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1. Introduction. Walker [11] describes a new class of translation planes W(q) of order
g%, q = 5(mod 6), with kernel GF(g). A plane in this class has several interesting properties,
but we shall be only interested in the following ones possessed by its collineation group
G: (i) G is transitive on the affine points of W(g), and (ii) G fixes a point ¥, €l the line at
infinity of W(q), and is transitive on the other points of {,,. The smallest member of this class,
W(5), also satisfies: (iii) for an affine point @, the subgroup G, is transitive on the affine points
# 0 of the line 0¥,. Note also that since W(5) is a translation plane, replacing G with G, in
(i1) we get a fourth property, call it (iv), satisfied by G. (See Lemma 2.)

All semi-field planes satisfy properties (i) and (ii), but the planes W{(q) are the only known
translation planes of odd order satisfying (i) and (ii) which are not semi-field planes. For
characteristic 2, the Liineburg planes have a collineation group G satisfying (i) and (ii). The
plane W(5) is the only known non-semi-field translation plane that satisfies (i), (ii), and (iii).
This article is the report of an attempt to characterize the plane W(5) using properties (i),

(ii), (iii).

MAIN THEOREM. If W is a translation plane of finite order p" satisfying (i), (ii), (iii), and A is
not a semi-field plane, then W must also satisfy the following:

(1) 2 divides r;
(2) the collineation group G of U is non-solvable if p" # 2°;
(3) U has even dimension d Z 4 over its kernel if p"# 5%, 112, 25, 3%,

This follows from Lemma 2, Definitions 2 and 3, Theorem 8, Corollary 8.1, and Theorem 9.
Before proving these results, we consider in section 2 affine planes satisfying properties (i),
(ii), (iii), (iv). Such planes are called WA4-planes. It follows from Theorem (3.7) in [6] that a
WA-plane of odd order is either a translation plane or a dual translation plane. Thus, in

considering WA-planes of odd order we may restrict ourselves to those which are translation
planes; naturally, we call such planes TWA4-planes. The plane W(5) is a TWA4-plane. We
then, in sections 4 and 5, prove the conclusions (1), (2), (3) given above for TWA-planes in
general. They then also hold for WA-planes of odd order (Corollary 8.2 and Corollary 9.1).

A second reason for this investigation lies in the following problem proposed by Ostrom
[10]: Does there exist a translation plane of non-square order that is not a semi-field plane but
whose collineation group G satisfies (ii)? In a private communication Ostrom has suggested
that such examples may be constructible by the techniques Walker used in constructing the
planes W(q). The present investigation indicates that this attack on his problem may not work.
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Finally, as indicated above, there is a connection between this article and the article [6]. In the
terminology of [6], a WA-plane is an affine plane of rank (r, s,2) admitting a block orbit of

degree 1.
The reader is expected to be familiar with the terminology of projective and affine planes as
exhibited in [3] and also with the theory of permutation groups as given in [12].

2. Definitions and preliminary results.

DEFINITION 1. A W-plane is an affine plane U of finite order » possessing a collineation
group G having the following properties:

(i) Gistransitive on the affine points of 2,
(ii) G fixes a point ¥ !, the line at infinity of 2, and is transitive on the remaining
points of {,.

The collineation group G is called a W-group of U and ¥, is called the special point of W with
respect to G.

ExampLEs. (1). Every semi-field plane U satisfies (i) and (ii) where G is the collineation
group generated by the translations and the affine elations fixing the point (c0). If U is not
Desarguesian, G can be taken as the full collineation group.

(2) Walker [11] discovered a class of translation planes W{(q), ¢ = 5 (mod 6), satisfying
conditions (i) and (ii). These planes and their duals are the only known planes of odd order
satisfying (i) and (ii) which are not semi-field planes.

(3) The Liineburg planes of order 2%, r odd and at least 3, and their duals possess a
collineation group satisfying (i) and (ii). Itis also possible that the planes derived from the dual
Liineburg planes have a collineation group satisfying (i) and (ii). (See Dembowski [3, p. 251].)

Before moving on to the principal object of study in this article, we make two observations
about W-planes.

LemMA 1. The dual of a W-plane is a W-plane.

