INEQUALITIES FOR THE SCHATTEN *p*-NORM II *by* FUAD KITTANEH

(Received 15 August, 1985)

This paper is a continuation of [3] in which some inequalities for the Schatten *p*-norm were considered. The purpose of the present paper is to improve some inequalities in [3] as well as to give more inequalities in the same spirit.

Let *H* be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators acting on *H*. Let K(H) denote the closed two-sided ideal of compact operators on *H*. For any compact operator *A*, let $|A| = (A^*A)^{1/2}$ and $s_1(A)$, $s_2(A)$,... be the eigenvalues of |A| in decreasing order and repeated according to multiplicity. A compact operator *A* is said to be in the Schatten *p*-class $C_p(1 \le p < \infty)$, if $\sum s_i(A)^p < \infty$. The Schatten *p*-norm of *A* is defined by $||A||_p = (\sum s_i(A)^p)^{1/p}$. This norm makes C_p into a Banach space. Hence C_1 is the trace class and C_2 is the Hilbert–Schmidt class. It is reasonable to let C_{∞} denote the ideal of compact operators K(H), and $||.||_{\infty}$ stand for the usual operator norm.

If $A \in C_1$ and $\{e_i\}$ is an orthonormal basis of H, then the trace of A, denoted by tr $A = \sum (Ae_i, e_i)$ is independent of the choice of $\{e_i\}$. If $A \in C_p$ and $B \in C_q$, then $AB \in C_1$, tr(AB) = tr(BA), and $|\text{tr}(AB)| \leq ||A||_p ||B||_q$ whenever 1/p + 1/q = 1. If $\{e_i\}$ is any orthonormal set in H, then for $A \in C_p$, $||A||_p^p \geq \sum |(Ae_i, e_i)|^p$. The reader is referred to [4] or [5] for further properties of the Schatten p-classes.

In [6], G. Weiss proved that if N is a normal operator in B(H) and if $X \in C_2$ is such that $NX - XN \in C_1$, then tr(NX - XN) = 0. This result admits the following extension.

THEOREM 1. If N is normal in B(H), $X \in C_2$, and $A \in B(H)$ is such that $AX - XN \in C_1$, then $|tr(AX - XN)| \leq ||X||_2 ||A - N||_2$.

Proof. If A - N is not in C_2 , then the result is trivial. We therefore assume that $A - N \in C_2$. Thus $(A - N)X \in C_1$ and so AX - XN = NX - XN + (A - N)X implies that $NX - XN \in C_1$. Now Weiss's result implies that tr(NX - XN) = 0. Therefore, tr(AX - XN) = tr((N - A)X) from which it follows that $|tr(AX - XN)| \le ||X||_2 ||A - N||_2$.

If *H* is finite dimensional, then every commutator, that is an operator of the form AX - XA, has zero trace. In fact, it is well-known [1, p. 128] that an operator on a finite dimensional Hilbert space is a commutator if and only if it has trace 0. Thus if *A*, *B*, and *X* are operators on *H* with dim H = n, then AX - XB = AX - XA + X(A - B). Since tr(AX - XA) = 0, it follows that $|tr(AX - XB)| \le ||X||_q ||A - B||_p$ whenever 1/p + 1/q = 1. In particular if *X* is the identity operator, then $|tr(A - B)| \le n^{1/q} ||A - B||_p$ which is known. This inequality may be useful in approximation problems of operators on a finite dimensional Hilbert space. For, if *C* is an operator with tr C = 0, then for any operator *A* we have $|tr A| = |tr(A - C)| \le n^{1/q} ||A - C||_p$ and so $||A - C||_p \ge \frac{|tr A|}{n^{1/q}}$. But if we choose

Glasgow Math. J. 29 (1987) 99-104.

 $C = A - \frac{\operatorname{tr} A}{n}$, and hence $\operatorname{tr} C = 0$, then

$$||A - C||_p = \left\|\frac{\operatorname{tr} A}{n}\right\|_p = \frac{|\operatorname{tr} A|}{n} n^{1/p} = \frac{|\operatorname{tr} A|}{n^{1/q}}$$

Thus we have proved the following result.

THEOREM 2. If dim H = n and $A \in B(H)$, then $\min\{||A - C||_p : \text{tr } C = 0\} = \frac{|\text{tr } A|}{n^{1/q}}$ whenever 1/p + 1/q = 1.

Theorem 2 can be formulated in terms of commutators to yield the following inequality.

