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1. Introduction. Walker [11] describes a new class of translation planes W(q) of order
q2, q = 5 (mod 6), with kernel GF{q). A plane in this class has several interesting properties,
but we shall be only interested in the following ones possessed by its collineation group
G : (i) G is transitive on the affine points of W{q), and (ii) G fixes a point f^el^, the line at
infinity of W(q), and is transitive on the other points of lx. The smallest member of this class,
W{5), also satisfies: (iii) for an affine point <9, the subgroup Go is transitive on the affine points
# <S of the line OV^. Note also that since W{5) is a translation plane, replacing G with Ge in
(ii) we get a fourth property, call it (iv), satisfied by G. (See Lemma 2.)

All semi-field planes satisfy properties (i) and (ii), but the planes W(q) are the only known
translation planes of odd order satisfying (i) and (ii) which are not semi-field planes. For
characteristic 2, the Liineburg planes have a collineation group G satisfying (i) and (ii). The
plane W(5) is the only known non-semi-field translation plane that satisfies (i), (ii), and (iii).
This article is the report of an attempt to characterize the plane W{5) using properties (i),

MAIN THEOREM. If>& is a translation plane of finite order p* satisfying (i), (ii), (iii), and 9T is
not a semi-field plane, then 91 must also satisfy the following :

(1) 2 divides r;
(2) the collineation group GofVLis non-solvable if p'+ 26;
(3) 91 has even dimension d^ 4 over its kernel ifpr^ 52, II2, 26, 34.

This follows from Lemma 2, Definitions 2 and 3, Theorem 8, Corollary 8.1, and Theorem 9.
Before proving these results, we consider in section 2 affine planes satisfying properties (i),

(ii), (iii), (iv). Such planes are called W/4-planes. It follows from Theorem (3.7) in [6] that a
WM-plane of odd order is either a translation plane or a dual translation plane. Thus, in
considering H^-planes of odd order we may restrict ourselves to those which are translation
planes; naturally, we call such planes TWM-planes. The plane W{5) is a rW-04-plane. We
then, in sections 4 and 5, prove the conclusions (1), (2), (3) given above for TH^-planes in
general. They then also hold for H^-planes of odd order (Corollary 8.2 and Corollary 9.1).

A second reason for this investigation lies in the following problem proposed by Ostrom
[10]: Does there exist a translation plane of non-square order that is not a semi-field plane but
whose collineation group G satisfies (ii)? In a private communication Ostrom has suggested
that such examples may be constructible by the techniques Walker used in constructing the
planes W(q). The present investigation indicates that this attack on his problem may not work.
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114 MICHAEL J. KALLAHER

Finally, as indicated above, there is a connection between this article and the article [6]. In the
terminology of [6], a WA-plane is an affine plane of rank (r, s, 2) admitting a block orbit of
degree 1.

The reader is expected to be familiar with the terminology of projective and affine planes as
exhibited in [3] and also with the theory of permutation groups as given in [12].

2. Definitions and preliminary results.

DEFINITION 1. A W-plcme is an affine plane 91 of finite order n possessing a collineation
group G having the following properties:

(i) G is transitive on the affine points of 91,
(ii) G fixes a point f^ e lm, the line at infinity of 21, and is transitive on the remaining

points oflx.

The collineation group G is called a W-group of 91 and fx is called the special point of 91 with
respect to G.

EXAMPLES. (1). Every semi-field plane 91 satisfies (i) and (ii) where G is the collineation
group generated by the translations and the affine elations fixing the point (oo). If 91 is not
Desarguesian, G can be taken as the full collineation group.

(2) Walker [11] discovered a class of translation planes W(q), q = 5 (mod 6), satisfying
conditions (i) and (ii). These planes and their duals are the only known planes of odd order
satisfying (i) and (ii) which are not semi-field planes.

(3) The Liineburg planes of order 22r, r odd and at least 3, and their duals possess a
collineation group satisfying (i) and (ii). It is also possible that the planes derived from the dual
Liineburg planes have a collineation group satisfying (i) and (ii). (See Dembowski [3, p. 251].)

Before moving on to the principal object of study in this article, we make two observations
about W-planes.

LEMMA 1. The dual of a W-plane is a W-plane.

