its references). In the case of two species, this equation
assumes the following form

∂tϕ = div(m(ϕ)∇μ)

in a given bounded domain � ⊂R
d, d ∈ {1, 2, 3} and in a time interval (0, T) for some given T > 0. Here,

ϕ represents the (relative) difference between the concentration of the two species, m(·) is a nonnegative
mobility function, and μ is the so-called chemical potential. The latter corresponds to the functional
derivative of the (local) free energy

Eloc(ϕ(·)) =
∫

�

|∇ϕ(·, x)|2dx +
∫

�

F(ϕ(·, x)) dx, (1.1)

where a physically relevant example of potential density F is given by the logarithmic (a.k.a. the Flory–
Huggins) potential (see, e.g., [11] and references therein)

Flog(r) := ϑ

2
[(1 + r) ln (1 + r) + (1 − r) ln (1 − r)] − ϑ0

2
r2, r ∈ (−1, 1), (1.2)
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2 M. Grasselli et al.

where 0 < ϑ < ϑ0. An alternative choice is a nonlocal free energy of the form (see [34, 35], see also [1,
14–16, 27, 28] and their references)

Enonloc(ϕ(·)) = 1

4

∫
�×�

K(x − y)|ϕ(·, x) − ϕ(·, y)|2dxdy +
∫

�

F(ϕ(·, x)) dx, (1.3)

where K : Rd →R is a sufficiently smooth interaction kernel such that K(x) = K(−x).
Taking constant mobility equal to one, we have the following local Cahn–Hilliard equation

∂tϕ = �(−�ϕ + F′(ϕ)), (1.4)

and its nonlocal counterpart

∂tϕ = �(aϕ − K ∗ ϕ + F′(ϕ)), (1.5)

in Q := � × (0, T), where

(K ∗ v)(x) :=
∫

�

K(x − y)v(y) dy, x ∈ �,

for any given measurable function v : � →R and a = K ∗ 1.
To ensure mass conservation, the above equations are usually equipped with no-flux boundary condi-

tions on � := ∂� × (0, T) for the chemical potential μ, even though periodic boundary conditions can
also be considered (see, for instance, [35]). In the vast mathematical literature devoted to these equations,
in order to prove the existence of a reasonable (say, weak) solution in the case of a singular potential
like (1.2), it is always assumed that the spatial average of the initial datum must belong to (−1, 1) (see,
for instance, [18], Theorem 2.2 and [47], Definition 6.1, Theorem 6.1]). However, it must be noted that,
in the case of degenerate mobility, pure phases are allowed to be solutions by a suitable splitting of the
chemical potential (see [21], see also [23] and references therein for the nonlocal case). In the case of
equation (1.4), this fact is less obvious (see [[54], Remark 4.2]).

Here, inspired by a biological model on the formation of condensates (see [32, 33] and references
therein, see also [50]) which has been analysed in [42], we show that it is indeed possible to establish the
existence of a weak solution to Cahn–Hilliard equations (1.4) and (1.5) with F like, e.g., (1.2), equipped
with no-flux boundary conditions, and subject to a suitable reaction term, if the initial datum is a pure
phase.

More precisely, letting d ∈ {2, 3}, we consider the following initial and boundary value problems

∂tϕ − �μ = S(x, ϕ, g) in Q, (1.6)
μ = −�ϕ + F′(ϕ) + g in Q, (1.7)
∂nϕ = ∂nμ = 0 on �, (1.8)
ϕ(0) = −1 in �, (1.9)

and

∂tϕ − �μ = S(x, ϕ, g) in Q, (1.10)
μ = aϕ − K ∗ ϕ + F′(ϕ) + g in Q, (1.11)
∂nμ = 0 on �, (1.12)
ϕ(0) = −1 in �, (1.13)

where S(x, ϕ, g) is a reaction term and g is a given source, possibly depending on time. We incidentally
notice that in the above system, we abuse a bit of notation to denote the function S(x, ϕ, g) by explicitly
writing the space variable x ∈ � which is not specified for all the other variables. As no confusion may
arise, that convention will be in force throughout the paper.

The main technical difficulty of the entire work derives from the fact that we can no longer prove the
usual property that μ belongs to L2(0, T; L2(�)), like in [49, 53] (see also [45, 51] for the nonlocal case
with degenerate mobility), through an inequality like ([54], Proposition A.2] (see also [[36], Section 5]).
This is due to the fact that in our scenario, we start with a pure phase. However, here the mass is not
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conserved because of the reaction term. Thus, under appropriate assumptions, we can show that the
spatial average of ϕ instantly detaches from −1 (i.e., the phase becomes mixed) and to explicitly compute
the behaviour close to −1 for small times. This is based on ad hoc qualitative analysis of evolution of
the spatial average of ϕ given by

(ϕ(t))� := 1

|�|
∫

�

ϕ(x, t) dx,

where |�| denotes the d-Lebesgue measure of �, which obeys the Cauchy problem

y′(t) = (S(·, ϕ(t), g(t)))� for all t ∈ [0, T], y(0) = −1, (1.14)

where y(t) := (ϕ(t))�. To obtain the above relation, we integrate equation (1.6) ((1.10) resp.) over the
domain � and then divide by |�|.

The second step consists in generalizing the above-mentioned inequality by explicitly tracking the
behaviour of F′(ϕ) close to the pure phase. As we shall see, this argument leads to a local in time Lp-
control in time of μ for p ∈ (1, 2) which is enough to recover the existence of a weak solution. The fact
that we start from −1 is actually just a matter of choice. We could also start from 1 by just taking −S in
place of S. This essentially means that we are removing mass instead of adding it.

The analysis of (1.14) imposes some restrictions on S (see below). Nonetheless, we can handle,
for instance, two well-known types of Cahn–Hilliard equations with reaction terms, namely, a Cahn–
Hilliard–Oono type equation (see [41], see also [38] for theoretical results) and the inpainting model
proposed by Bertozzi et al. (see [5, 6], see also [10] for the case of logarithmic potential and [46] for the
nonlocal case). The former can be deduced by taking g ≡ 0 and setting

S(x, ϕ, g) = S(ϕ) = −m(ϕ − c), (1.15)

where m > 0 and c ∈ (−1, 1) are given. With reference to the (local) model, we recall that c is related
to the backward and forward reaction rates of the chemical reaction (cf. [41]). Observe that this is an
off-critical case and the mass is not conserved. Regarding the latter, we have g ≡ 0 and

S(x, ϕ, g) = S(x, ϕ) = −λ0χU(x)(ϕ − c(x)) (1.16)

where λ0 > 0, χU is the characteristic function of a given measurable set U (the complement of the
inpainting region) such that 0 < |U| < |�| and c : � → [−1, 1] is a given bounded function (i.e., the
given image). In this case, taking −1 as initial datum means that one can start with a totally white
image. Then, the image ϕ evolves keeping itself closer to c in the undamaged region U and diffusing
into the damaged one. However, as we shall see (cf. Remark 2.2 below), c can only be taken close to ±1
values, provided that |U| is large enough.

Originally, reaction terms like (1.15) and (1.16) have been proposed in the local case only. Here we
also consider and analyse their nonlocal counterpart. In addition, in Section 5, we present an application
to (solid) tumour growth models, where the presence of the source term g becomes meaningful. This
term, in our abstract models, is motivated by the fact that very often the corresponding systems are
coupled with other equations (for instance, reaction-diffusion processes). Thus, including g is the first
step towards possible generalizations of these results to more refined models.

Here, for a certain class of S, we prove the existence of a weak solution on a given time interval
and, in the case (1.15), its uniqueness (see Sections 2 and 3). However, note that, the spatial average of
ϕ instantaneously belongs to (−1, 1). Hence, all the known results apply. Further issues and possible
generalizations to other models will be discussed in Section 6.

2. Notation, assumptions and main results
2.1 Notation

To begin with, let us introduce some useful notation. For a given (real) Banach space X, we employ ‖·‖X ,
X∗ and 〈·, ·〉X to indicate, in the order, the norm of X, its topological dual and the related duality pairing
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4 M. Grasselli et al.

between X∗ and X. Lebesgue and Sobolev spaces defined on �, for every 1 ≤ p ≤ ∞ and k ≥ 0, are
denoted by Lp(�) and Wk,p(�), with associated norms ‖·‖Lp(�) = ‖·‖p and ‖·‖Wk,p(�), respectively. When
p = 2, these become Hilbert spaces and we use ‖·‖ = ‖·‖2 for the norm of L2(�) along with (·, ·) for the
standard inner product, and account for the standard notation Hk(�) := Wk,2(�). Moreover, we set

H := L2(�), V := H1(�), W := {v ∈ H2(�) : ∂nv = 0 on ∂�}.
For any given v ∈ V∗, we define its generalized mean value as v� := 1

|�| 〈v, 1〉V , and we recall the
Poincaré–Wirtinger inequality:

‖v − v�‖ ≤ c� ‖∇v‖ , v ∈ V . (2.1)

Here c� > 0 depends on � and d only. Besides, we denote by V0, H0, V∗
0 the closed subspaces of V , H

and V∗, respectively, consisting of functions (or functionals) with zero spatial average. Then, we define
the linear bounded operator R : V → V∗ as

〈Ru, v〉V :=
∫

�

∇u · ∇v, u, v ∈ V .

It is well-known that the restrictions R|V0 yields an isomorphism from V0 to V∗
0 with well defined inverse

R−1 =: N : V∗
0 → V0. Furthermore, it holds that

〈Ru, Nv∗〉V = 〈v∗, u〉V , u ∈ V , v∗ ∈ V∗
0 ,

〈v∗, Nw∗〉V =
∫

�

∇(Nv∗) · ∇(Nw∗), v∗, w∗ ∈ V∗
0 .