COROLLARY 1. If dim H = n, then for any operators A, B, and X acting on H, we have $||A + BX - XB||_p \ge \frac{|\operatorname{tr} A|}{n^{1/q}}$ whenever 1/p + 1/q = 1.

It has been shown in [3] that if A is an operator in B(H) such that $\operatorname{Im} A \ge a \ge 0$, then for any $X \in B(H)$, $||AX - XA^*||_p \ge a ||X||_p$ $(1 \le p \le \infty)$. Replacing A by *iA*, this inequality becomes $||AX + XA^*||_p \ge a ||X||_p$ whenever $\operatorname{Re} A \ge a \ge 0$. The remarkable Clarkson-McCarthy inequalities [5] can be used to improve Theorem 3 in [3] for 1 as follows.

THEOREM 3. If A is an operator in B(H) such that $\text{Im } A \ge a \ge 0$, then for any $X \in B(H)$

$$||AX - XA^*||_p \ge (4^{1/p}a) ||X||_p \qquad (2 \le p \le \infty)$$

and

 $||AX - XA^*||_p \ge (4^{1/q}a) ||X||_p \qquad (1 \le p \le 2),$

where 1/p + 1/q = 1. In particular, $||AX - XA^*||_2 \ge (2a) ||X||_2$.

Proof. If $T = \operatorname{Re} T + i \operatorname{Im} T$ is the cartesian decomposition of an operator T in B(H), then it is not hard to conclude from the Clarkson-McCarthy inequalities that

$$\|\operatorname{Re} T\|_{p}^{p} + \|\operatorname{Im} T\|_{p}^{p} \leq \|T\|_{p}^{p} \leq \frac{2^{p}}{4} (\|\operatorname{Re} T\|_{p}^{p} + \|\operatorname{Im} T\|_{p}^{p}) \qquad (2 \leq p < \infty)$$

and

$$\frac{2^{p}}{4} (\|\operatorname{Re} T\|_{p}^{p} + \|\operatorname{Im} T\|_{p}^{p}) \leq \|T\|_{p}^{p} \leq \|\operatorname{Re} T\|_{p}^{p} + \|\operatorname{Im} T\|_{p}^{p} \qquad (1$$

Let X = Y + iZ be the cartesian decomposition of X, then $AY - YA^* = i \operatorname{Im}(AX - XA^*)$ and $AZ - ZA^* = -i \operatorname{Re}(AX - XA^*)$. But, as in the proof of Theorem 3 in [3], we have $||AY - YA^*||_p \ge (2a) ||Y||_p$ and $||AZ - ZA^*||_p \ge (2a) ||Z||_p$ for all $1 \le p \le \infty$. Now if

100

 $2 \le p < \infty$, then

$$||AX - XA^*||_p^p \ge ||AY - YA^*||_p^p + ||AZ - ZA^*||_p^p$$

$$\ge (2a)^p (||Y||_p^p + ||Z||_p^p)$$

$$\ge (2a)^p \left(\frac{4}{2^p}\right) ||X||_p^p.$$

Hence $||AX - XA^*||_p \ge (4^{1/p}a) ||X||_p$.

If 1 , then

$$\|AX - XA^*\|_p^p \ge \frac{2^p}{4} (\|AY - YA^*\|_p^p + \|AZ - ZA^*\|_p^p)$$
$$\ge \left(\frac{2^p}{4}\right)(2a)^p (\|Y\|_p^p + \|Z\|_p^p)$$
$$\ge \left(\frac{2^p}{4}\right)(2a)^p \|X\|_p^p.$$

Hence

$$||AX - XA^*||_p \ge \frac{4a}{4^{1/p}} ||X||_p$$

and so

$$||AX - XA^*||_p \ge (4^{1/q}a) ||X||_p,$$

where 1/p + 1/q = 1.

Employing Berberian's trick also enables us to generalize Theorem 3. First we need a lemma.

LEMMA. Let X be an operator in B(H). If $Y = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}$ is an operator defined on $H \oplus H$, then $\|Y\|_p = \|X\|_p$ for $1 \le p \le \infty$.

Proof. It is clear that $X \in C_p$ on H if and only if $Y \in C_p$ on $H \oplus H$. The desired conclusion now follows from the observation that $Y^*Y = \begin{bmatrix} 0 & 0 \\ 0 & X^*X \end{bmatrix}$ or equivalently $|Y| = \begin{bmatrix} 0 & 0 \\ 0 & |X| \end{bmatrix}$.