Proof In dualizing 91 to get the dual plane 9t' we take "TJ,, the dual of the point given in
(ii), to be the line at infinity of 91' and l'm is the special point of 91'. Then the affine points
of 91' correspond to the affine lines of 91 not through ~f~m. The lemma then follows from a
result of A. Wagner. (See [3, 4.4.24].)

The smallest Walker plane, W(S), satisfies in addition to properties (i) and (ii) the following
condition:

(iii) for an affine point 0 of 91, Ge is transitive on the affine points ¥= ® of the line

Also, in the Walker planes the W-gwup contains the group of translations. With regard to
these two facts we make the following observation.

LEMMA 2. Let SUbe a W-plane with a W-group G and special point f^. If'His a trans-
lation plane and G contains the group of translations, or if 91 is a dual translation plane and G
contains the group of dual translations, then 91 and G satisfy:
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(iv) for an affine point & of 21, the group Ge is transitive on the points oflx — {i^}.

Proof. Assume 91 is a translation plane and G contains the group T of translations; then
G = TG0 and, because T fixes every point of („, G and Ge induce the same permutation group
on („,. If 21 is a dual translation plane and G contains the group of dual translations, then G
contains the group E of dual translations with centre f^ and axis Oi^ which is transitive on

REMARK. The planes coordinatized by the twisted fields of Albert [1] satisfy (iii); however,
the Liineburg planes and their duals do not.

Because of Lemma 2 and the plane W{5), we will restrict ourselves to the study of the
following subclass of PF-planes.

DEFINITION 2. A WA-plane is an afline plane 91 of finite order n possessing a collineation
group G satisfying properties (i), (ii), (iii), and (iv). The group G is called a WA-group.

Our first justification for studying this class is our first theorem.

THEOREM 1. If 91 is a WA-plane of odd order n with WA-group G, then either 91 is a
translation plane and G contains the translations or 91 is a dual translation plane and G contains
the dual translations.

Proof. This is just a restatement of Theorem (3.7) in [3] since a WA-plane is an affine plane
of rank (r,s, 2) admitting a block orbit of degree 1.

As a corollary we can prove that for odd order the class of WA-planes is closed under
duality.

THEOREM 2. The dual of a WA-plane of odd order is a WA-plane.

Proof. Let 91 be a WA-plane of odd order pr with H^-group G and special point Y^. To
show that the dual 91' is a J*04-plane, it is sufficient to prove the following:

(i') G is transitive on the affine lines of 91 not through "f^;
(ii') G fixes!«,;
(iii') for every affine line t of 91 with "f^^l, the group G[ is transitive on the affine lines

through")^;
(iv') for every affine line I of 91 with -f^ $ I, the group G( is transitive on the affine

lines jt I through Inl m.

(ii') is obvious and (i') follows from 4.4.24 of [3] as in the proof of Lemma 1.
Assume first that 91 is a translation plane. Let I be an affine line of 91 not through

•fx; Gi contains the group TiPU^) of translations with centre *«, = tnl^. Now, T{%^) fixes
t and is transitive on the affine points oft; since Ti^l^) also fixes "V^, (iii') holds. To prove
(iv'), let 0 be an affine point on I and consider G[ie = G(,iVa>, where ^ = Inl^. We have the
following equations by (iii) and (iv):
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116 MICHAEL J. KALLAHER

where & is an affine point of Gf^, with 0> ̂  (9. Thus

\Ge>s,\ = ?k, \Ge>mJ=(pr-l)k, (2.1)

for some integer k ̂  1.
Let H = G0t Va>. Then H9 ^ Go, 9 and thus \H9\\ prk. On the other hand, | H9 \ \ (p

r- l)k.
Thus | H911 k and hence for the orbit O of & under H, we have Q / -1 ) 1101 since | O | =
| # | \H9\

 - 1 . It follows that O consists of the affine points of Grm other than G. Thus
# = <?<!,, q,m = GOi i is transitive on the affine points of Gi^ other than <S and hence (iv') is
satisfied.