Also, we have that

‖v∗‖∗ := ‖∇(Nv∗)‖ = (∇(Nv∗), ∇(Nv∗))1/2 = 〈v∗, Nv∗〉1/2
V , v∗ ∈ V∗

0 ,

is a norm in V∗
0 with associated inner product denoted by (·, ·)∗ := (∇(N · ), ∇(N · )). Similarly, setting

‖v∗‖−1 := ‖v∗ − (v∗)�‖∗ + |(v∗)�|, v∗ ∈ V∗,

we get an equivalent norm in V∗. Finally, we recall the identity

〈∂tv
∗(t), Nv∗(t)〉V = 1

2

d

dt
‖v∗(t)‖2

∗ for a.e. t ∈ (0, T), v∗ ∈ H10, T;V∗
0 ,

and the inequality

|v�| ≤ c ‖v‖V∗ , v ∈ V∗. (2.2)

Identifying H with its dual H∗ by employing the scalar product of H, we obtain the chain of continuous
and dense embeddings V↪→H↪→V∗. This implies the following interpolation inequality:

‖v‖ = 〈v, v〉1/2
V = 〈Rv, Nv〉1/2

V ≤ ‖v‖1/2
V ‖Nv‖1/2

V ≤ ‖v‖1/2
V ‖v‖1/2

∗ , v ∈ V0. (2.3)

Moreover, we will also use the following inequality following from Ehrling’s lemma and the compact
inclusion V↪→H:

∀ δ > 0, ∃ Cδ > 0: ‖v‖ ≤ δ ‖∇v‖ + Cδ ‖v‖−1 , v ∈ V . (2.4)

2.2 Assumptions

The following structural assumptions are in order:

A1 The double-well shaped potential F enjoys the splitting F = β̂ + π̂ , where

β̂ ∈ C0([−1, 1]) ∩ C2(−1, 1) is strictly convex, nonnegative, and β̂(0) = 0, (2.5)
π̂ ∈ C1(R), (2.6)
π := π̂ ′:R→R is L0-Lipschitz continuous for some L0 > 0. (2.7)
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On account of conditions (2.5)–(2.7), using convex analysis we can extend β̂ to +∞ outside
[−1, 1]. Thus, the subdifferential ∂β̂ =: β yields a maximal monotone graph in R×R with cor-
responding domain D(β) := {r ∈R : β(r) �= ∅}. In addition, since β̂ ∈ C1(−1, 1), it readily follows
that β is single-valued with β(0) = 0 and F′ = β + π in (−1, 1). Finally, we suppose that:

lim
r↘(−1)+

β(r) = −∞, lim
r↗1−

β(r) = +∞, (2.8)

∃ ρ ∈ (0, 1): β ∈ L2(−1, −1 + ρ). (2.9)

A2 We assume that g can be written as g = g0 + g̃, where g0 ∈ V , g̃ := g1 + g2, g1 ∈ L∞(0, T;H) ∩
L2(0, T;V), and g2 ∈ H1(0, T;H). Moreover, we require in the local case that

∀ α ∈ (0, 1), ∃ Cg > 0: ‖g̃‖L∞(0,t;H) ≤ Cgtα ∀ t ∈ [0, T], (2.10)

whereas in the nonlocal case:⎧⎪⎨⎪⎩
g0 ∈ W,

g̃ ∈ L∞(0, T;V),

∀ α ∈ (0, 1), ∃ Cg > 0: ‖∇g̃‖L∞(0,t;H) ≤ Cgtα ∀ t ∈ [0, T].

(2.11)

A3 Let the source S be defined as

S(x, ϕ, g) := −m(x)ϕ + h(x, ϕ, g), (2.12)

where

m ∈ L∞(�), m ≥ 0 a.e.in �, m� > 0, (2.13)
h : � × [−1, 1] ×R→R is a Carathéodory function such that (2.14)
h(·, u, v) ∈ L∞(�), ∀ (u, v) ∈ [−1, 1] ×R,

h(x, ·, ·) ∈ C0([−1, 1] ×R), for a.a. x ∈ �, (2.15)
and the following compatibility condition between h and m holds:

∃ h > 0: |h(x, u, v)| ≤ h < m�, for a.a. x ∈ �, ∀ (u, v) ∈ [−1, 1] ×R. (2.16)

We also set for convenience m := ‖m‖L∞(�) and note that m > 0 by (2.13).

Remark 2.1. Assumption (2.16) means that the magnitude of h must be controlled by the space
average of m. Note that this allows in particular the degenerate choice

m(x) =
{

m if x ∈ U,

0 if x ∈ � \ U,
(2.17)

where m > 0 is a fixed constant and U ⊂ � is a measurable subset such that 0 < |U| < |�|. Thus, we
have h := ess supx,u,v|h(x, u, v)| < m� = |U|

|�| m.

Remark 2.2. Let us set g = 0 in equation (1.7) ((1.11) resp.). Then, we observe that the Cahn–
Hilliard–Oono equation (see (1.15)) can be recovered by taking h and m constants, that is,

h(x, u, v) = mc, x ∈ �,

where c ∈ (−1, 1) is given. Another meaningful example is provided by the equation proposed for the
inpainting (see (1.16)). In this case, we have

h(x, u, v) = m(x)c(x)

where m is given by (2.17), c ∈ L∞(�) is such that c(x) ∈ [−1, 1] for almost every x ∈ �, and
‖c‖L∞(�) <

|U|
|�| . Observe that the latter condition is a bit restrictive since c cannot take ±1 values.

However, we can say that the smaller the damaged region is, the closer to ±1 c can be taken. On the
other hand, if we consider, for instance, F given by (1.2), then ϕ cannot take the values ±1 either.
However, in this case, we can take ϑ small enough in order to have minima as close as possible to
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±1. For further details concerning this issue, see [[49], Subsection 2.1] and the references provided
therein.

Remark 2.3. We observe that the Cahn–Hilliard equation with a proliferation term of the form (see
[48]) S(ϕ) := α(1 − ϕ2), α > 0, is not covered by our assumptions.

A4 The spatial convolution kernel K ∈ W1,1
loc (Rd) is such that

K(x) = K(−x), for a.a. x ∈R
d.

Furthermore, we postulate that

a∗ := inf
x∈�

∫
�

K(x − y) dy = inf
x∈�

a(x) ≥ 0,

a∗ := sup
x∈�

∫
�

|K(x − y)| dy < +∞, b∗ := sup
x∈�

∫
�

|∇K(x − y)| dy < +∞,

and set ca := max{a∗ − a∗, 1} > 0. Finally, we suppose that

∃ C0 > 0 : a∗ + F′′(r) ≥ C0, ∀ r ∈ (−1, 1).

In order to handle the fact that the initial datum is a pure phase, we will strongly exploit the following
qualitative result, which is one of the main technical novelties of this work.

Proposition 2.4. Assume A1. Then, the following properties hold.

(P1) For every compact subset [r∗, r∗] ⊂ (−1, 1), −1 < r∗ ≤ r∗ < 1, there exist constants c∗, C∗ > 0
such that, for every r ∈ (−1, 1) and for every r0 ∈ [r∗, r∗] it holds that

c∗|β(r)| ≤ β(r)(r − r0) + C∗. (2.18)

(P2) For every δ ∈ (0, 1), there exist constants cβ , Cβ > 0 such that, for every r ∈ (−1, 1) and for every
r0 ∈ (−1, −1 + δ) it holds that

cβ(r0 + 1)|β(r)| ≤ β(r)(r − r0) + [
(r + 1) + Cβ(r0 + 1)

] |β(−1 + (r0 + 1)/2)|. (2.19)

In particular, this implies that, for every δ ∈ (0, 1), there exist cβ , Cβ > 0 such that, for every
measurable φ : � → (−1, 1) with φ� ∈ (−1, −1 + δ), we have

cβ(φ� + 1)
∫

�

|β(φ)| ≤
∫

�

β(φ)(φ − φ�) + Cβ(φ� + 1)|β(−1 + (φ� + 1)/2)|. (2.20)

Note that the first property (P1) is a classical result in the literature of Cahn–Hilliard problems and dates
back to the ideas in [[36], Section 5] and [54]: this is typically used to control the L1-norm in space of
β(ϕ) whenever the mass of the initial datum, represented by r0 in the above estimates, is confined in
the interior of the physical domain (−1, 1). Nevertheless, in our case the initial datum is a pure phase
so, unfortunately, the first property (P1) cannot be employed as the constants c∗ and C∗ strongly depend
on r∗ and r∗. The main technical novelty that we present is then the refinement of such estimate, i.e.,
property (P2): here, the qualitative behaviour of the constants appearing in (2.18) is explicitly tracked
when r0 approaches the pure phase −1. Note that the constants cβ , Cβ appearing in (2.19) depend only
on the threshold value δ, but are independent of r and r0. The role of the parameter δ is only technical
as it represents the closeness of r0 to the pure phase: for example, one can think to fix δ = 1

3
. For the

corresponding proof, we refer the reader to the Appendix.
We point out that the Flory–Huggins potential (1.2) satisfies A1. Thus, it also enjoys the two proper-

ties (P1)–(P2). Let us note that Proposition 2.4 also holds in the setting of a three-phase Flory–Huggins
potential, for which we refer to [[42], Appendix A].
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2.3 Main results

The existence results for systems (1.6) – (1.9) and (1.10) – (1.13) read as follows.

Theorem 2.5 (local case). Suppose that A1–A3 hold and let the initial datum be the pure phase

ϕ0 ≡ −1.

Then, problem (1.6)–(1.9) admits a weak solution (ϕ, μ). Namely, it holds that

ϕ ∈ H1(0, T; V∗) ∩ L∞(0, T; V) ∩ L2(0, T; W),

ϕ ∈ L4(σ , T; W) ∩ L2(σ , T; W2,γ (�)) ∀ σ ∈ (0, T),

ϕ ∈ L2pW ∩ Lp(0, T; W2,γ (�)) ∀ p ∈ (1, p),

ϕ ∈ L∞(Q), |ϕ(x, t)| < 1 for a.e. (x, t) ∈ Q,

μ ∈ Lp(0, T; V) ∩ L2(σ , T; V) ∀ p ∈ (1, p), ∀ σ ∈ (0, T),

∇μ ∈ L2(0, T; H),

where

γ ∈
{

[1, 6] if d = 3,

[1, +∞) if d = 2,
p :=

{
4
3

if g0 ∈ V \ W,

2 if g0 ∈ W,
(2.21)

such that

μ = −�ϕ + F′(ϕ) + g, a.e. in Q,

and the variational equality

〈∂tϕ, v〉V +
∫

�

∇μ · ∇v =
∫

�

S(·, ϕ, g)v

is satisfied for every test function v ∈ V , and almost everywhere in (0, T). Moreover, it holds that

ϕ(0) = −1 a.e. in �.

