INEQUALITIES FOR THE SCHATTEN p-NORM 1I
by FUAD KITTANEH

(Received 15 August, 1985)

This paper is a continuation of [3] in which some inequalities for the Schatten p-norm
were considered. The purpose of the present paper is to improve some inequalities in [3]
as well as to give more inequalities in the same spirit.

Let H be a separable, infinite dimensional complex Hilbert space, and let B(H)
denote the algebra of all bounded linear operators acting on H. Let K(H) denote the
closed two-sided ideal of compact operators on H. For any compact operator A, let
|A| = (A*A)"* and s5,(A), 5,(A), ... be the eigenvalues of |A| in decreasing order and
repeated according to multiplicity. A compact operator A is said to be in the Schatten
p-class C,(1<p<w), if Y s(A) <o The Schatten p-norm of A is defined by
lA|l, = (X s:(A)*)". This norm makes C, into a Banach space. Hence C, is the trace class
and G, is the Hilbert—Schmidt class. It is reasonable to let C, denote the ideal of compact
operators K(H), and ||.||.. stand for the usual operator norm.

If AeC, and {e;} is an orthonormal basis of H, then the trace of A, denoted by
tr A = Y, (Ae;, ¢;) is independent of the choice of {e;}. If Ae C, and B € C,, then AB € C;,
tr(AB) = tr(BA), and |trf(AB)|<||A||, ||B]l, whenever 1/p+1/g=1. If {e} is any
orthonormal set in H, then for A € C,, ||A||3= X |(Ae,, €,)”. The reader is referred to [4]
or [5] for further properties of the Schatten p-classes. |

In [6], G. Weiss proved that if N is a normal operator in B(H) and if X € G, is such that
NX — XN € C,, then tr(NX — XN) = 0. This result admits the following extension.

THEOREM 1. If N is normal in B(H), X € C,, and A € B(H) is such that AX — XN €
C,, then |tr(AX — XN)| < || X||2||A = Nl

Proof. f A— N is not in G, then the result is trivial. We therefore assume that
A—NeC, Thus (A—N)XeC and so AX—-XN=NX—XN+(A—N)X implies
that NX — XN e C,. Now Weiss’s result implies that tr(NX — XN)=0. Therefore,
tr(AX — XN) = tr((N — A)X) from which it follows that [trf(AX — XN)| <[ X|. |4 — N|..

If H is finite dimensional, then every commutator, that is an operator of the form
AX — XA, has zero trace. In fact, it is well-known [1, p. 128] that an operator on a finite
dimensional Hilbert space is a commutator if and only if it has trace 0. Thus if A, B, and
X are operators on H with dim H =n, then AX - XB=AX - XA+ X(A — B). Since
tr(AX — XA) =0, it follows that |tr(AX — XB)|<||X||, ||A — B||, whenever 1/p +1/q
= 1. In particular if X is the identity operator, then |tr(A — B)| <n"? ||A — B||, which is
known. This inequality may be useful in approximation problems of operators on a finite
dimensional Hilbert space. For, if C is an operator with tr C =0, then for any operator A

trA
we have |tr A| = |tr(A - C)|<n'?||A - C||, and so |4 - C||, Zln—rl,q—l. But if we choose
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A
C=A—tr—, and hence tr C =0, then
n

trd| _|rA]l ,, |trA]
n P T e

la-cll, =

P n

Thus we have proved the following result.

trA
THEOREM 2. If dimH=n and A€ B(H), then min{||A——C||p:trC=0}='nl,q,

whenever 1/p +1/q =1.

Theorem 2 can be formulated in terms of commutators to yield the following
inequality.

CoroLLARY 1. If dim H =n, then for any operators A, B, and X acting on H,

A
we have |A + BX ~ XB||, 2%—' whenever 1/p +1/q = 1.

It has been shown in [3] that if A is an operator in B(H) such that Im A =4 =0, then
for any X € B(H), ||AX — XA*||,=4a||X|, (1<p=w®). Replacing A by iA, this in-
equality becomes ||AX +XA*|,=al|X], whenever ReA=a=0. The remarkable
Clarkson-McCarthy inequalities [S] can be used to improve Theorem 3 in [3] for
1< p < as follows.