Assume now that 91 is a dual translation plane. Let t be an affine line of 21 not through
•fm. By (i'), (i), and (iii) we have

/|G«J. (2-2)

where 0 is an affine point and <%„ a point on lm with ̂ ^^f^. Thus

| G t l = / | G , . . J , | G % . | = p 2 r | G , . . . | . | G ^ | = p ' | G ( | . (2.3)

Now, let (Pel and <^00= tot,,,; then Gc>4/oo ^ Gj ̂  G^^ and G,,,,^ = Ge<i If O is the orbit
of <9 under G(, then

(2.4)

Hence from the first equality of (2.3), 13>| =f\ therefore, G\ maps G into pr distinct affine
points. Since G( fixes t and (Pel, G( must be transitive on I. It follows that G( is transitive
on the lines through T^,. This proves (iii').

For (iv'), let 0> be an affine point on Qf^, &¥=<!>. We have the equalities

since Ge is transitive on Gf^ — {0}, and G( = G^M implies G^^ is also transitive on the affine
lines through f^. By (2.2) we must have

Since 21 is a dual translation plane, Ge> 9 contains the group E of elations with axis Gf^;
hence

\Ge,9\ = pr\Ge>^J
and

| G , . . w J = p'(pp-l) |G,. ,> ,J. (2.5)
Furthermore,

IG^w-.N/IG,.,,! (2.6)

since G^^^^^ contains the group T(i^ of translations with centre f^ and G^mi(!,=
l ' « - l « . Equations (2.5) and (2.6) give

IGwI-Gf-DIG.,,...!. (2.7)
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If O is the orbit of SP under GVrot0, then

by equation (2.7). Therefore Gv^e is transitive on the affine points =A & of Oi^. It follows
that GWooifl is transitive on the affine lines ^ t = W ^ through <%m. Since GWoo>ff ^ Gj, (iv')
is satisfied.

We close this section with a theorem that will be used frequently in the succeeding sections.
This theorem is a slight modification of Theorem 1 in [7]. By the translation complement of a
translation plane we mean the group of collineations fixing an affine point 0. (See Ostrom
[10].) Considering Lemma 2 and Theorem 1 in [7], it is immediately clear that they hold for
any subgroup of the translation complement, not just the translation complement. Secondly,
in part (b) of the conclusion of Lemma 2, the values q = 4,5 do not really occur since part (b)
reduces to part (a) for these two values. This is obvious for q = 5 and it holds for q = 4 since
PSL(2,4) = PSL(2,5). Thus, in part (b) of Theorem 1 the values q = 4,5 do not appear.
Hence we have the following theorem.

THEOREM 3. Let 21 be a finite translation plane of order q2, q =pr with pa prime, and having
kernel R = GF(q). Let Gbea non-solvable collineation group of S& fixing an affine point <S and an
affine line X with Oel such that G is transitive on the affine points of I— {0}. Assume also that
G contains the group K of (0, lx)-homologies. If H is the group of collineations in G fixing t
pointwise, then G\H is a subgroup ofTL(2, q) and either

(a) G\H contains SL(2, q), \G/H\= \kq{q2- \\q-1) with k \ 2 or
(b) G\H contains SL(2,5), \G/H\ = 60k(q-1) with k \ 2 and q = 9, 11, 19, 29 or 59.

3. WA-p\mes of order p 2 , p a prime. We turn to the question of which translation planes
are WM-planes. In this section we give some preliminary facts about such planes and consider
the case when the order is p 2 , pa prime; in the next section we consider the case when the
JVA-group is solvable, and in the last section we look at WA-planes having dimension 2 over
their kernel. Because of Theorems 1 and 2 we need only concern ourselves, in the case of odd
order, with WA-p\anes which are translation planes. However, most of the remaining results
hold for translation planes of even order, and we include them in the discussion. We thus make
the following definition.

DEFINITION 3. A TWA-plane is a WA-p\aae that is a translation plane.

LEMMA 3. Let %bea TWA-plane of order pr, p a prime, G a WA-group of%, andf^ the
special point o/9I with respect to G. If 6 is an affine point o/2l, ^l^ a point in t x — {T^,}, and 2?
an affine point on Oi^ — {<S}, then the following hold:

| G | = p 2 ' | G . | , (3.1)

\Ge\=pr\Ge^J=(pr-l)\Ge^\, (3.2)

|G..«J=(P-1)|G., , . ,J. (3.3)
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Proof. (3.1) and (3.2) follow from the definition of a WA-pl&ne and (3.3) follows from the
the next lemma.