Theorem 2.6 (nonlocal case). Suppose that A1–A4 hold and let the initial datum be the pure phase

ϕ0 ≡ −1.

Then, problem (1.10)–(1.13) admits a weak solution (ϕ, μ). Namely, it holds that

ϕ ∈ H1(0, T; V∗) ∩ L∞(0, T; H) ∩ L2(0, T; V),

ϕ ∈ L∞(Q), |ϕ(x, t)| < 1 for a.e. (x, t) ∈ Q,

μ ∈ Lp(0, T; V) ∩ L2(σ , T; V) ∀ p ∈ (1, 2), ∀ σ ∈ (0, T),

∇μ ∈ L2(0, T; H),

such that

μ = aϕ − K ∗ ϕ + F′(ϕ) + g, a.e. in Q,

and the variational equality

〈∂tϕ, v〉V +
∫

�

∇μ · ∇v =
∫

�

S(·, ϕ, g)v

is satisfied for every test function v ∈ V , and almost everywhere in (0, T). Moreover, it holds that

ϕ(0) = −1 a.e. in �.

Remark 2.7. It is worth mentioning that the standard assumptions ϕ0 ∈ V , F(ϕ0) ∈ L1(�) and (ϕ0)� ∈
(−1, 1) entail that all regularities in the above theorems also hold for σ = 0 as the usual approach can
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be applied. The same goes if the initial condition ϕ(0) ≡ −1 is approximated by ϕ(0) = ϕ0,δ := −1 + δ

for some δ ∈ (0, 1).

Finally, assuming that h is constant, we establish a continuous dependence estimate on the initial
datum, which may assume the value −1. Extending this result to more general reaction terms remains
an open issue. Under this additional assumption, we obtain the following result.

Theorem 2.8 (local case). Suppose that A1 – A3 hold and h is independent of the phase variable ϕ.
Let ϕ0j ∈ V be such that (ϕ0j)� ∈ [−1, 1), j = 1, 2 and denote by ϕj a weak solution originating from ϕ0j.
Then, there exists C > 0, depending on T , �, F, m, and h, such that

‖(ϕ2 − ϕ1)(t)‖2
−1 + |(ϕ2 − ϕ1)�(t)| +

∫ t

0

‖(ϕ2 − ϕ1)(s)‖2
V ds (2.22)

≤ C‖ϕ02 − ϕ01‖2
−1 + C|(ϕ02)� − (ϕ01)�|, ∀ t ∈ [0, T].

Theorem 2.9 (nonlocal case). Suppose that A1–A4 hold and h is independent of the phase variable ϕ.
Let ϕ0j ∈ H be such that (ϕ0j)� ∈ [−1, 1), j = 1, 2 and denote by ϕj a weak solution originating from ϕ0j.
Then, there exists C > 0, depending on T , �, K, F, m, and h, such that

‖(ϕ2 − ϕ1)(t)‖2
−1 + |(ϕ2 − ϕ1)�(t)| +

∫ t

0

‖(ϕ2 − ϕ1)(s)‖2 ds

≤ C‖ϕ02 − ϕ01‖2
−1 + C|(ϕ02)� − (ϕ01)�|, ∀ t ∈ [0, T]. (2.23)

Thus, we can conclude that our problems are well posed, provided that the function h does not depend
on the phase variable ϕ. This holds, in particular, for the Cahn–Hilliard–Oono equation (see (1.15)),
where h is a constant, as well as for the inpainting equation (see (1.16)).

3. Existence of weak solutions

The strategy of the proofs of Theorem 2.5 and Theorem 2.6 is outlined here below. The local and nonlocal
cases slightly differ in the type of estimates and regularities we can obtain. Indeed, the fourth-order
nature of the local Cahn–Hilliard equation allows higher regularity with respect to the nonlocal one.

(I) Approximation. The first step consists in considering suitable approximate problems. Both in the
local and the nonlocal case, the approximation only consists in shifting to the right the pure phase
initial datum −1, so that we can recover the classical assumption that the initial mass is strictly
confined in the physical domain (−1, 1). More precisely, for every approximation parameter λ ∈
(0, 1) one considers the family of problems starting from the initial datum ϕ0,λ := −1 + λ instead,
and with respect to the same singular potential F.

(II) Preliminary estimate on the phase variable. By exploiting the Cahn–Hilliard structure, a suit-
able preliminary, uniform with respect to λ, estimate on the phase variable ϕλ can be derived
without involving the chemical potential μλ. This is the first information to evaluate the rate at
which ϕλ reaches its initial value for small times.

(III) Qualitative analysis of the mean value. Before proceeding with further uniform estimates, a
control of the spatial mean of ϕλ is necessary. In particular, in order to exploit (P1) and (P2), one
needs to prove that (ϕλ)� remains detached from −1 for positive times, uniformly in λ. This is
not obvious as the initial datum only satisfies (ϕλ(0))� = −1 + λ. The qualitative behaviour of
(ϕλ)� is obtained via an analysis of the ODE in (1.14). This allows to show that the mean values
instantly detach from −1 at a linear rate, uniformly in λ.

(IV) Energy estimate. By using the above information, the standard Cahn–Hilliard weak energy esti-
mate can be now performed on the λ-approximation level. Namely, we can test the (approximated
version of the) first equation (1.6) ((1.10) resp.) by μλ and the second (1.7) ((1.11) resp.) by
∂tϕλ. As is well known for Cahn–Hilliard-type systems, this procedure produces just a L2-control
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of ∇μλ and no information is available for μλ itself due to the homogeneous Neumann bound-
ary conditions. This issue is usually overcome by the Poincaré–Wirtinger inequality provided to
show that (μλ)� is bounded in L2(0, T). Note that, in the present case, we also need to handle the
inner product (S(·, ϕλ, g), μλ). To this end, comparison in the second equation (1.7) ((1.11) resp.)
reveals that this, roughly speaking, equals to controlling the singular term β(ϕλ) in L2(0, T;L1(�)).
However, the singular nature of β and the pathological initial condition ϕλ(0) = −1 prevent us to
get such a bound through the usual approach based on (P2). Nevertheless, hinging on (P2), we
are able to suitably combine the qualitative estimates on the behaviour of (ϕλ)� with the blow-up
of the nonlinearity and to close the energy estimate. This yields directly a first L2-control of ∇μλ.
In order to gain a full control of the H1-norm of μλ we are only left to show specific integrability
properties of (μλ)�. These follow again by a sharp qualitative analysis of the behaviour of (ϕλ)�,
making use of (P1)–(P2). The only drawback in having a pure phase initial datum results in a
slight loss of integrability of μλ close to the initial time. Notice that such a loss of information is
almost negligible and seems reasonable to us in view of the initial pure phase. Indeed, by compar-
ing the classical scenario of Cahn–Hilliard equations with ours, assuming g to fulfil either (2.10)
or (2.11), it turns out that the correct spaces where one has to bound the chemical potentials μλ are

L2(0, T; H1(�))︸ ︷︷ ︸
in the classical setting

vs
⋂

σ∈(0,T), p∈(1,p)

L2(σ , T; H1(�)) ∩ Lp(0, σ ; H1(�))︸ ︷︷ ︸
in our setting

.

As noted before, the loss of integrability on the chemical potential caused by the pure phase initial
datum is extremely light and absolutely reasonable if taking into account the singular nature of
the problem.

(V) Passing to the limit. The final step consists of realizing that all the previous estimates are inde-
pendent of λ so that weak and weak star compactness arguments can be exploited to rigorously
justify the passage to the limit along with a suitable sequence λk ↘ 0. This procedure provides a
limit pair (ϕ, μ) which fulfils suitable regularities and, in a suitable sense, yields a solution to the
original problem (1.6)–(1.9) ((1.10)–(1.13) resp.). We highlight that, as expected from the above
lines, the time integrability of μ becomes the usual one, as soon as we detach from t = 0, i.e., on
every time interval of the form (σ , T) for all σ ∈ (0, T).

Since the above plan works for both the proofs of Theorem 2.5 and Theorem 2.6, we are going to
present them in a unified fashion, just pointing out the main differences between the local and nonlocal
cases. The proof will be divided into the aforementioned steps.

3.1 Step (I)

In what follows, we are going to indicate with C a generic positive constant, independent of λ, whose
value may change from line to line. We now fix λ ∈ (0, 1) and introduce the λ-approximation of problems
(1.6)–(1.9) and (1.10)–(1.13), respectively.

3.1.1 Local case
We consider the approximating problem

∂tϕλ − �μλ = S(x, ϕλ, g) in Q, (3.1)
μλ = −�ϕλ + F′(ϕλ) + g in Q, (3.2)
∂nϕλ = ∂nμλ = 0 on �, (3.3)
ϕλ(0) = ϕ0,λ := −1 + λ in �. (3.4)
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Thanks to previous results (see, e.g., [53]), the above problem has a weak solution (ϕλ, μλ) such that

ϕλ ∈ H1(0, T; V∗) ∩ L∞(0, T; V) ∩ L2(0, T; H2(�)), μλ ∈ L2(0, T; V).

Moreover, due to the singularity of the potential F, we have ϕλ ∈ L∞(Q) with

−1 ≤ ϕλ(x, t) ≤ 1 for a.e. (x, t) ∈ Q

whence also the corresponding boundedness of S using the structural assumptions in A3.

3.1.2 Nonlocal case
In this case, we consider the following approximating problem

∂tϕλ − �μλ = S(x, ϕλ, g) in Q, (3.5)
μλ = aϕλ − K ∗ ϕλ + F′(ϕλ) + g in Q, (3.6)
∂nμλ = 0 on �, (3.7)
ϕλ(0) := ϕ0,λ = −1 + λ in �. (3.8)

We can adapt the argument in [[24], Section 3] for the existence (see also references therein). Summing
up, there exists a weak solution (ϕλ, μλ) to the above problem, such that

ϕλ ∈ H1(0, T; V∗) ∩ L∞(0, T; H) ∩ L2(0, T; V), μλ ∈ L2(0, T; V).