THEOREM 4. If A and B are operators in B(H) such that $\text{Im } A \ge a \ge 0$ and $\text{Im } B \ge b \ge 0$, then for any $X \in B(H)$,

$$||AX - XB^*||_p \ge (4^{1/p} \min(a, b)) ||X||_p \qquad (2 \le p \le \infty)$$

and

$$||AX - XB^*||_p \ge (4^{1/q} \min(a, b)) ||X||_p \qquad (1 \le p \le 2),$$

where 1/p + 1/q = 1.

Proof. On
$$H \oplus H$$
, let $T = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ and let $Y = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}$. Then $\operatorname{Im} T \ge \min(a, b) \ge 0$

FUAD KITTANEH

and $TY - YT^* = \begin{bmatrix} 0 & AX - XB^* \\ 0 & 0 \end{bmatrix}$. The result now follows by applying the lemma and Theorem 3 to the operators T and Y.

It should be noticed that if B^* is replaced by B in Theorem 4, then the result is no longer true.

Whether Theorem 3, and hence its generalization. Theorem 4, can be improved further so that $||AX - XA^*||_p \ge (2a) ||X||_p$ for all $1 \le p \le \infty$ is not known to the author. This result is obtained when either p = 2 or X is taken to be self-adjoint or more generally seminormal (X or X^* is hyponormal). As an application of the last assertion we now obtain Proposition 3.2 in [2] and extend it so that it includes the case $p = \infty$ as well.

THEOREM 5. If A and B are self-adjoint operators in B(H) and $A + B \ge a \ge 0$. then $||A^2 - B^2||_p \ge a ||A - B||_p \text{ for } 1 \le p \le \infty.$

Proof. Let S = A - B and T = i(A + B). Then Im $T \ge a \ge 0$, S is self-adjoint. and $TS - ST^* = 2i(A^2 - B^2)$. The result now follows by appealing to the inequality $||TS - ST^*||_n \ge (2a) ||S||_n$

The case $p = \infty$ is of particular importance. It asserts that the square root function is continuous on the interior of the positive cone of B(H). A similar remark has been made about C_1 in [2]. It also follows from Theorem 5 that if A and B are self-adjoint operators in B(H) such that $A^2 = B^2$ and $A + B \ge a > 0$, then A = B. Of course these equality signs may be taken modulo C_n . For general operators A and B in B(H), it may be that $A^2 = B^2$ and $A^3 = B^3$, yet $A \neq B$. For example, take A and B to be distinct nilpotent operators of index two. The following theorem is a positive result in this direction.

THEOREM 6. Let A and B be operators in B(H) such that $A^2 = B^2$ and $A^3 = B^3$. If ker $A \subset \ker A^*$ and ker $B \subset \ker B^*$ (ker A denotes the kernel of A), then A = B.

Proof. Let C = A - B. Now $A^2C = A^3 - A^2B = A^3 - B^3 = 0$. Thus from the assumption of the system of the tion that ker $A \subset$ ker A^* , it follows that $A^*AC = 0$. Hence $(AC)^*(AC) = 0$ and so AC = 0. Thus $A^*C = 0$. Similarly $B^2C = 0$ and ker $B \subset \text{ker } B^*$ imply that BC = 0 and $B^*C = 0$. Therefore $C^*C = (A^* - B^*)C = A^*C - B^*C = 0$. Whence C = 0 and so A = Bas required.

REMARKS. 1. Algebraic manipulations and induction show that the powers 2 and 3 in Theorem 6 can be replaced by any two relatively prime powers n and m.

2. The following two conditions are important special cases of the kernel assumption given in Theorem 6: (a) A is one-to-one and B is one-to-one; (b) A and B are hyponormal operators.

Next we establish the following inequality, the proof of which has a flavor similar to that of Theorems 2 and 3 in [3].

THEOREM 7. If A and B are operators in B(H) such that $A + B \ge a \ge 0$, then for any seminormal operator X in B(H), $||XAX^* + X^*BX||_p \ge a ||X||_{2p}^2$ for $1 \le p \le \infty$.

102

Proof. We consider two cases.

Case 1. $p = \infty$. Without loss of generality we may assume that X is hyponormal. Hence there exists a sequence $\{f_n\}$ of unit vectors in H such that $(X - t)f_n \to 0$ as $n \to \infty$ where |t| = ||X||.