Proof. In dualizing U to get the dual plane ' we take ¥, the dual of the point given in
(if), to be the line at infinity of 9" and U} is the special point of U’. Then the affine points
of A’ correspond to the affine lines of A not through ¥,,. The lemma then follows from a
result of A. Wagner. (See [3, 4.4.24).)

The smallest Walker plane, W(5), satisfies in addition to properties (i) and (ii) the following
condition:

(i) for an affine point 0 of U, G, is transitive on the affine points # @ of the line 07,.
Also, in the Walker planes the W-group contains the group of translations. With regard to
these two facts we make the following observation.

LemMa 2. Let U be a W-plane with a W-group G and special point ¥,,. If Wis a trans-
lation plane and G contains the group of translations, or if W is a dual translation plane and G
contains the group of dual translations, then W and G satisfy:
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(iv) for an affine point O of N, the group G, is transitive on the points of L, —{¥,}.

Proof. Assume U is a translation plane and G contains the group T of translations; then
G = TG, and, because T fixes every point of l, G and G, induce the same permutation group
on t,. If Wis a dual translation plane and G contains the group of dual translations, then G
contains the group E of dual translations with centre ¥, and axis 0¥, which is transitive on

ReMARK. The planes coordinatized by the twisted fields of Albert [1] satisfy (iii); however,
the Liineburg planes and their duals do not.

Because of Lemma 2 and the plane W(5), we will restrict ourselves to the study of the
following subclass of W-planes.

DEFINITION 2. A WA-plane is an affine plane 9 of finite order n possessing a collineation
group G satisfying properties (i), (ii), (iii), and (iv). The group G is called a WA-group.
Our first justification for studying this class is our first theorem.

THEOREM 1. If W is a WA-plane of odd order n with WA-group G, then either W is a
translation plane and G contains the translations or W is a dual translation plane and G contains
the dual translations.

Proof. Thisis just a restatement of Theorem (3.7) in [3] since a WA-plane is an affine plane
of rank (r, s, 2) admitting a block orbit of degree 1.

As a corollary we can prove that for odd order the class of WA-planes is closed under
duality.

THEOREM 2. The dual of a WA-plane of odd order is a WA-plane.

Proof. Let A be a WA-plane of odd order p” with WA-group G and special point ¥,,. To
show that the dual U’ is a WA-plane, it is sufficient to prove the following:

(i) G is transitive on the affine lines of U not through ¥, ;
(ii') G fixes U ;
(iii") for every affine line { of U with ¥ ¢!, the group G is transitive on the affine lines
through ¥, ;
(iv') for every affine line ! of ¥ with ¥ ¢!, the group Gy is transitive on the affine
lines # ! through {nl .

(ii") is obvious and (i) follows from 4.4.24 of [3] as in the proof of Lemma 1.

Assume first that 9 is a translation plane. Let { be an affine line of 2 not through
¥, G contains the group T(% ) of translations with centre %, = Inl,. Now, T(%,,) fixes
! and is transitive on the affine points of !; since T(%,) also fixes ¥, (iii") holds. To prove
(iv'), let @ be an affine point on { and consider Gy ¢ = Gy 4, Where %, = Inl,,. We have the
following equations by (iii) and (iv):

|Gol = P'| Go, 1> 1Gol =(P"=1)|Go, 51,
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where £ is an affine point of 07, with Z # 0. Thus
|Ge, 2| = P'k, |Go,a,|=(p"— Dk, @1

for some integer k = 1.

Let H =Gy 4, . Then Hy < Gg, 5 and thus| Hy | |p'k. Ontheotherhand, | Hp | | (p"—1)k.
Thus | Hp| |k and hence for the orbit ® of & under H, we have (p"—1)|| ®| since | @] =
|H||Hg|~!. Tt follows that ® consists of the affine points of 0¥, other than 0. Thus
H = Gy 4, = Gp, | is transitive on the affine points of 0¥, other than 0 and hence (iv') is
satisfied.