THEOREM 3. If A is an operator in B(H) such that InA=a=0, then for any
X eB(H)
|AX - XA*|, = (4"%a) || X]|, (2<p<w)
and
|AX - XA*|, = (4"a) | XI|, (1<p=2),

where 1/p + 1/q = 1. In particular, ||[AX — XA*(|,= (2a) || X][,-

Proof. If T=ReT +iImT is the cartesian decomposition of an operator T in
B(H), then it is not hard to conclude from the Clarkson—-McCarthy inequalities that

2P
IRe T[i7 + m T < [T} <7 (IRe TIZ + [Im T|f)  (2<p <)
and

4
7 UReTIE+ [Im TR < |IT<|Re TIp + [Im T, (1<p=<2).

Let X =Y +iZ be the cartesian decomposition of X, then AY — YA* =i Im(AX — XA*)
and AZ - ZA* = —i Re(AX — XA*). But, as in the proof of Theorem 3 in [3], we have
|AY — YA*||,= (2a) |Y||, and ||AZ —ZA*|,=(2a)|Z||, for all 1<p<w. Now if
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2=<p <o, then
lAX — XA*|[g= || AY - YA*||; + |AZ — ZA~|]3

= Qay (¥l + (1Z1p)
4
> ay (55 X1

Hence ||AX — XA*|, = (4"%a) || X,
If 1<p=2, then

2P
lax - xa*lp =7 (14Y - YA*|5 + |AZ - Z4*[p)
2p 4 14
=(3)eardviz+Izip

>(2)cay Ixl

Hence 4g

lax - XA*], > 5|

X1,
and so
“AX—XA*HP = (41/qa) ”X“pl

where 1/p +1/q =1.
Employing Berberian’s trick also enables us to generalize Theorem 3. First we need a
lemma.

0 X
LemMMA. Let X be an operator in B(H). If Y= [ 0 0] is an operator defined on
H®H, then ||Y|, = || X||, for l<p <.

Proof. 1t is clear that X e C, on H if and only if Ye C, on H® H. The desired

0 0
conclusion now follows from the observation that Y*Y=[ 0 X*X] or equivalently
0 0
vi=[0 )

Tueorem 4. If A and B are operators in B(H) such that InA=a=0 and
ImB=b=0, then for any X € B(H),

”AX - XB*“p = (4l/p min(a’ b)) “X“p (2 <p <)
and

lAX - XB*||, = (4" min(a, b)) X, (1<p=2),
where 1/p +1/q =1.

Proof. On H®H, let T = [A O] and let Y = [0

X .
2 =
0 B 0 0]. Then Im T = min(a, b)=0
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0 AX - XB*

0 0
Theorem 3 to the operators T and Y.

and 7Y - YT* =[ ] The result now follows by applying the lemma and

It should be noticed that if B* is replaced by B in Theorem 4, then the result is no
longer true.

Whether Theorem 3, and hence its generalization, Theorem 4, can be improved
further so that ||AX — XA*||, = (2a) || X||, for all 1<p <o is not known to the author.
This result is obtained when either p = 2 or X is taken to be self-adjoint or more generally
seminormal (X or X* is hyponormal). As an application of the last assertion we now
obtain Proposition 3.2 in [2] and extend it so that it includes the case p =« as well.

THEOREM 5. If A and B are self-adjoint operators in B(H) and A+ B=a =0, then
14>~ B, > a ||A - B, for 1<p <.

Proof. Let S=A—B and T=i(A+B). Then InT=a=0, S is self-adjoint,
and 7S — ST*=2i(A*— B?). The result now follows by appealing to the inequality
I7S ~ ST+, = 2a) S]],

The case p =« is of particular importance. It asserts that the square root function is
continuous on the interior of the positive cone of B(H). A similar remark has been made
about C, in [2]. It also follows from Theorem 5 that if A and B are self-adjoint operators
in B(H) such that A>=B? and A + B=4a >0, then A = B. Of course these equality signs
may be taken modulo C,. For general operators A and B in B(H), it may be that A> = B?
and A*= B>, yet A # B. For example, take A and B to be distinct nilpotent operators of
index two. The following theorem is a positive result in this direction.

THEOREM 6. Let A and B be operators in B(H) such that A*= B* and A>=B>. If
ker A c ker A* and ker B < ker B* (ker A denotes the kernel of A), then A= B.

Proof. Let C=A — B. Now A’C=A’- A’B=A>— B’=0. Thus from the assump-
tion that ker A ker A*, it follows that A*AC=0. Hence (AC)*(AC)=0 and so
AC=0. Thus A*C =0. Similarly B°C =0 and ker B c ker B* imply that BC =0 and
B*C =0. Therefore C*C =(A* - B*)C=A*C—-B*C=0. Whence C=0and so A=B
as required.