LEMMA 4. Let 21 be a TWA-plane of order p", G a WA-group of 21, and V^ the special
point of 21 with respect to G. If 0 is an qffine point o/2t and 01m a point of lx with <&„ ^ "V^,
then Ge^m is transitive on the affine points of(S'Vaj — {®}-

Proof. A proof of this lemma was given during the proof of Theorem 2; see the third
paragraph of that proof.

Let (Q, + , •) be a quasi-field coordinatizing the rfl^-plane 21 with V^ = (oo), 0 = (0,0),
where "?*„ is the special point with respect to a W4-group G of 21. Since Ge fixes the line
Q'V^Gf, induces a group G of linear transformations on (Q, +) as a vector space over the
prime field GF(p). In fact, if oeGo then a induces the linear transformation a given by
yd = y if and only if (0, y)a = (0, j ') . This gives the following theorem.

THEOREM 4. Let 21 be a TWA-plane of order pr with WA-group G and special point f^,
and let Q be an affine point of 21. If (Q, +,•) is a quasi-field coordinatizing 21 with rm = (oo)
and 0 = (0,0), then Ge induces a group G of linear transformations [on (Q, +) as a vector space
over GF(p). Furthermore, G is transitive on the non-zero vectors and G = GJH, where H is the
group consisting of all central collineations with axis 0^ contained in G.

REMARK. Note that by Lemma 4, in Theorem 4 we could replace Go with the group
GOi q,^ and the resulting statement is true. This fact will be used later.

THEOREM 5. Let %bea TWA-plane oforder pr. IfH has a non-trivial homology whose axis
is an affine line, then 2t is a semi-field plane.

Proof. Let G b e a H^4-group possessed by 21 and "V^ the special point. Assume a is a
non-trivial homology of 21 with axis t, ( an affine line. There are two possibilities: (1) f^ el
and (2) ^$1. Assume first that T^et . We may assume the centre <tf of a- lies on („,;
for if ^ t o o then a moves lx and 21 is Desarguesian [3, p. 130]. If 0 is an affine point on
t, then by property (iv) for G (see Lemma 2) for every point 3lx elx — { ^ } , 21 has a non-trival
homology with axis t and centre Bm. By Theorem 3 of Andre' [2], 21 is {fm, t)-transitive
and thus 21 is a semi-field plane [3, p. 130].

Assume now that f^il Iff^a = "*% J^K, then 21 has a 0^-group G' = a~lGowith
special point f^, and if T G G with f^t = Inl^ then x~1G'x is a H^-group of 21 with special
point lnlm. By the argument in the first paragraph 21 is a semi-field plane. (In fact, it is
Desarguesian.)

Thus we may assume that f^ is the centre of a. Let (Pet, <9ilx. By property (iv), for
every line V through 0 with l'£ Of^, 21 has a homology with axis V and centre f^. By the
dual of Theorem 3 in [2], 21 is (t^, 0'^o)-transitive and hence 21 is a semi-field plane.

THEOREM 6. If 21 is a TWA-plane of order p1,pa prime with p ^ 5 , \ \ , then 21 is Desargue-
sian.

Proof. If p = 2 then 21 has order 4 and is therefore the Desarguesian plane of order 4; if
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p = 3 then 91 is Desarguesian since the only non-Desarguesian translation plane of order 9 is
the one over the exceptional nearfield of order 9 and it is not a JF-plane. Thus we may assume
p > 5. Also, by Theorem 5 we may assume 91 has no homologies with affine axis.

Let 91 be a counterexample to the statement of the theorem, let G be a WA-groxip of 91 and
T^ the special point of 91 with respect to G. Without loss of generality we may assume Ge,
and hence G, contains the group K of (0, t^^homologies since K fixes all the points on lx and
all lines through 0. By equation (3.2),

for some integer k _ 1. Let ps \ \ k. If £ is the group of elations of 91 with axis Of^, then
| £ | ^ p2 and £ is contained in a Sylow p-subgroup S of G with | S | = p2+s. By Theorem 4, Go

induces a group G of linear transformations on (Q, + ) over GF(p) with G ^ <?«/£; here
(2 . -+-,-) is a quasi-field coordinatizing 91 with "Km = (oo) and (9 = (0,0). Also, G is transitive
on the non-zero vectors of (Q, +) since Ge is transitive on the affine points ^ 0 of 0"^,.