Since X - t is also hyponormal, it follows that $(X - t)^* f_n \to 0$ as $n \to \infty$. Now

$$\begin{aligned} \|XAX^* + X^*BX\| &\ge |((XAX^* + X^*BX)f_n, f_n)| \\ &= |(AX^*f_n, (X-t)^*f_n) + t(A(X-t)^*f_n, f_n) + |t|^2(Af_n, f_n) \\ &+ (BXf_n, (X-t)f_n) + \overline{t}(B(X-t)f_n, f_n) + |t|^2(Bf_n, f_n)| \end{aligned}$$

 $\geq a |t|^2$ minus a term which goes to zero as $n \to \infty$. Hence $||XAX^* + X^*BX|| \geq a ||X||^2$ as required.

Case 2. $1 \le p \le \infty$. There is nothing to prove if $XAX^* + X^*BX$ is not in C_p . We therefore assume that $XAX^* + X^*BX \in C_p$, and hence it is in particular compact. If $\pi: B(H) \to B(H)/C_{\infty}$ is the quotient map of B(H) onto the Calkin algebra $B(H)/C_{\infty}$, then we have $\pi(X)\pi(A)\pi(X)^* + \pi(X)^*\pi(B)\pi(X) = 0$. Applying case 1 now implies that $\pi(X) = 0$, whence X is compact. But is is known [1, p. 110] that a compact hyponormal operator is diagonalizable, and hence $Xe_n = t_ne_n$ where $\{e_n\}$ is an orthonormal basis of H. Thus

$$||XAX^{*} + X^{*}BX||_{p}^{p} \ge \sum |((XAX^{*} + X^{*}BX)e_{n}, e_{n})|^{p}$$

$$= \sum |(AX^{*}e_{n}, X^{*}e_{n}) + (BXe_{n}, Xe_{n})|^{p}$$

$$= \sum ||t_{n}|^{2} ((A + B)e_{n}, e_{n})|^{p}$$

$$\ge a^{p} \sum |t_{n}|^{2p}$$

$$= a^{p} ||X||_{2p}^{2p}.$$

Therefore $||XAX^* + X^*BX||_p \ge a ||X||_{2p}^2$.

We point out here that Theorem 7 is not true if the semi-normality assumption on X is removed. For example, consider

$$X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

which act on a two-dimensional Hilbert space. Also if X is hyponormal and $A + B \ge a \ge 0$, then it need not be true that $XAX^* + X^*BX \ge aXX^*$. For example, let X = U, the unilateral shift operator, $A = UU^*$, and $B = 1 - UU^*$. Then $XAX^* + X^*BX = U^2U^{*2}$ and $aXX^* = UU^*$. The assertion now follows since U is a nonunitary isometry.

Finally, we state the following theorem. The proof is omitted since it is similar to that of Theorem 7.

FUAD KITTANEH

THEOREM 8. If A and B are operators in B(H) such that $A + B \ge a \ge 0$, then for any seminormal operator X in B(H), $||AX + XB||_p \ge a ||X||_p$ for $1 \le p \le \infty$.

If A and B are self-adjoint operators in B(H) with $A + B \ge a \ge 0$, and X = A - B, then $AX + XB = A^2 - B^2$. Hence Theorem 5 is obtained as a special case of Theorem 8.

ADDED IN PROOF. It has been shown recently by the author in Inequalities for the Schatten *p*-norm III, *Comm. Math. Phys.* **104** (1986), 307–310 that if A is an operator in B(H) such that Im $A \ge a \ge 0$, then for any X in B(H), we have

$$||AX - XA^*||_p \ge 2a ||X||_p \ (1 \le p \le \infty),$$

which is the desired improvement of Theorem 3.

REFERENCES

1. P. R. Halmos, A Hilbert space problem book (Springer-Verlag, 1982).

2. J. L. van Hemmen and T. Ando, An inequality for trace ideals, *Comm. Math. Phys.* 76 (1980), 143-148.

3. F. Kittaneh, Inequalities for the Schatten p-norm, Glasgow Math. J. 26 (1985), 141-143.

4. J. R. Ringrose, Compact non-self-adjoint operators (Van Nostrand Reinhold Co., 1971).

5. B. Simon, Trace ideals and their applications (Cambridge University Press, 1979).

6. G. Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. I, *Trans. Amer. Math. Soc.* 246 (1978), 193-209.

DEPARTMENT OF MATHEMATICS UNITED ARAB EMIRATES UNIVERSITY P.O. BOX 15551 AL-AIN, U.A.E.