Assume now that  is a dual translation plane. Let{ be an affine line of U not through
Yo By (), (i), and (iii) we have

|Gl =p¥1Gl, |G|=p"|Gol=p"|Gsa.l, |G|l=p|Gq,l, 22
where 0 is an affine point and %, a point on {, with % #7¥,. Thus
|Gl = p"1Go,a..!> IGmm|=P2r|Go,ww|, |G, | = P"|Gyl. 2.3)
Now, let Ol and %, = Inl,; then Gy 4 = G < Gy, and Gg 4 = Gg 1. If @ is the orbit
of @ under Gy, then
|Gt =1@|1Gp, 1| = D] Gp,a,l. 24

Hence from the first equality of (2.3), |®| = p"; therefore, Gy maps @ into p" distinct affine
points. Since Gj fixes | and Oel, Gy must be transitive on {. It follows that Gy is transitive
on the lines through ¥. This proves (iii’).

For (iv"), let £ be an affine point on 0¥, ? # 0. We have the equalities

|Gol =(P"—1) |Gy, 9|, |Gy, |=p"1GCa,,or.|>

since Gy is transitive on 0¥, — {0}, and Gy < G,_ implies G,_ is also transitive on the affine
lines through ¥,,. By (2.2) we must have

|qum.wm| = (p'—l)ng,,l.

Since U is a dual translation plane, Gy, » contains the group E of elations with axis 07,;

hence
|Ga,9l =p| Ga,y,qzml
and
| Gary, 09, | = P(P"— 1)1 Go, 9, 4., | - 2.5)
Furthermore,
| Gat, 07, | = P'| Gy, 0 (2.6)

since Gy, oy, contains the group T(¥;) of translations with centre ¥, and Gy o=
T(¥,)Ga., ov,, o Equations (2.5) and (2.6) give

|wa,o| =("-1)| Go, 9,9, [ @7
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If @ is the orbit of 2 under Gy, ¢, then

(@] = lGﬂlzw,a”quw,a,yl -t =p—1

by equation (2.7). Therefore Gy, is transitive on the affine points s 0 of 0¥,,. It follows
that Gy _ o is transitive on the affine lines # { = 0%, through % . Since Gy, o < Gy, (iV)
is satisfied.

We close this section with a theorem that will be used frequently in the succeeding sections.
This theorem is a slight modification of Theorem 1 in [7]. By the translation complement of a
translation plane we mean the group of collineations fixing an affine point ¢. (See Ostrom
[10].) Considering Lemma 2 and Theorem 1 in [7], it is immediately clear that they hold for
any subgroup of the translation complement, not just the translation complement. Secondly,
in part (b) of the conclusion of Lemma 2, the values g = 4, 5 do not really occur since part (b)
reduces to part (a) for these two values. This is obvious for ¢ = 5 and it holds for g = 4 since
PSL(2,4) = PSL(2,5). Thus, in part (b) of Theorem 1 the values ¢ = 4,5 do not appear.
Hence we have the following theorem.

THEOREM 3. Let U be a finite translation plane of order q2, g = p" with p a prime, and having
kernelK = GF(q). Let G be a non-solvable collineation group of N fixing an affine point O and an
affine line L with O €l such that G is transitive on the affine points of L~ {0}. Assume also that
G contains the group K of (0,1,)-homologies. If H is the group of collineations in G fixing
pointwise, then G/H is a subgroup of TL(2, q) and either

(a) G/H contains SL(2,q), | G/H| = }kq(q*>—1)(g—1) with k | 2or
(b) G/H contains SL(2,5), | G/H| = 60k(q—1) with k | 2and g=9, 11, 19, 29 or 59.

3. WA-planes of order p?, p a prime. We turn to the question of which translation planes
are WA-planes. In this section we give some preliminary facts about such planes and consider
the case when the order is p2, p'a prime; in the next section we consider the case when the
WA-group is solvable, and in the last section we look at WA-planes having dimension 2 over

their kernel. Because of Theorems 1 and 2 we need only concern ourselves, in the case of odd
order, with WA-planes which are translation planes. However, most of the remaining results

hold for translation planes of even order, and we include them in the discussion. We thus make
the following definition.

DEFINITION 3. A TWA-plane is a WA-plane that is a translation plane.

LemMA 3. Let W be a TWA-plane of order p’, p a prime, G a WA-group of W, and ¥, the
special point of W with respect to G. If 0 is an affine point of W, % ,, a point inl,—{¥,,}, and P
an affine point on 0¥, — {0}, then the following hold:

G| =p*|Gol, G.)
|Gol = P"| Go, 2., | = ("= 1) Gy, 51, (3.2)
|Go, 4, | = (P™=1)|Go, 5,4, |- (3.3)
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Proof. (3.1) and (3.2) follow from the definition of a WA-plane and (3.3) follows from the
the next lemma.