Moreover, arguing as above, it holds that ϕλ ∈ L∞(Q) with

−1 ≤ ϕλ(x, t) ≤ 1 for a.e. (x, t) ∈ Q,

and the corresponding boundedness of S.

3.2 Step (II)

Let us now establish some uniform a priori estimates for the phase field variable ϕλ.

3.2.1 Local case
Recalling (2.10), A2, and that ϕ0,λ = −1 + λ, we test equation (3.1) by ϕλ − ϕ0,λ = ϕλ + 1 − λ, equation
(3.2) by −�(ϕλ − ϕ0,λ) = −�ϕλ, and add the resulting identities together to obtain that

1

2

d

dt

∥∥ϕλ − ϕ0,λ

∥∥2 + ‖�ϕλ‖2 −
∫

�

β(ϕλ)�ϕλ

=
∫

�

S(·, ϕλ, g)(ϕλ − ϕ0,λ) +
∫

�

π (ϕλ)�ϕλ +
∫

�

g0�ϕλ +
∫

�

g̃�ϕλ.

As for the third term on the left-hand side, integrating by parts and using the convexity of β̂, we get

−
∫

�

β(ϕλ)�ϕλ =
∫

�

β ′(ϕλ)|∇ϕλ|2 ≥ 0.

Moreover, thanks to the boundedness of S, the first term on the right-hand side can be bounded as∫
�

S(·, ϕλ, g)(ϕλ − ϕ0,λ) ≤ C
∥∥ϕλ − ϕ0,λ

∥∥ ,

while using A1 and integration by parts, we get∫
�

π (ϕλ)�ϕλ ≤ L0 ‖∇ϕλ‖2 = L0

∥∥∇(ϕλ − ϕ0,λ)
∥∥2 ≤ 1

4
‖�ϕλ‖2 + C

∥∥ϕλ − ϕ0,λ

∥∥2
.

Furthermore, recalling A2 and integrating by parts yield∫
�

g0�ϕλ +
∫

�

g̃�ϕλ ≤ C (‖∇ϕλ‖ + tα ‖�ϕλ‖) ≤ 1

4
‖�ϕλ‖2 + C

(
t2α + ‖∇ϕλ‖

)
. (3.9)
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Upon rearranging the terms, we obtain that
1

2
sup
r∈[0,t]

∥∥ϕλ − ϕ0,λ

∥∥2 + 1

2

∫ t

0

‖�ϕλ(s)‖2 ds

≤ Ct2α+1 + C ‖∇ϕλ‖L1(0,t; H) + C
∫ t

0

(
∥∥ϕλ(s) − ϕ0,λ

∥∥+ ∥∥ϕλ(s) − ϕ0,λ

∥∥2
) ds

≤ Ct2α+1 + Ct
3
4 ‖∇ϕλ‖L4(0,t; H) + C

∫ t

0

( ∥∥ϕλ(s) − ϕ0,λ

∥∥+ ∥∥ϕλ(s) − ϕ0,λ

∥∥2 ) ds.

By interpolation and the Young inequality, it readily follows that

Ct
3
4 ‖∇ϕλ‖L4(0, t; H) = Ct

3
4
∥∥∇(ϕλ − ϕ0,λ)

∥∥
L4(0, t; H)

≤ Ct
3
4 ‖�ϕλ‖

1
2
L2(0, t; H)

∥∥ϕλ − ϕ0,λ

∥∥ 1
2

L∞(0, t; H)

≤ Ct
3
2 + 1

2
‖�ϕλ‖L2(0, t; H)

∥∥ϕλ − ϕ0,λ

∥∥
L∞(0, t; H)

≤ Ct
3
2 + 1

4
‖�ϕλ‖2

L2(0, t; H) +
1

4

∥∥ϕλ − ϕ0,λ

∥∥2

L∞(0, t; H)
,

from which, collecting all the terms, we deduce that
1

4
sup
r∈[0,t]

∥∥ϕλ(r) − ϕ0,λ

∥∥2 + 1

4

∫ t

0

‖�ϕλ(s)‖2 ds

≤ C(t2α+1 + t
3
2 ) + C

∫ t

0

( ∥∥ϕλ(s) − ϕ0,λ

∥∥+ ∥∥ϕλ(s) − ϕ0,λ

∥∥2 ) ds. (3.10)

Thus, Gronwall’s lemma and elliptic regularity theory yield

‖ϕλ‖L∞(0,T;H)∩L2(0, T; W) ≤ C. (3.11)

Using this information, we can go back to (3.10) and bound the right-hand side and infer that∥∥ϕλ − ϕ0,λ

∥∥
L∞(0, t; H)∩L2(0, t; W)

≤ Ct1/2, ∀t ∈ [0, T].

Noting that 2α + 1 ≥ 3
2

for some α ∈ (0, 1), iterating the argument on the right-hand side of (3.10) yields

∀α ∈ [0, 3/4], ∃ Cα > 0:
∥∥ϕλ − ϕ0,λ

∥∥
L∞(0,t;H)∩L2(0,t; W)

≤ Cαtα, ∀ t ∈ [0, T], (3.12)

where the constants Cα are independent of λ. Let us note that if, besides (2.10), it also holds that g0 ∈ W,
one can see that (cf. (3.9))∫

�

g0�ϕλ =
∫

�

g0�(ϕλ − ϕ0,λ) =
∫

�

�g0(ϕλ − ϕ0,λ) ≤ C
∥∥ϕλ − ϕ0,λ

∥∥ . (3.13)

Hence, the same argument above allows us to infer (3.12), for every α ∈ [0, 1).

3.2.2 Nonlocal case
We can argue as above. Namely, we test (3.5) by ϕλ − ϕ0,λ, the gradient of equation (3.6) by
−∇(ϕλ − ϕ0,λ) = − ∇ϕλ, and add the resulting identities. This gives

1

2

d

dt

∥∥ϕλ − ϕ0,λ

∥∥2 +
∫

�

F′′(ϕλ)|∇ϕλ|2 +
∫

�

∇(aϕλ − K ∗ ϕλ) · ∇ϕλ

=
∫

�

S(·, ϕλ, g)(ϕλ − ϕ0,λ) −
∫

�

∇g0 · ∇ϕλ −
∫

�

∇g̃ · ∇ϕλ.

We note straightaway that, being ϕ0,λ = −1 + λ, by definition of a, one has that∫
�

∇(aϕ0,λ − K ∗ ϕ0,λ) · ∇ϕλ =
∫

�

∇(−a + λa + a − λa) · ∇ϕλ = 0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792525000166
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.111, on 16 Jul 2025 at 04:53:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792525000166
https://www.cambridge.org/core


12 M. Grasselli et al.

Taking this information into account, the second and third terms on the left-hand side can be bounded
by recalling A4 along with Young’s inequality as∫

�

F′′(ϕλ)|∇ϕλ|2 +
∫

�

∇(aϕλ − K ∗ ϕλ) · ∇ϕλ

=
∫

�

F′′(ϕλ)|∇ϕλ|2 +
∫

�

∇(a(ϕλ − ϕ0,λ) − K ∗ (ϕλ − ϕ0,λ)
) · ∇ϕλ

=
∫

�

(F′′(ϕλ) + a)|∇ϕλ|2 +
∫

�

(
(∇a)(ϕλ − ϕ0,λ) − (∇K) ∗ (ϕλ − ϕ0,λ)

) · ∇ϕλ

≥ C0 ‖∇ϕλ‖2 − 2b∗ ∥∥ϕλ − ϕ0,λ

∥∥ ‖∇ϕλ‖
≥ C0

2
‖∇ϕλ‖2 − C

∥∥ϕλ − ϕ0,λ

∥∥2
.

On the other hand, recalling A2, (2.11), and using the boundedness of S, integration by parts and the
Young inequality, we obtain∫

�

S(·, ϕλ, g)(ϕλ − ϕ0,λ) −
∫

�

∇g0 · ∇ϕλ −
∫

�

∇g̃ · ∇ϕλ

=
∫

�

S(·, ϕλ, g)(ϕλ − ϕ0,λ) +
∫

�

�g0(ϕλ − ϕ0,λ) −
∫

�

∇g̃ · ∇ϕλ

≤ C
∥∥ϕλ − ϕ0,λ

∥∥+ Ctα ‖∇ϕλ‖
≤ C

∥∥ϕλ − ϕ0,λ

∥∥+ C0

4
‖∇ϕλ‖2 + Ctα+1.

Thus, upon rearranging terms, we find

1

2

∥∥ϕλ(t) − ϕ0,λ

∥∥2 + C0

4

∫ t

0

‖∇ϕλ(s)‖2 ds (3.14)

≤ Ctα+1 + C
∫ t

0

( ∥∥ϕλ(s) − ϕ0,λ

∥∥+ ∥∥ϕλ(s) − ϕ0,λ

∥∥2 ) ds

and Gronwall’s lemma entails

‖ϕλ‖L∞(0,T;H)∩L2(0,T;V) ≤ C. (3.15)

Then, noting that α + 1 ∈ (1, 2) for all α ∈ (0, 1), we argue as before by iteration to infer that

∀ α ∈ [0, 1), ∃ Cα > 0:
∥∥ϕλ − ϕ0,λ

∥∥
L∞(0,t;H)∩L2(0,t; V)

≤ Cαtα, ∀ t ∈ [0, T], (3.16)

where the constants Cα are independent of λ.

3.3 Step (III)

Unlike the previous steps, this one is independent of the choice of the local or nonlocal model as the mass
evolution of ϕ is always ruled by the first equation in (1.14) with initial condition ϕ0,λ. More precisely,
the aim of this step is to prove the following result.