G"isasubgroupofGL(2,/?)and|GL(2,/>)l = />(/>2-l)(/?-l). Thus |S /£ | g/>, | £ | = / + s .
If | £ | =p2, then 91 is a semi-field plane and therefore Desarguesian [3, p. 244]. Hence
| £ | = />, s = 0,p Jf | Get<uJ, <&«, a point on („_ with <%„ # T^, and | G | =p(p2-l)k.

Assume first that Ge is solvable. Then G is a solvable transitive group of linear trans-
formations on {Q, +) , a vector space of dimension 2 over GF(p). By Huppert [5, pp. 126-7],
either (a) G^YL{\,p2), |G| | 2 ( p 2 - l ) or (b) p2 = 52, I2, I I 2 or 232 and G is one of eight
possible exceptional groups none of whose orders is divisible by p. Thus p Jf \ G \ —a contra-
diction to the last statement of the previous paragraph. Therefore, Go is non-solvable.

By Theorem 3, either (c) G contains SL(2,p) and \G\= $mp(p2-l)(p-l) with m\2 or
(d) G contains SL(2,5), \G\= 60m(p-1) with m \ 2, and p = 11, 19, 29 or 59. (d) cannot
happen since it implies p(p + \)k \ 60m. Therefore, (c) holds.

Let H = GOiqa and assume first that H is solvable. By Lemma 4, Theorem 4, and the
remark following it, H induces a solvable transitive group H of linear transformations on
(Q, +) as a vector space of dimension 2 over GF(p). Also, H ^ H since HnE = /, and
\H\ =/T2 |Gf f i | = i m ( p 2 - l ) ( p - l ) since (c) holds. By [5, pp. 126-7], |H114(/>2-1). (One
of Huppert's exceptional groups has order 4QJ2 —1), the rest have order p2 — l or 2{p2 — 1).)
Thus^/w(/?—1)|4; since m\ 2, we must have p = 5. Since/7 = 5 is excluded, His non-solvable.

Applying Theorem 4 to H, either (e) \H\ =$np(p2-l)(p-l) with « |2, or (f) \H\ =
60n(p-l) with « |2 and p = 11, 19, 29 or 59. (e) cannot occur; for (e) implies p\\H\ =
| Ge> Vm | , which is a contradiction. Thus (f) holds, in which case/? = 11 is the only possibility
since | H\ =%m{p2 — \)(p — X). But/? =11 is excluded. Hence the counterexample 91 does not
exist.

REMARK. Note that in the two excluded cases, p = 5 or 11, the above proof gives the
following information about a possible counterexample to the theorem. The group Gc (and
hence G) is non-solvable, the group E of elations with axis Oi^ has order p, and GJE s
SL(2,p). For p = 5 the group GOt ma> is solvable, but for p = 11, Go< ^ = SL(2,5).

Also, for p = 5 there is at least one counterexample, the plane W{5), but for p = 11 no
counterexample is known.
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4. WA-jftaaes with solvable H^-groups.

LEMMA 5. Let Mbe a TWA-plane of order pr with WA-group G and special point i^. IfO
is an affine point of 21 and <%«, a point oftm with <%m¥='K>, then Ge = SGe>Va, S a Sylow
p-subgroup of Ge, and S is transitive on tro — {T^,} .

Proof. By equation (3.2), | G« | = /f | Gfe,«J . If ps \ | I Ge, „_ | , then | S \ = pr+s. Con-
sider S^a. NOW, 15" | = | Sm<a 11Q. | , where ft is the orbit of S containing %m [12, p. 5]. Since
SVx£Ge>1ta>, \Svj\p

s and thus /> r | | f i | . This implies Q = too-{T^e>}. Therefore, S is
transitive on ^ — {Ko} a n d it follows that Ge = SGeVto.

THEOREM 7. Let S&bea TWA-plane of order pr^52, 26, 3*, G a WA-group of 2I, and Y^
the special point of 21 with respect to G. If there is a point %x elx with <%«, # -fm such that
Gm^ is solvable and G contains a non-trivial elation with affine axis I through Y^, then 21 is a
semi-field plane.