LEMMA 4. Let W be a TWA-plane of order p", G a WA-group of W, and ¥, the special
point of W with respect to G. If O is an affine point of W and U ,, a point of L, with U o # ¥,
then Gg 4 is transitive on the affine points of 0¥, — {0}.

Proof. A proof of this lemma was given during the proof of Theorem 2; see the third
paragraph of that proof.

Let (Q, +, ) be a quasi-field coordinatizing the TWA-plane W with ¥, = (), @ = (0,0),
where ¥, is the special point with respect to a WA4-group G of U. Since G, fixes the line
0¥, G, induces a group G of linear transformations on (Q, +) as a vector space over the
prime field GF(p). In fact, if 6€G, then o induces the linear transformation & given by
y& =y if and only if (0, y)o = (0,¥). This gives the following theorem.

TueoREM 4. Let W be a TWA-plane of order p™ with WA-group G and special point ¥,
and let @ be an affine point of . If (Q, +,°) is a quasi-field coordinatizing W with ¥, = (o)
and © = (0,0), then G, induces a group G of linear transformations lon (Q, +) as a vector space
over GF(p). Furthermore, G is transitive on the non-zero vectors and G = Go/H, where H is the
group consisting of all central collineations with axis 0V, contained in G.

ReMARK. Note that by Lemma 4, in Theorem 4 we could replace G, with the group
Go, 4., and the resulting statement is true. This fact will be used later.

THEOREM 5. Let W be a TWA-plane of order p'. If U has a non-trivial homology whose axis
is an affine line, then W is a semi-field plane.

Proof. Let G be a WA-group possessed by U and ¥, the special point. Assume o is a
non-trivial homology of % with axis {, { an affine line. There are two possibilities: (1) ¥, el
and (2) 7,¢!. Assume first that ¥, el. We may assume the centre % of o lies on {;
for if ¢!, then o moves |, and U is Desarguesian [3, p. 130]. If ¢ is an affine point on
L, then by property (iv) for G (see Lemma 2) for every point 2 , el — {¥,,}, U has a non-trival
homology with axis | and centre 2,. By Theorem 3 of Andre’ [2], U is (¥, )-transitive
and thus % is a semi-field plane [3, p. 130].

Assume now that ¥ ¢l. If ¥ 0 =7, # ¥, then A has a WA-group G’ = 6~ 'Go with
special point ¥, and if 1€ G with ¥/t = Inl, then 17 1G't is a WA-group of U with special
point {nl,. By the argument in the first paragraph U is a semi-field plane. (In fact, it is
Desarguesian.)

Thus we may assume that ¥, is the centre of 6. Let Ocl, 0¢!l, . By property (iv), for
every line ' through @ with Iz 0¥, , % has a homology with axis I and centre ¥,,. By the
dual of Theorem 3 in [2], W is (¥, 0¥ )-transitive and hence U is a semi-field plane.

THEOREM 6. If U is @ TWA-plane of order p*, p a prime withp # 5, 11, then W is Desargue-
sian.

Proof. If p =2 then U has order 4 and is therefore the Desarguesian plane of order 4; if
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p = 3 then A is Desarguesian since the only non-Desarguesian translation plane of order 9 is
the one over the exceptional nearfield of order 9 and it is not a W-plane. Thus we may assume
p > 5. Also, by Theorem 5 we may assume U has no homologies with affine axis.

Let A be a counterexample to the statement of the theorem, let G be a WA-~group of U and
¥, the special point of A with respect to G. Without loss of generality we may assume G,
and hence G, contains the group K of (0, )-homologies since KX fixes all the points on {,, and
all lines through @. By equation (3.2),

|Gol = p*(p*— DDk

for some integer k 2 1. Let p*||k. If E is the group of elations of % with axis 0¥, then
| E| £ p* and E is contained in a Sylow p-subgroup S of G with | S| = p***. By Theorem 4, G,
induces a group G of linear transformations on (Q, +) over GF(p) with G = G,/E; here
(Q, +,) is a quasi-field coordinatizing U with ¥, = (c0) and @ = (0,0). Also, G is transitive
on the non-zero vectors of (Q, +) since G, is transitive on the affine points # @ of 0¥,.