Lemma 3.1. In the current setting, there exists a constant c0 ∈ (0, 1), depending only on m and h, such
that, for all λ ∈ (0, 1) and t ∈ [0, T],

−1 ≤ −1 + c0(1 − e−mt) ≤ (ϕλ(t))� ≤ −1 + (2 − c0)(1 − e−mt) + λe−mt. (3.17)

In particular, there are constants c1, c2 > 0 and λ0 ∈ (0, 1), depending only on m and h, such that, for
all λ ∈ (0, λ0),

−1 + 2c1t ≤ (ϕλ(t))�≤ −1 + λ + c2(1 − e−mt) ≤ 1 − λ0 < 1 ∀ t ∈ [0, T]. (3.18)
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Proof of Lemma 3.1. Integrating (3.1) ((3.5) resp.) over � and multiplying by 1/|�| lead to a Cauchy
problem for the mean of the phase variable yλ := (ϕλ)� (cf. (1.14))

y′
λ
= (S(·, ϕλ, g))�, yλ(0) = −1 + λ,

Thus, recalling the boundedness of S, the associated Cauchy problem for yλ reads as{
y′

λ
+ (m(·)ϕλ)� = (h(·, ϕλ, g))� in (0, T),

yλ(0) = −1 + λ,

which can be equivalently reformulated as{
y′

λ
+ myλ = (h(·, ϕλ, g))� + myλ − (m(·)ϕλ)� in(0, T),

yλ(0) = −1 + λ.
(3.19)

Recalling that m = ‖m‖L∞(�) > 0 and noting that
myλ − (m(·)ϕλ)� = (

(m − m(·))ϕλ

)
�

,

we have the solution formula

yλ(t) = (−1 + λ)e−mt +
∫ t

0

e−m(t−s)
(

(h(·, ϕλ(s), g(s)))� + ((m − m(·))ϕλ(s))�

)
ds.

Let us focus on the estimate from below. Recalling that |h| ≤ h, we deduce that

yλ(t) + 1 ≥ (1 − e−mt) + λe−mt − h

m
(1 − e−mt) +

∫ t

0

e−m(t−s)((m − m(·))ϕλ(s))� ds.

Now, since |ϕλ| ≤ 1 and 0 ≤ m ≤ m in �, we have

((m − m(·))ϕλ)� = 1

|�|
∫

�

(m − m(·))ϕλ ≥ − 1

|�|
∫

�

(m − m(·)) = −m + m�.

Putting everything together, we infer that

yλ(t) + 1 ≥
(

1 − h

m
− 1 + m�

m

)
(1 − e−mt) = 1

m

(
m� − h

)
(1 − e−mt).

Since h < m� ≤ m, the estimate from below in (3.17) follows with the choice

c0 := m� − h

m
∈ (0, 1).

Let us focus now on the estimate from above. Recalling that |h| ≤ h, |ϕλ| ≤ 1, and 0 ≤ m ≤ m in �, we
infer that

yλ(t) + 1 ≤ (1 − e−mt) + λe−mt + h

m
(1 − e−mt) +

(m − m�

m

)
(1 − e−mt)

=
(

2 − m� − h

m

)
(1 − e−mt) + λe−mt

= (2 − c0)(1 − e−mt) + λe−mt,

and (3.17) is proved. The second inequality in (3.17) is then a direct consequence of (3.17) by taking,
for instance, λ0 := c0

2
.

Remark 3.2. We highlight that Lemma 3.1 ensures that

(ϕλ(t))� ∈ [−1, 1), ∀ t ∈ [0, T].

This will be a crucial property to motivate the interpretation of the chemical potential μλ for small times
in the limit λ → 0. Besides, as a straightforward consequence of the above analysis, we have that

∀ σ ∈ (0, T), ∃ cσ ∈ (0, 1) : − 1 + cσ ≤ (ϕλ(t))� < 1 − cσ , ∀ t ∈ [σ , T], (3.20)
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meaning that for every positive time σ , the mass of the phase variable ϕλ is confined in the physical
interval (−1, 1) independently of λ. This is the standard condition that is usually required in the Cahn–
Hilliard literature to infer from inequality (2.18) that β(ϕλ) ∈ L2(σ , T; L1(�)). Hence, from comparison
in (1.7) ((1.11) resp.), it follows that (μλ)� ∈ L2(σ , T) and, via the Poincaré–Wirtinger inequality and
the above energy estimate, one recovers that μλ ∈ L2(σ , T;V).

3.4 Step (IV)

This step is devoted to the derivation of the energy estimates. The idea is to combine the classical energy
estimate with the enhanced version (2.19) of the inequality (2.18). This enables to derive insights into
the L1-spatial norm of the nonlinear term β(ϕλ) by the use of the evolution properties of the mean of ϕλ

and the preliminary estimate.

3.4.1 Local case
We test (3.1) by μλ, (3.2) by −∂tϕλ, add the resulting equalities and integrate in time, for any arbitrary
t ∈ (0, T]. This gives

1

2
‖∇ϕλ(t)‖2 +

∫
�

F(ϕλ(t)) +
∫ t

0

‖∇μλ(s)‖2 ds

= |�|F(−1 + λ) +
∫ t

0

∫
�

S(·, ϕλ(s), g(s))μλ(s) ds−
∫ t

0

∫
�

g(s)∂tϕλ(s) ds. (3.21)

It readily follows from the previous estimates that∫
�

F(ϕλ(t)) ≥
∫

�

β̂(ϕλ(t)) − C.

As for the last term on the right-hand side, we point out that the notation is only formal. More precisely,
recalling A2 and using again that ϕλ(0) = −1 + λ, the formal integral is rigorously defined as follows

−
∫ t

0

∫
�

g(s)∂tϕλ(s) ds= −
∫ t

0

〈∂tϕλ(s), g0 + g1(s)〉V ds −
∫

�

g2(t)ϕλ(t)

−
∫

�

g2(0)(1 − λ) +
∫ t

0

∫
�

∂tg2(s)ϕλ(s) ds.

By comparison in (3.1), using the boundedness of S, A2, and (3.11), thanks to the Young inequality, we
infer that

−
∫ t

0

∫
�

g(s)∂tϕλ(s) ds ≤ 1

4

∫ t

0

‖∇μλ(s)‖2 ds + C.

Moreover, using again the boundedness of S, (3.2), and (3.11), we find∫ t

0

∫
�

S(·, ϕλ(s), g(s))μλ(s) ds

=
∫ t

0

∫
�

S(·, ϕλ(s), g(s))(μλ(s) − (μλ(s))�) ds +
∫ t

0

∫
�

S(·, ϕλ(s), g(s))(μλ(s))� ds

≤ 1

4

∫ t

0

‖∇μλ(s)‖2 ds + C + C
∫ t

0

|(μλ(s))�|.

Observe now that, by comparison in equation (3.2), thanks to A2 and (3.11), it holds

|�||(μλ)�| ≤ ‖β(ϕλ)‖1 + ‖π (ϕλ)‖1 + ‖g‖1 ≤ ‖β(ϕλ)‖1 + C.
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Putting everything together, we infer that there exists a constant C∗ > 0, independent of λ, such that, for
every t ∈ [0, T],

‖∇ϕλ(t)‖2 + ‖β̂(ϕλ(t))‖1 +
∫ t

0

‖∇μλ(s)‖2 ds ≤ C∗ + C∗

∫ t

0

‖β(ϕλ(s))‖1ds. (3.22)

Now, we go back to equation (3.2) tested by ϕλ − (ϕλ)� and get

‖∇ϕλ‖2 +
∫

�

β(ϕλ)(ϕλ − (ϕλ)�) ≤
∫

�

μλ

(
ϕλ − (ϕλ)�

)−
∫

�

(π (ϕλ) + g)
(
ϕλ − (ϕλ)�

)
.

By exploiting the fact that ϕ0,λ = (ϕ0,λ)� = −1 + λ, using the Poincaré–Wirtinger inequality, and assump-
tions A1–A2, one has that∫

�

μλ

(
ϕλ − (ϕλ)�

)−
∫

�

(π (ϕλ) + g)
(
ϕλ − (ϕλ)�

)
=
∫

�

(μλ − (μλ)�)
(
ϕλ − (ϕλ)�

)−
∫

�

(π (ϕλ) + g)
(
ϕλ − (ϕλ)�

)
=
∫

�

(μλ − (μλ)�)
(
(ϕλ − ϕ0,λ) − (ϕλ − (ϕ0,λ))�

)
−
∫

�

(π (ϕλ) + g)
(
(ϕλ − ϕ0,λ) − (ϕλ − (ϕ0,λ))�

)
≤ C

∥∥∇μλ

∥∥∥∥ϕλ − ϕ0,λ

∥∥+ C(
∥∥ϕλ

∥∥+ 1)
∥∥ϕλ − ϕ0,λ

∥∥.

Here we have used the identity
∫

�
(μλ)�

(
ϕλ − (ϕλ)�

)= (μλ)�

∫
�

(
ϕλ − (ϕλ)�

)= 0 as well as the fact that
ϕ0,λ is constant and, therefore, coincides with its mean value (ϕ0,λ)�. Hence, thanks to the estimate (3.11)
we deduce that∫

�

β(ϕλ(s))(ϕλ(s) − (ϕλ(s))�) ≤ C(1 + ‖∇μλ(s)‖ )
∥∥ϕλ(s) − ϕ0,λ

∥∥ ∀ s ∈ [0, T]. (3.23)

Next, we note that (3.17) and (3.18) imply that there exists T0 ∈ (0, T) and r0 ∈ (0, 1), both independent
of λ, such that, for every λ ∈ (0, λ0), it holds that −1 < (ϕλ(s))� < −1 + r0 for all s ∈ (0, T0) and −1 +
r0 ≤ (ϕλ(s))� ≤ 1 − r0 for all s ∈ [T0, T]. Consequently, for s ∈ (0, T0) we can make use of estimate (2.20)
with φ = ϕλ(s) and infer that

cβ((ϕλ(s))� + 1)
∫

�

|β(ϕλ(s))|

≤
∫

�

β(ϕλ(s))(ϕλ(s) − (ϕλ(s))�)

+ Cβ((ϕλ(s))� + 1)|β(−1 + ((ϕλ(s))� + 1)/2)| ∀ s ∈ (0, T0). (3.24)
Analogously, for s ∈ [T0, T] we can make use of estimate (2.18) and infer that

c∗

∫
�

|β(ϕλ(s))| ≤
∫

�

β(ϕλ(s))(ϕλ(s) − (ϕλ(s))�) + C∗|�| ∀ s ∈ [T0, T]. (3.25)

Consequently, we can combine (3.23) evaluated at s ∈ (0, T0) with inequality (3.24), divide by (ϕλ(s))� +
1, and exploit the estimates (3.12) and (3.18) to get, for all s ∈ (0, T0) and α ∈ [0, 3

4
] (resp. α ∈ (0, 1) if

g0 ∈ W),

cβ‖β(ϕλ(s))‖1 ≤ C

∥∥ϕλ(s) − ϕ0,λ

∥∥
(ϕλ(s))� + 1

(1 + ‖∇μλ(s)‖ ) + Cβ |β(−1 + ((ϕλ(s))� + 1)/2)|

≤ CCα

2c1

sα−1(1 + ‖∇μλ(s)‖ ) + Cβ |β(−1 + c1s)|. (3.26)

Analogously, if we combine (3.23) evaluated at s ∈ [T0, T] with inequality (3.24) and estimate (3.11),
we get, for all s ∈ [T0, T],

c∗‖β(ϕλ(s))‖1 ≤ C(1 + ‖∇μλ(s)‖ ) + C∗|�|. (3.27)
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Collecting the above estimates, integrating with respect to s ∈ (0, t), and using the Young inequality, for
all δ > 0, we find a constant Cδ > 0, independent of λ, such that, for every t ∈ [0, T],∫ t

0

‖β(ϕλ(s))‖1ds ≤ δ

∫ t

0

‖∇μλ(s)‖2 ds + Cδ + Cδ

∫ T0

0

s2(α−1)ds + C
∫ T0

0

|β(−1 + c1s)|ds.