Proof. Let 0 be an affine point on I, let (Q, + , •) be a quasi-field coordinatizing 21 with
^ = ( o o ) , 0 = (O,O), ^ = ( 0 ) , and let E be the group of elations with axis l = Q~Vx.
Note that E is a subgroup of Ge. Because of Theorems 5 and 6 we may assume Ge has no
homologies with axis Of^, and that r > 2. (The case/>r = I I 2 is handled by the remark after
Theorem 6.)

Consider the group Ge< mas; this group is solvable and transitive on the affine points of
Otic other than <S (Lemma 4). It follows that Ge< Va> induces a solvable transitive group H of
linear transformations on (Q, +) over GF(p). Also, H s GeyVm by the last statement of the
previous paragraph. Since r>2 and p'V 34, H is a subgroup of TL(l,pr) [5, pp. 126-7].
Therefore, Ge^a is a subgroup of TL(\,pr).

By equation (3.3), | Ge< Vn | = ( / - 1 ) | Ge<#,«J. Since / # 26 and r > 2, / - 1 has a
prime /^-primitive divisor u (Zsigmondy [13]); i.e. u\(jf— 1) but uj({j>'— 1) for 1 ^ / < r .
If «°| |(pr—1), then G,j,>Wco has a Sylow u-subgroup Tof order «° and Tis a cyclic characteristic
subgroup of Ge^ Va> [8, Lemma 2.4]. Thus (?„,_ Va> ^ iV, the normalizer of T in (?„,.

Let xeT. Since JF-CI G ,̂ the mapping Mt defined by pMz = r~1pz, peE, is an auto-
morphism of E having order uJ for some integer,/ ^ 0 (since T has order uk). If | E\ = ps, then

the automorphism group of E has order m = p" f j (p'—1), n = J s ( s - l ) , for £ is an elemen-
i = l

tary abelian p-gwup. If Thas an element T such that M t has order M7, j > 0, then « | m; this
implies J = r. It follows that | E\ =pr, 21 is (T^,, <P'^0)-transitive, and hence 21 is a semi-field
plane.

If MT has order 1 for all x e T, then pr = xp for all /? e E and for all T e T. Thus £ g N and
Â  has order at least ps(pr— 1) | GSt #,«„ I. Thus the index [Ge : N] divides pr~s; this implies
[Go: N] = \ (for it has to be congruent to 1 modulo u) and hence r<a Ge. Now, J fixes the
point °Uto on („. Since To Ge, Go permutes the fixed points of Ton !„ among themselves.
Thus, Ge transitive on t^ — {V ,̂} implies T fixes all the points of lx and hence J consists of
homologies with centre IS and axis t^. Since the group of (0, t00)-homologies of 21 has order
pJ— 1 for some./ with 1 ̂ j ^ r [3, p. 132], and | T\ = M°, we have u"| (/̂ — 1). Because u is a
/^-primitive divisor, we havey = r. This implies 21 is Desarguesian [3, p. 132].

https://doi.org/10.1017/S0017089500003153 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003153


SEMI-FIELD-LIKE AFFINE PLANES 121

We come now to the main result of this section.

THEOREM 8. Let SUbea TWA-plane of order pr # 26, p a prime, with a WA-group G. IfG is
solvable then 21 is a semi-field plane.

Proof. Let "Vn be the special point of 21 with respect to G and coordinatize 21 by a quasi-
field (Q, +, •) with f^ = (oo), 0 = (0,0), <8f«, = (0). By Theorem 5 we may assume that 21 has
no homologies with affine axis. In particular, we may assume there are no homologies with
axis 0"^. By Theorem 6 and the remark following it, we may assume r > 2.

Assume first that pr = 34. Since Ge is solvable, the group G of linear transformations
induced on (Q,+) by Ge is solvable. By [5, pp. 126-7], either G ̂  rL(l,3*) or G is one of
three groups given in [5]. In all four cases 3 )(| G | . Since G = Ge\E, E the group of elations
with axis 0^, we have | E\ = 34 and 21 is a semi-field plane.

Assume now that pr # 34. We claim that Ge contains non-trivial elations with axis Gi^.
For if not, the group G of linear transformations induced on (Q, +) by Ge is isomorphic to
Ge. Since G is solvable, G ̂  TL(\,pr) by [5, pp. 126-7], and thus | G | = \Ge | divides r(jf-1).
Since pr \ \ Ge \ by equation (3.2), we have pr \ r, which is a contradiction. Thus Ge has non-
trivial elations with axis 0^. The theorem now follows from the previous theorem.