G is a subgroup of GL(2, p)and | GL(2, p)| = p(p*~1)(p~1). Thus| S/E[ <p, |E|=pt*s
If | E] =p?, then A is a semi-field plane and therefore Desarguesian [3, p. 244]. Hence
|El=p,5s=0,p|Gy q,l, s, a point on l, with %, # ¥, and | G| = p(p*— 1)k.

Assume first that G, is solvable. Then G is a solvable transitive group of linear trans-
formations on (@, +), a vector space of dimension 2 over GF(p). By Huppert [5, pp. 126-7],
either (a) G STL(1,p?), IG||2(p*~1) or (b) p*> = 5% 7% 11% or 23? and G is one of eight
possible exceptional groups none of whose orders is divisible by p. Thus p V| G| —a contra-
diction to the last statement of the previous paragraph. Therefore, G, is non-solvable.

By Theorem 3, either (¢) G contains SL(2,p) and | G| = $mp(p®>—1)(p—1) with m|2 or
(d) G contains SL(2,5), |G| = 60m(p—1) with m|2, and p =11, 19, 29 or 59. (d) cannot
happen since it implies p(p+1)k|60m. Therefore, (c) holds.

Let H = Gy, 4, and assume first that H is solvable. By Lemma 4, Theorem 4, and the
remark following it, H induces a solvable transitive group H of linear transformations on
(Q, +) as a vector space of dimension 2 over GF(p). Also, H = H since HNnE =1, and
| H) = p~2|Gy| = ¥m(p*—1)(p—1) since (c) holds. By [5, pp. 126-7), | H||4(p*~1). (One
of Huppert’s exceptional groups has order 4(p?—1), the rest have order p2—1 or 2(p*—1).)
Thus $m(p~1)|4; since m|2, we must have p = 5. Since p = 5 is excluded, H is non-solvable.

Applying Theorem 4 to H, either (e) | H| = np(p*—1)(p—1) with n|2, or (f) | H| =
60n(p—1) with n|2 and p=11, 19, 29 or 59. (e) cannot occur; for (¢) implies p||H| =
| Gg, %, |, Which is a contradiction. Thus (f) holds, in which case p = 11 is the only possibility
since | H| = m(p*—1)(p—1). Butp =11is excluded. Hence the counterexample A does not

exist.

ReMARK. Note that in the two excluded cases, p = 5 or 11, the above proof gives the
following information about a possible counterexample to the theorem. The group G, (and
hence G) is non-solvable, the group E of elations with axis 0¥, has order p, and G /E =
SL(2,p). For p =S5 the group Gy, 4 is solvable, but for p = 11, Gy, ¢, = SL(2,5).

Also, for p = 5 there is at least one counterexample, the plane W (5), but for p =11 no
counterexample is known,
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4. WA-planes with solvable WA-groups.

LeEMMA 5. Let N be a TWA-plane of order p" with WA-group G and special point ¥,,. If 0
is an affine point of W and U, a point of Ly, with U, #Y4, then Gy = SGg,4_, S a Sylow
p-subgroup of Go, and S is transitive on l,— {¥,}.

Proof. By equation (3.2), | Go| = p"| Go, 4 1. If p°|||Go, 4. |, then | S| =p"**. Con-
sider Sg_. Now, [S| =S4, |||, where Q is the orbit of S containing %, [12, p. 5]. Since
Su., < Go, . | Sz, ||p* and thus p"||Q|. This implies @ = l,—{¥,}. Therefore, S is
transitive on {,, — {¥,} and it follows that G, = SG,_4_.

THEOREM 7. Let U be a TWA-plane of order p" # 52, 25, 3%, G a WA-group of W, and ¥,
the special point of W with respect to G. If there is a point U €ly, with U, # ¥, such that
Gy, is solvable and G contains a non-trivial elation with affine axis b through ¥, then W is a
semi-field plane.

Proof. Let @ be an affine point on, let (Q, +,-) be a quasi-field coordinatizing U with
¥, =(0), 0 =(0,0), %, =(0), and let E be the group of elations with axis ! = 0¥,
Note that E is a subgroup of G,. Because of Theorems 5 and 6 we may assume G, has no
homologies with axis 0¥, and that r > 2. (The case p” = 112 is handled by the remark after
Theorem 6.)