As for the right-hand side, the last term makes sense by A1 as∫ T0

0

|β(−1 + c1s)| ds = 1

c1

∫ −1+c1T0

−1

|β(s)| ds ≤ C ‖β‖L1(−1,0) ≤ C.

By choosing then α ∈ ( 1
2
, 3

4
] (resp. α ∈ ( 1

2
, 1) if g0 ∈ W), we infer then that∫ t

0

‖β(ϕλ(s))‖1ds ≤ δ

∫ t

0

‖∇μλ(s)‖2 ds + Cδ ∀ t ∈ [0, T]. (3.28)

Eventually, recalling that C∗ is the constant appearing in (3.22), we multiply (3.28) by 2C∗ and sum
it with inequality (3.22). By choosing δ small enough, for instance δ := 1

4C∗ , and rearranging the terms,
we deduce the bound

‖ϕλ‖L∞(0,T;V) + ‖β̂(ϕλ)‖L∞(0,T;L1(�)) + ‖β(ϕλ)‖L1(0,T;L1(�)) + ‖∇μλ‖L2(0,T;H) ≤ C. (3.29)

From this, it is a standard matter to derive by comparison in equation (3.1) that

‖∂tϕλ‖L2(0,T;V∗) ≤ C. (3.30)

Once the above is established, we go back to (3.26)–(3.27), take square powers and exploit the fact that
now t �→ ‖∇μλ(t)‖ is bounded in L2(0, T). To this end, we note that by A1 one has∫ T0

0

|β(−1 + c1s)|2 ds = 1

c1

∫ −1+c1T0

−1

|β(s)|2 ds ≤ C ‖β‖2
L2(−1,0) ≤ C,

while for every � ∈ (1, 4) (resp. for every � ∈ (1, +∞) if g0 ∈ W) there exists α ∈ (0, 3
4
] (resp. α ∈ (0, 1)

if g0 ∈ W) such that �(α − 1) > −1. Hence, for every such �, there exists also a constant C� > 0,
independent of λ, such that ∥∥t �→ tα−1

∥∥
L�(0,T0)

≤ C�.

Thus, going back to (3.26)–(3.27), we can now infer that

∀ p ∈ (1, p), ∃ Cp > 0: ‖β(ϕλ)‖Lp(0,T; L1(�)) ≤ Cp,

with p being defined in (2.21). Next, comparison in equation (3.2) readily produces

∀ p ∈ (1, p), ∃ Cp > 0: ‖(μλ)�‖Lp(0,T) ≤ Cp,

whence, using the Poincaré inequality, that

∀ p ∈ (1, p), ∃ Cp > 0: ‖μλ‖Lp(0,T;V) ≤ Cp. (3.31)

By monotonicity and comparison in (3.2), this leads by classical techniques also that

∀ p ∈ (1, p), ∃ Cp > 0: ‖β(ϕλ)‖Lp(0,T;H) ≤ Cp. (3.32)

Lastly, arguing as in ( [39], Lemmas 7.3–7.4) and using interpolation, we read (3.2) as a one-parameter
family of time-dependent system of elliptic equation with maximal monotone nonlinearity β and infer
that

∀ p ∈ (1, p), ∃ Cp > 0: ‖ϕλ‖L2p(0,T;H2(�))∩Lp(0,T; W2,γ (�)) ≤ Cp, (3.33)

with γ being defined in (2.21).
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3.4.2 Nonlocal case
We can argue as above. Again, we test (3.5) by μλ, (3.6) by −∂tϕλ and add the resulting equalities. This
produces

1

4

∫
�×�

K(x − y)|ϕλ(t, x) − ϕλ(t, y)|2dx dy +
∫

�

F(ϕλ(t)) +
∫ t

0

‖∇μλ(s)‖2 ds

= |�|F(−1 + λ) +
∫ t

0

∫
�

S(·, ϕλ(s), g(s))μλ(s) ds −
∫ t

0

∫
�

g(s)∂tϕλ(s) ds,

where the last term on the right-hand side has to be interpreted rigorously as before. On account of A4,
we have ∫

�×�

K(x − y)|ϕλ(t, x) − ϕλ(t, y)|2dx dy ≤ 2|�|a∗ ∥∥ϕλ − ϕλ,0

∥∥2

L∞(0,T; H)
.

Thus, reasoning as above and exploiting (3.15), we find that, for any p ∈ (1, 2), there exists Cp > 0 such
that

‖∂tϕλ‖L2(0,T;V∗) + ‖ϕλ‖L∞(0,T;H) + ‖β̂(ϕλ)‖L∞(0,T;L1(�)) + ‖β(ϕλ)‖Lp(0,T;H)

+ ‖μλ‖Lp(0,T;V) + ‖∇μλ‖L2(0,T;H) ≤ Cp. (3.34)

3.5 Step (V)

The final step consists in passing to the limit as λ → 0 along a suitable subsequence. Thus, everything
that we are going to present from now on has to be in principle considered for a suitable subsequence.
However, in order to keep notation as light as possible, we stipulate that every passage to the limit has
to be intended this way.

3.5.1 Local case
Accounting for (3.11) and (3.30), we infer the existence of a function ϕ such that

ϕ ∈ H1(0, T; V∗) ∩ L∞(0, T;V) ∩ L2(0, T; H2(�)),

and that, as λ → 0,

ϕλ → ϕ weakly in H1(0, T; V∗) ∩ L2(0, T; H2(�)),

ϕλ → ϕ weakly-star in L∞(0, T; V).

The classical Aubin–Lions theorem then yields that, as λ → 0,

ϕλ → ϕ strongly in C0([0, T]; H) ∩ L2(0, T; V)

so that the initial condition ϕ(0) = −1 is fulfilled. Our final goal is to pass to the limit, as λ → 0, in the
weak formulation associated with (3.1)–(3.4) to show that ϕλ and μλ converge to some limit ϕ and μ

that yield a solution to the weak formulation of problem (1.6)–(1.9). As far as β is concerned, estimate
(3.32), the strong convergence of ϕλ, and the strong-weak closure of β as a maximal monotone graph in
R×R yield that

β(ϕλ) → β(ϕ) weakly in Lp(0, T; H) ∀ p ∈ (1, p).

Let us stress that this latter holds along a suitable subsequence for every p ∈ (1, p), in the sense that the
choice of the subsequence can be done uniformly with respect to p ∈ (1, p). This fact can be shown rigor-
ously in the following way. First, by exploiting the estimate (3.32) with p ∈ (1, p) (e.g., p = p+1

2
), one can

select a suitable subsequence along which it holds that β(ϕλ) → β(ϕ) weakly in L
p
2 (0, T; H). Secondly,

let us fix such subsequence and prove that along such fixed subsequence it also holds that β(ϕλ) → β(ϕ)
weakly in Lp(0, T; H) for all p ∈ (1, p). To this end, let p ∈ (1, p) be arbitrary and let (β(ϕλk ))k be an
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arbitrary subsequence of (β(ϕλ))λ. Thanks to (3.32) it follows immediately that (β(ϕλk ))k has a further
sub-subsequence (β(ϕλkj

))j weakly converging to some limit in Lp(0, T; H) as j → 0. As we know already
that β(ϕλ) → β(ϕ) weakly in L

p
2 (0, T; H), it necessarily holds that β(ϕλkj

) → β(ϕ) weakly in Lp(0, T; H)
as j → 0. This shows that every subsequence of (β(ϕλ))λ admits a further sub-subsequence weakly con-
verging in Lp(0, T; H) to β(ϕ): this implies that the whole sequence (β(ϕλ))λ weakly converges to β(ϕ)
in Lp(0, T; H) as λ → 0, as desired. As for π (ϕλ), we use the above strong convergence of the order
parameter, along with its Lipschitz continuity, to infer that

π (ϕλ) → π (ϕ) strongly in C0([0, T]; H),

and (see (2.13))

m(·)ϕλ → m(·)ϕ strongly in C0([0, T]; H),

Besides, using the continuity of h with respect to its first argument, the boundedness of h, and the
dominated convergence theorem, we get that, as λ → 0,

S(·, ϕλ, g) → S(·, ϕ, g) strongly in L2H.

For the chemical potential we owe to (3.31) to infer that, as λ → 0,

μλ → μ weakly in Lp(0, T;V) ∩ L2(σ , T;V) ∀ p ∈ (1, p), ∀ σ ∈ (0, T),

∇μλ → ∇μ weakly in L2(0, T;H).

Exploiting again the strong convergence of ϕλ, we find from (3.33) that

ϕ ∈
⋂

p∈(1,p)

L2p(0, T; H2(�)) ∩ Lp(0, T; W2,γ (�)), (3.35)

with γ as in the statement. Observe that, arguing as above, one can actually select the converging subse-
quences uniformly with respect to p and σ . Next, we use all the above convergences to pass to the limit
λ → 0 in the variational formulation associated with (3.1) and find that

〈∂tϕ, v〉V +
∫

�

∇μ · ∇v =
∫

�

S(·, ϕ, g)v,

for every test function v ∈ V , and almost everywhere in (0, T). Testing (3.2) for an arbitrary test function
v ∈ V and integrating by parts leads us to∫

�

μλv =
∫

�

∇ϕλ · ∇v +
∫

�

β(ϕλ)v +
∫

�

π (ϕλ)v +
∫

�

gv, a.e. in (0, T).