REMARKs. 1. Algebraic manipulations and induction show that the powers 2 and 3 in
Theorem 6 can be replaced by any two relatively prime powers n and m.

2. The following two conditions are important special cases of the kernel assumption
given in Theorem 6: (a) A is one-to-one and B is one-to-one; (b) A and B are hyponormal
operators.

Next we establish the following inequality, the proof of which has a flavor similar to
that of Theorems 2 and 3 in [3].

THeOREM 7. If A and B are operators in B(H) such that A+ B=a =0, then for any
seminormal operator X in B(H), | XAX* + X*BX||,=a || X||3, for I<p <c.
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Proof. We consider two cases.

Case 1. p=o. Without loss of generality we may assume that X is hyponormal.
Hence there exists a sequence {f,} of unit vectors in H such that (X —¢)f, > 0asn — «
where [t| = || X]|.

Since X —t is also hyponormal, it follows that (X —)* f, — 0 as n — ». Now

I XAX* + X*BX|| = |(XAX* + X*BX)f,, f.)|
= [(AX*f,, (X = 0)*f,) + HAX = 0)*fo, fu) + [t[*(Af,, £2)
+(BXf,, (X = 0f) + {BX = 0)f,, f) + [t (Bf,, £,)

=a |t|* minus a term which goes to zero as n — «. Hence ||XAX*+ X*BX| =
a || X||* as required.

Case 2. 1<p <. There is nothing to prove if XAX*+ X*BX is not in C,. We
therefore assume that XAX* + X*BX € C,, and hence it is in particular compact. If
n:B(H)— B(H)/C. is the quotient map of B(H) onto the Calkin algebra B(H)/C.,
then we have n(X)x(A)x(X)* + n(X)*x(B)r(X) =0. Applying case 1 now implies that
7(X) =0, whence X is compact. But is is known [1, p. 110] that a compact hyponormal
operator is diagonalizable, and hence Xe, =t,¢, where {e,} is an orthonormal basis of H.
Thus

| XAX* + X*BX|2= D |(XAX* + X*BX)e,, e,)”
= |[(AX*e,, X*e,) + (BXe,, Xe,)|
=2 [t (A + Be,, e,)P

=af E |t
=a” || X||%.
Therefore | XAX* + X*BX||, = a || X|3,.

We point out here that Theorem 7 is not true if the semi-normality assumption on X
is removed. For example, consider

0 1 10 0 0
X“[o 0]’ A'[o o]’ and B'[o 1]’

which act on a two-dimensional Hilbert space. Also if X is hyponormaland A + B=a =0,
then it need not be true that XAX* + X*BX =aXX*. For example, let X = U, the
unilateral shift operator, A = UU*, and B =1— UU*. Then XAX* + X*BX = U*U** and
aXX* =UU*. The assertion now follows since U is a nonunitary isometry.

Finally, we state the following theorem. The proof is omitted since it is similar to that
of Theorem 7.
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THEOREM 8. If A and B are operators in B(H) such that A+ B=a =0, then for any
seminormal operator X in B(H), ||AX + XB|,=a || X[, for 1<p <.

If A and B are self-adjoint operators in B(H) with A+ B=a=0, and X=A - B,
then AX + XB = A2 — B Hence Theorem § is obtained as a special case of Theorem 8.

ADpDED IN PrOOF. It has been shown recently by the author in Inequalities for the
Schatten p-norm III, Comm. Math. Phys. 104 (1986), 307-310 that if A is an operator in
B(H) such that Im A =a =0, then for any X in B(H), we have

lAX - XA*],, =24 |IX]|, 1 <p <o),

ll»

which is the desired improvement of Theorem 3.

REFERENCES

1. P. R. Halmos, A Hilbert space problem book (Springer-Verlag, 1982).

2. J. L. van Hemmen and T. Ando, An inequality for trace ideals, Comm. Math. Phys. 76
(1980), 143-148.

3. F. Kittaneh, Inequalities for the Schatten p-norm, Glasgow Math. J. 26 (1985), 141-143.

4. J. R. Ringrose, Compact non-self-adjoint operators (Van Nostrand Reinhold Co., 1971).

5. B. Simon, Trace ideals and their applications (Cambridge University Press, 1979).

6. G. Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and
generating functions for matrix operators. I, Trans. Amer. Math. Soc. 246 (1978), 193-209.

DEPARTMENT OF MATHEMATICS
UNITED ARAB EMIRATES UNIVERSITY
P.O. Box 15551

AL-AIN, U.A.E.

https://doi.org/10.1017/50017089500006716 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500006716