Consider the group Gy, 4, ; this group is solvable and transitive on the affine points of
07, other than 0 (Lemma 4). It follows that G, ,,_ induces a solvable transitive group H of
linear transformations on (Q, +) over GF(p). Also, H & G, 4, by the last statement of the
previous paragraph. Since r > 2 and p” # 3% H is a subgroup of T'L(1,p") [5, pp. 126-7).
Therefore, Gy, 4, is a subgroup of I'L(1, p").

By equation (3.3), |Gy 4| =(p"~1)|Gy, 5,4, |- Since p"#2° and r>2, p"—1 has a
prime p-primitive divisor u (Zsigmondy [13]); i.e. ul(p’—l) but ut(p‘—1) for 1Zi<r.
If u"| [ (p"—1), then Gy, 4 has a Sylow u-subgroup T of order 4” and T 'is a cyclic characteristic
subgroup of Gy 4 [8, Lemma 2.4]. Thus Gy, 4 < N, the normalizer of T in G,.

Let teT. Since E<a G,, the mapping M, defined by pM,=t"'p1, peE, is an auto-
morphism of E having order ' for some integer j = 0 (since 1 has order «*). If | E| = p°, then

the automorphism group of E has order m = p" [] (p'—1), n = 3s(s—1), for E is an elemen-
i=1

tary abelian p-group. If T has an element 7 such that M, has order «/, j > 0, then u [ m; this
implies s = r. It follows that | E| = p", W is (¥, 0¥, )-transitive, and hence U is a semi-field
plane.

If M_has order 1 for all te T, then pt = tpforall pe Eand forallte T. Thus E £ Nand
N has order at least p*(p"—1)| Gy, 5,4, 1. Thus the index [G, : N] divides p"~*; this implies
[Go : N] =1 (for it has to be congruent to 1 modulo u) and hence T<a G,. Now, T fixes the
point %, on l,. Since T<a Gy, G, permutes the fixed points of 7 on {,, among themselves.
Thus, G, transitive on !, —{¥; } implies T fixes all the points of !, and hence T consists of
homologies with centre @ and axis {,,. Since the group of (0, l,,)-homologies of % has order
p’—1 for some j with 1 <j < r [3, p. 132], and | T| = u° we have u°|(p’—1). Because uisa
p-primitive divisor, we have j = r. This implies % is Desarguesian [3, p. 132].
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We come now to the main result of this section.

THEOREM 8. Let W be a TW A-plane of order p" # 2°, p a prime, witha WA-group G. If G is
solvable then W is a semi-field plane.

Proof. et ¥, be the special point of ¥ with respect to G and coordinatize U by a quasi-
field (Q, +,-) with ¥, = (o0), 0 = (0,0), Z,, = (0). By Theorem 5 we may assume that 2 has
no homologies with affine axis. In particular, we may assume there are no homologies with
axis 0¥,. By Theorem 6 and the remark following it, we may assume r > 2.

Assume first that p" = 3*. Since G, is solvable, the group G of linear transformations
induced on (Q,+) by G, is solvable. By [5, pp. 126-7], either G < TL(1,3*) or G is one of
three groups given in [5]. In all four cases 3./|G|. Since G = Gy/E, E the group of elations
with axis 0¥, we have | E| = 3* and U is a semi-field plane.

Assume now that p"# 3*. We claim that G, contains non-trivial elations with axis 07.
For if not, the group G of linear transformations induced on (Q, +) by G, is isomorphic to
G,. Since G is solvable, G £ TL(1, p") by [5, pp. 126-7], and thus | G| = |G, | divides r(p"—1).
Since p’| | Go| by equation (3.2), we have p’|r, which is a contradiction. Thus G, has non-
trivial elations with axis 0¥,,. The theorem now follows from the previous theorem.

COROLLARY 8.1. If W is a TWA-plane of order p, p an odd prime, and W has odd dimension
over its kernel, then W is a semi-field plane.

Proof. Let G be a WA-group of U and ¥, the associated special point on {,. By
Hering [4, paragraph preceding Corollary 1], the stabilizer of ¥, in the full collineation group
of A is solvable. Thus G is solvable and the corollary follows from Theorem 8.