Exploiting the above convergences, we pass to the limit as λ → 0 and get the boundary condition

∂nϕ = 0, a.e. on �,

along with the pointwise formulation

μ = −�ϕ + β(ϕ) + π (ϕ) + g, a.e. in Q.

Thus (ϕ, μ) is a variational solution to the original problem (1.6)–(1.9) and the proof of Theorem 2.5 is
finished.

3.5.2 Nonlocal case
The situation is similar to the previous case, so we just give a sketch of the proof. From (3.15) and (3.34),
we obtain the existence of a function ϕ such that

ϕ ∈ H1(0, T;V∗) ∩ L∞(0, T;H) ∩ L2(0, T;V),
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and, as λ → 0,

ϕλ → ϕ weakly in H1(0, T; V∗) ∩ L2(0, T;V),

ϕλ → ϕ weakly-star in L∞(0, T; H),

ϕλ → ϕ strongly in C0([0, T]; H),

which yields that the initial condition ϕ(0) = −1 is fulfilled in H. Here we have lower regularity with
respect to the previous case. Nonetheless, the above strong convergence is enough to handle the nonlinear
terms in the same way. The only difference concerns the convolution kernel for which we have, on
account of A4, that, as λ → 0,

K ∗ ϕλ → K ∗ ϕ strongly in L2(0, T;V).

The rest of the proof goes as above and no repetition is needed here. The only difference is that, here,
we can no longer infer the regularity properties (3.35). This concludes the proof of Theorem 2.6.

4. Uniqueness of weak solutions

We will now proceed to demonstrate Theorems 2.8 and 2.9. We will give the full details of the former
proof only, since the latter proof goes along the same lines.

Proof of Theorem 2.8. First, we set ϕ = ϕ2 − ϕ1 and consider the weak formulation for the difference
that reads, recalling that h is constant, as

〈∂tϕ, v〉V +
∫

�

∇μ · ∇v = −
∫

�

m(·)ϕv, (4.1)

for every test function v ∈ V , and almost everywhere in (0, T), where

μ = −�ϕ + F′(ϕ2) − F′(ϕ1), a.e. in Q.

Taking v = |�|−1 in (4.1), we get

d

dt
ϕ� = −(m(·)ϕ)�. (4.2)

Multiplying now the above equation by v = ϕ� + sign ϕ�, we obtain

d

dt

(1

2
|ϕ�|2 + |ϕ�|

)
≤ C(|ϕ�|2+|ϕ�|). (4.3)

We then subtract equation (4.2) from (4.1), test the resulting identity with v =N(ϕ − ϕ�) and use the
equation for the chemical potential to express the term

∫
�
∇μ · ∇N(ϕ − ϕ�). Upon rearranging some

terms, this gives, for almost any t ∈ (0, T),

1

2

d

dt
‖ϕ − ϕ�‖2

∗ + ‖∇ϕ‖2 +
∫

�

(β(ϕ2) − β(ϕ1))ϕ

= −
∫

�

m(·)ϕN(ϕ − ϕ�) −
∫

�

(π (ϕ2) − π (ϕ1))(ϕ − ϕ�)

−
∫

�

(β(ϕ2) − β(ϕ1))ϕ� =:
3∑

i=1

Ii. (4.4)

The third term on the left-hand side is nonnegative due to the monotonicity of β, whereas the terms on
the right-hand side can be bounded as follows. Recalling the interpolation inequality:

∀δ > 0, ∃ Cδ > 0 : ‖ϕ‖2 ≤ δ ‖∇ϕ‖2 + Cδ ‖ϕ − ϕ�‖2
∗ + C|ϕ�|2,
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and using the Young inequality and the above estimate, we infer that

I1 + I2 ≤ C ‖ϕ‖2 + C ‖ϕ − ϕ�‖2
∗ ≤ δ ‖∇ϕ‖2 + Cδ ‖ϕ − ϕ�‖2

∗ + C|ϕ�|2,

I3 ≤ C( ‖β(ϕ2)‖1 + ‖β(ϕ1)‖1 )|ϕ�|.
Next, we add (4.4) with (4.3) and observe that t �→ C( ‖β(ϕ2(t))‖1 + ‖β(ϕ1(t))‖1 ) belongs to L1(0, T).
Thus, integrating over time, choosing δ small enough, and applying Gronwall’s lemma we deduce (2.22).
This concludes the proof.

Proof of Theorem 2.9. Here, we just emphasize the key differences with respect to the previous proof.
Also in this case, setting ϕ = ϕ2 − ϕ1, we have (cf. (4.1))

〈∂tϕ, v〉V +
∫

�

∇μ · ∇v = −
∫

�

m(·)ϕv,

for every test function v ∈ V , and almost everywhere in (0, T), where now

μ = aϕ − K ∗ ϕ + F′(ϕ2) − F′(ϕ1), a.e. in Q. (4.5)

Arguing as in the proof above, we derive (4.2) and (4.3). We then repeat the previous computation with
the test function v =N(ϕ − ϕ�), using (4.5). Thus, for almost any t ∈ (0, T), we get

1

2

d

dt
‖ϕ − ϕ�‖2

∗ + ‖ϕ‖2 ≤
∫

�

(K ∗ ϕ)(ϕ − ϕ�) +
∫

�

aϕ(ϕ − ϕ�)

−
∫

�

m(·)ϕN(ϕ − ϕ�)−
∫

�

(π (ϕ2) − π (ϕ1))(ϕ − ϕ�)

−
∫

�

(β(ϕ2) − β(ϕ1))ϕ�,

where the second term on the left-hand side arises from
∫

�
(aϕ + β(ϕ2) − β(ϕ1))ϕ using A1, and A4.

Observe now that, using the Young inequality, we have∫
�

(K ∗ ϕ)(ϕ − ϕ�) ≤ ‖K ∗ ϕ‖V ‖ϕ − ϕ�‖∗ ≤ ‖K‖W1,1(�) ‖ϕ‖ ‖ϕ − ϕ�‖∗

≤ δ ‖ϕ‖2 + Cδ ‖ϕ − ϕ�‖2
∗ ,

for a positive δ yet to be selected. The remaining terms on the right-hand side can be readily controlled
again by the Young inequality. Thus, we can proceed arguing as above to get (2.23).

5. Application to tumour growth models

This section is devoted to a nontrivial application of the existence results analysed above in the context of
tumour growth models. The diffuse interface approach is nowadays broadly used in biological modelling,
in particular, to describe (solid) tumour growth dynamics (see, e.g., [13, 31]). The prototypical scenario
that they try to capture may be schematized as follows: a tumour mass is embedded in a region rich in
nutrients and it expands through a proliferation mechanism which is possible due to the consumption
of the surrounding nutrient. In the literature, there are several models, but their common denominator
is a coupling between a Cahn–Hilliard equation with a source term, accounting for the evolution of
the tumour mass, with a reaction-diffusion equation for some nutrients species n. Therefore, problems
(1.6)–(1.9) and (1.10)–(1.13) are related to those models. The role of the source term is to encapsulate
nontrivial interactions between the tumour cells and the nutrient such as the proliferation mechanism.
More precisely, in this context, the order parameter ϕ describes the presence of tumour cells with the
convention that the level set {ϕ = −1} := {x ∈ � : ϕ(x) = −1} describes the healthy region, whereas
{ϕ = 1} the tumour region. The free energies (1.1) and (1.3) account for cell-to-cell adhesion effects,
which may be of local or nonlocal nature, respectively.
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Let us now introduce some meaningful models which fit the framework of the Cahn–Hilliard equa-
tions analysed so far. Usually, the evolution of the nutrient n is ruled by a reaction-diffusion equation of
the form

∂tn − div
(
η(ϕ)∇n

)= Sn(ϕ, n) in Q, (5.1)

endowed with no-flux or Robin boundary conditions as well as a suitable initial condition. Here, Sn(ϕ, n)
stands for a nutrient source term, and η(ϕ) for the nutrient mobility. For more details on the modelling
we refer, for instance, to [31] and references therein.

Thus, we can introduce the following initial and boundary value problems for tumour growth systems
whose well-posedness readily frame in the setting of the above results

∂tϕ − �(Ajϕ + F′(ϕ) − χn) = S(ϕ, n) in Q, j = 1, 2, (5.2)
∂tn − �n = Sn(ϕ, n) in Q, (5.3)
∂n(Ajϕ + F′(ϕ) − χn) = ∂nn = 0 on �, (5.4)
ϕ(0) = −1, n(0) = n0 in �, (5.5)

where A1 is the usual (minus) Laplace operator with homogeneous Neumann boundary condition, while
A2 is the linear nonlocal operator from H to H defined by A2ϕ = aϕ − K ∗ ϕ. Besides, χ ≥ 0 denotes a
nonnegative constant related to the chemotaxis sensitivity. Typical choices for the source terms S and Sn

are the following (see, e.g., [2, 3]):

S(ϕ, n) = −mϕ + (n − δn)+h(ϕ), Sn(ϕ, n) =B(nB − n) − Ch(ϕ)n, (5.6)

for prescribed constants m > 0, and δn ∈ [0, 1]. From now on, we postulate (5.6) for the source terms.
The capital letters B and C indicate nonnegative constants taking into account consumption rate of the
nutrient with respect to a pre-existing concentration nB, and the nutrient consumption rate, respectively.
Here, h plays the role of a truncation so to have the action of Ch(ϕ)n only in the spatial region where the
tumour cells are located. Namely, we postulate that h(−1) = 0, h(1) = 1, and h is suitably interpolated
in between if −1 < ϕ < 1. Finally, the source term B(nB − n) in (5.3) models the nutrient supply from
the blood vessels if nB > n and the nutrient transport away from the domain for nB < n.