COROLLARY 8.2. Let U be a WA-plane of odd order p™ with WA-group G. W is a semi-field
plane if one of the following conditions holds:

(1) G is solvable,
(2) p is a non-square.

Proof. By Theorem 1, U or its dual A’ is a TWA-plane. It then follows from either
Theorem 8 or Corollary 8.1 that % or A’ is a semi-field plane. Since the dual of a semi-field

plane is a semi-field plane, the corollary follows.

5. WA-planes of dimension 2 over their kernel. Let 2 be a TWA-plane of order ¢2,
g=p #5, 11, 23, 32 with p a prime and r > 1, and having kernel K = GF(q). Let G be a
WA-group of A and ¥, the associated special point. Note that without loss of generality we
may assume G contains the group K of (0, lw)-homologies,i@ an affine point. As in section 3,

we get the equations:
|Gol = 4Gy, | = 4*(4>— 1)1, (5.1

| G, a. | = (g*—1)t, (5.2

where %, €l,, %, # ¥V, and ¢t is a positive integer. By Theorem 5 we may assume there
are no homologies with affine axis and by Theorem 6 we may assume ¢ is not a prime. By
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Theorems 7 and 8 we may assume that both G, and Gy 4 are non-solvable, for G = TG, and
Ga,, = TGy, 4, Where T is the group of translations.

If G and H are the permutation groups induced on 0¥, by G, and G, 4 respectively,
then G = G,/E and H = G, 4_/E with E the group of elations with axis 0¥,,. By Theorem 3,
we have G STL(2,q); since g* ¥ |TL(2,4)|, it follows from equation (5.1) that p|| E|. Also,
by Theorem 3, we have

|H| = $kq(q*—1)(q—-1)

with k| 2r. It follows that || Gy, 4, | and hence ¢* || Go|. Applying Theorem 3 to G we have
|G| =4ma(g*—~1)(g—1)

with m|2r. It follows that gp"~*|| E| where p*||r. Note thats <r. Hence |E|>q.

Let H= Gy, 4_; then | H| = (g°—1)t by equation (5.2). Because ¢ is not a prime and
g # 23, the integer g% — 1 has a prime p-primitive divisor u {13]. Choose an element te H with
|7] =u. Because E<a Gy, t induces an automorphism M, : E— E given by pM, =1~ p1.
For every te H with |t| = u, we have two possibilities: (1) |M,|=u, or Q) |M,|=1. If
| M| = u for some t, then it follows as in the proof of Theorem 7 that 2 is a semi-field plane.

Assume | M| = 1 for all elements 7€ H with |t| =u. Let t be one such element in H.
It follows that the elements of E commute with 7 and hence E permutes the fixed points of ©
among themselves. Since t fixes %, B = {%,p|peE}U{¥,} is a set of fixed points of 7.
Furthermore, the components of % of the form 02 ,,, Z , € B, lie in the same Desarguesian net R
(Ostrom [9, Theorem 3.3 and its proof]); by Ostrom [9, (4.7) on p. 25] every collineation 7 of H
having order u is a collineation of Desarguesian plane U containing the net 9. Since 7 fixes
more than g+ 1 points of I, the line at infinity of 2, 7 is in the group L of (@, {,,)-homologies
of A. Thus {z) is the unique cyclic subgroup of order u in L since L is cyclic.

If 7 is an element of order u in H and ae H, then a~ ‘7o is an element of order u in H; by
the previous paragraph, o~ 'ra and 7 are elements of order # in L and thus « ™ 'tae (t). Hence
{t)<a H. If Nis the normalizer of {t) in Gy, then E < Nand H £ N. Since gp"~5(g*—1)t =
| EH| and g*(¢*—1)t = | Gy |, we have [G, : N]|p*and s < r. Itfollows as in the last paragraph
of the proof of Theorem 7 that N = Gy, that (1) <0 Gy, and that U is Desarguesian.

Thus we have proved the following theorem.

THEOREM 9. If Wis a TWA-plane of order q*, q # 5, 11, 23, 3%, and having kernel containing
GF(q), then W is a semi-field plane.

COROLLARY 9.1. If U is a WA-plane of order q*, q odd and q # 5, 11, 3%, having kernel
containing GF(q), then W is a semi-field plane.
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