The novelty of our approach consists in enabling the initial condition ϕ0 to be chosen as the pure
healthy phase. We somehow show that even if the tissue of the patient is completely healthy at the
beginning, corresponding to ϕ0 = −1, the presence of the disease (captured by the structure of the source
term) might trigger the evolution and the growth of the tumour. Below, we provide existing results for
the above local and nonlocal problems where the initial datum ϕ0 can correspond to the healthy state,
i.e., ϕ0 = −1 in �.

With no claim to be exhaustive, let us briefly review some related works dealing with singular poten-
tials like (1.2). For those models, a crucial point is to handle the mass evolution; in particular, one would
avoid inconsistency of the model and have non-physical solutions ϕ that satisfy |(ϕ(t))�| > 1 for some
time t ∈ [0, T]. To overcome this possible situation, one usually proceeds as we did and requires that the
source term S, which rules the mass evolution of the order parameter, is given by (5.6). In this direction,
we refer to [25, 40, 56]. Alternatively, some authors suggest to introduce some regularization terms in
the system to allow for more general potentials and source terms (see, for instance, [12, 57] and the
references therein). Finally, let us point out that nonlocal models in the context of phase field tumour
growth models are also investigated as well (see, e.g., [26, 57]).

As a direct consequence of the previous sections, we can deduce the validity of the following weak
existence results.

Theorem 5.1. Suppose that A1–A3 hold. Let the initial data fulfil

ϕ0 ∈ V , F(ϕ0) ∈ L1(�), (ϕ0)� ∈ [−1, 1], n0 ∈ V ∩ L∞(�),

0 ≤ n0(x) ≤ 1 for a.e.x ∈ �,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792525000166
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.111, on 16 Jul 2025 at 04:53:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792525000166
https://www.cambridge.org/core


22 M. Grasselli et al.

and assume that h is continuous and uniformly bounded, χ is a nonnegative constant, and nB ∈ L∞(Q)
with 0 ≤ nB ≤ 1 a.e. in Q. Then, problem (5.2)–(5.4) with j = 1 admits a weak solution (ϕ, μ, n) such
that

ϕ ∈ H1(0, T;V∗) ∩ L∞(0, T;V) ∩ L2(0, T;W),

ϕ ∈ L4(σ , T;W) ∩ L2(σ , T;W2,γ (�)) ∀σ ∈ (0, T),

ϕ ∈ L2p(0, T;W) ∩ Lp(0, T;W2,γ (�)) ∀p ∈ (1, p),

ϕ ∈ L∞(Q), |ϕ(x, t)| < 1 for a.a. (x, t) ∈ Q,

μ ∈ Lp(0, T;V) ∩ L2(σ , T;V) ∀p ∈ (1, p) ∀σ ∈ (0, T),

∇μ ∈ L2(0, T;H),

n ∈ H1(0, T;H) ∩ L∞(0, T;V) ∩ L2(0, T;W),

n ∈ L∞(Q), 0 ≤ n(x, t) ≤ 1 for a.a. (x, t) ∈ Q,

where

γ ∈
{

[1, 6] if d = 3,

[1, +∞) if d = 2,
p :=

{
4
3

if n0 ∈ V \ W,

2 if n0 ∈ W,

where
μ = −�ϕ + F′(ϕ) − χn, a.e. inQ,

and the following identities

〈∂tϕ, v〉V +
∫

�

∇μ · ∇v =
∫

�

S(ϕ, n)v,∫
�

∂tn v +
∫

�

∇n · ∇v +
∫

�

h(ϕ)nv =B

∫
�

(nB − n)v,

are satisfied for every test function v ∈ V , and almost everywhere in (0, T). Moreover, it holds that
ϕ(0) = ϕ0, n(0) = n0, a.e. in �.

Theorem 5.2. Suppose that A1–A4 hold. Let the initial data fulfil
ϕ0 ∈ H, F(ϕ0) ∈ L1(�), (ϕ0)� ∈ [−1, 1), n0 ∈ W,

0 ≤ n0(x) ≤ 1 for a.e. x ∈ �,

and assume that h is continuous and uniformly bounded, χ is a nonnegative constant, and nB ∈ L∞(Q)
with 0 ≤ nB ≤ 1 a.e. in Q. Then, problem (5.2)–(5.5) with j = 2 admits a weak solution (ϕ, μ, n) such
that

ϕ ∈ H1(0, T;V∗) ∩ L∞(0, T;H) ∩ L2(0, T;V),

ϕ ∈ L∞(Q), |ϕ(x, t)| < 1 for a.a. (x, t) ∈ Q,

μ ∈ Lp(0, T;V) ∩ L2(σ , T;V) ∀p ∈ (1, 2) ∀σ ∈ (0, T),

∇μ ∈ L2(0, T;H),

n ∈ H1(0, T;H) ∩ L∞(0, T;V) ∩ L2(0, T;W),

n ∈ L∞(Q), 0 ≤ n(x, t) ≤ 1 for a.a. (x, t) ∈ Q,

where
μ = aϕ − K ∗ ϕ + F′(ϕ) − χn, a.e. inQ,

and the identities

〈∂tϕ, v〉V +
∫

�

∇μ · ∇v =
∫

�

S(ϕ, n)v,∫
�

∂tn v +
∫

�

∇n · ∇v +
∫

�

h(ϕ)nv =B

∫
�

(nB − n)v,
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are satisfied for every test function v ∈ V , and almost everywhere in (0, T). Moreover, it holds that

ϕ(0) = ϕ0, n(0) = n0, a.e. in �.

Remark 5.3. If the function h does not depend on the phase variable ϕ, then continuous dependence
estimates can be proven by arguing along the lines of Theorem 2.8 and Theorem 2.9. In this case, both
the local and the nonlocal problem are well posed.

Proof. We just give a sketch of both the proofs since they are natural extensions of the previous ones
with the choice g = −χn.

The difference is that here we do not know, a priori, whether g = −χn fulfils A2 or not. However,
a similar parabolic-type estimate as (3.12) ((3.16) resp.) can be derived for n and the strategy of the
previous proof can be carried out with minor modifications. Rigorously speaking, one should introduce
a Faedo–Galerkin scheme, let k denote the discretization parameter, for the system (5.2)–(5.5) along
with the same λ-approximation introduced before. Then, the discretized version of (5.3) can be tested
by nk. This gives

1

2

d

dt
‖nk‖2 + ‖∇nk‖2 ≤ C( ‖nk‖2 + 1),

so that

‖nk‖L∞(0,T;H)∩L2(0,T;V) ≤ C,

whence, as before, we deduce

∀ α ∈ [0, 1), ∃ Cα > 0: ‖nk‖L∞(0,t;H) ≤ Cαtα ∀ t ∈ [0, T],

with Cα > 0 that are independent of k. Testing then by ∂tnk and recalling that n0 ∈ V , we find

‖nk‖H1(0,t;H)∩L∞(0,t;V)∩L2(0,t; W) ≤ C,

which, by the same argument, yields

∀ α ∈ [0, 1), ∃ Cα > 0: ‖nk‖L∞(0,t;V) ≤ Cαtα, ∀ t ∈ [0, T],

matching finally A2. The rest of the proof goes as in Section 3.
Concerning the minimum and maximum principles for n, one can argue as done in [57]. The final

step consists in pass to the limit first as k → ∞ and then as λ → 0, along suitable subsequences.

6. Final comments and future work

The present results are a first step towards a more general characterization of source terms which allow
a pure initial datum. Another interesting, and perhaps nontrivial, issue is the extension of our results to
other models. For instance, Cahn–Hilliard–Navier–Stokes system with sources (see [43] and references
therein), fractional Cahn–Hilliard equations with sources (see, for instance, [28, 30] for the conserved
case), or multi-component Cahn–Hilliard equations with sources (see [17], see also [29] for the general
conserved case).
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A. Appendix

Proof of Proposition 2.4. Property (P1) follows from ([36], Section 5) and [54]. Let us focus only on the
proof of property (P2). Since β̂ is strictly convex with β̂(0) = 0, one has that β is increasing, β(0) = 0,
with β < 0 in (−1, 0), and β > 0 in (0, 1).

Let δ ∈ (0, 1) be fixed, and let r ∈ (−1, 1) and r0 ∈ (−1, −1 + δ) as in property (P2). We define now

r := r0 − 1

2
= −1 + 1

2
(r0 + 1), r := −1 + 1

δ
(r0 + 1),
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so that it holds

−1 < r < r0 < r < 0, β(r), β(r0), β(r) < 0.

Let us consider the quantity

β(r)(r − r0)

and estimate it from below in the four cases r ∈ (−1, r), r ∈ [r, r], r ∈ (r, 0], and r ∈ (0, 1).

• r ∈ (−1, r): one has that

β(r)(r − r0) = |β(r)||r − r0| = (r0 − r)|β(r)| ≥ (r0 − r)|β(r)| = r0 + 1

2
|β(r)|.

• r ∈ [r, r]: one has that

β(r)(r − r0) ≥ −|r − r0| max
x∈[r,r]

|β(x)| ≥ −(r − r) max
x∈[r,r]

|β(x)|

≥ r0 + 1

2
|β(r)| −

[
r0 + 1

2
+ (r − r)

]
max
x∈[r,r]

|β(x)|

= r0 + 1

2
|β(r)| − 1

δ
(r0 + 1)|β(r)|.

• r ∈ (r, 0]: one has that

β(r)(r − r0) ≥ −|r − r0||β(r)| = −(r − r0)|β(r)| = r0|β(r)| − r|β(r)|
= (r0 + 1)|β(r)| − (r + 1)|β(r)|
≥ r0 + 1

2
|β(r)| − (r + 1) max

x∈[r,0]
|β(x)|

= r0 + 1

2
|β(r)| − (r + 1)|β(r)| ≥ r0 + 1

2
|β(r)| − (r + 1)|β(r)|.

• r ∈ (0, 1): one has that

β(r)(r − r0) = |β(r)|(r − r0) ≥ −r0|β(r)| ≥ 1 − δ

δ
(r0 + 1)|β(r)|,

where we have used the fact that r0 ∈ (−1, −1 + δ) implies −r0 > 1−δ

δ
(r0 + 1).

Putting everything together, we obtain

min

{
1

2
,

1 − δ

δ

}
(r0 + 1)|β(r)| ≤ β(r)(r − r0) +

[
(r + 1) + 1

δ
(r0 + 1)

]
|β(r)|

and the thesis follows.
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