COROLLARY 8.1. If Mis a TWA-plane of order pr, pan odd prime, and'Hhas odd dimension
over its kernel, then 21 is a semi-field plane.

Proof. Let G be a J^-group of 21 and "V^ the associated special point on tx . By
Hering [4, paragraph preceding Corollary 1], the stabilizer of f^ in the full collineation group
of 21 is solvable. Thus G is solvable and the corollary follows from Theorem 8.

COROLLARY 8.2. Let Mbea WA-plane of odd order pr with WA-group G. 21 is a semi-field
plane if one of the following conditions holds:

(1) C M solvable,
(2) pr is a non-square.

Proof. By Theorem 1, 21 or its dual 21' is a TWA-plane. It then follows from either
Theorem 8 or Corollary 8.1 that 21 or 21' is a semi-field plane. Since the dual of a semi-field
plane is a semi-field plane, the corollary follows.

5. HM-planes of dimension 2 over their kernel. Let 21 be a TWA-p\a.ne of order q2,
q=pr¥=5, 11, 23, 32 with p a prime and r ^ 1, and having kernel K = GF(q). Let G be a
W^-group of 21 and "V^ the associated special point. Note that without loss of generality we
may assume G contains the group K of (0, too)-homologies,[(P an affine point. As in section 3,
we get the equations:

|G.| = «2|G,,.J = « V - 1 K (5-1)
\G^J = (q2-l% (5.2)

where ^ e l ^ , %«, ^ "V^, and t is a positive integer. By Theorem 5 we may assume there
are no homologies with affine axis and by Theorem 6 we may assume q is not a prime. By
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Theorems 7 and 8 we may assume that both Go and GOt mto are non-solvable, for G = TGe and
Gm^ = TGet %a> where T is the group of translations.

If G and H are the permutation groups induced on GY^ by Ge and Ge>lt/a> respectively,
then G = GJE and H = GOy mJE with £ the group of elations with axis <3"rJ By Theorem 3,
we have G ̂  TL(2, q); since #2 ,f | ri-(2, #) | , it follows from equation (5.1) that/) \\E\. Also,
by Theorem 3, we have

\H\=ikq(q2-l)(q-l)

with fc 12r. It follows that q 11 G^ ̂  | and hence q311 Ge |. Applying Theorem 3 to G we have

with m 12r. It follows that qpr~s\\E\ where ps \ \ r. Note that s < r. Hence \E\> q.
Let i / = GB<mra; then | / / | = (g2 — 1); by equation (5.2). Because q is not a prime and

q ̂  23, the integer q2—\ has a primes-primitive divisor u [13]. Choose an element t e / / with
| T | = u. Because £<a Gffl, T induces an automorphism M t : E-+ E given by pMt = T~lpx.
For every t e / / with | r | = w, we have two possibilities: (1) | Mz\ = u, or (2) | MT\ = 1. If
| MX\ = u for some x, then it follows as in the proof of Theorem 7 that 2t is a semi-field plane.

Assume | Mt | = 1 for all elements zeH with | T | = u. Let T be one such element in H.
It follows that the elements of E commute with T and hence E permutes the fixed points of x
among themselves. Since x fixes ^o,,© = {aUa>p\peE}<o{'fai} is a set of fixed points of t .
Furthermore, the components of 21 of the form (9^^, SP^ e S , lie in the same Desarguesian net 91
(Ostrom [9, Theorem 3.3 and its proof]); by Ostrom [9, (4.7) on p. 25] every coUineation x of H
having order u is a coUineation of Desarguesian plane 91 containing the net 91. Since x fixes
more than q+1 points of ix, the line at infinity of S , x is in the group L of (<3, t^-homologies
of ST. Thus <T> is the unique cyclic subgroup of order u in L since L is cyclic.

If T is an element of order u in i / and aeH, then <x~1xa is an element of order u in H; by
the previous paragraph, a" 1xa and x are elements of order u in L and thus a~ 1xa e <T>. Hence
<T><i 7/. If iVis the normalizer of <T> in Ge, then E^NandH^N. Since qpr~s(q2- l)t =
| EH | and ^2(^2 - l)t = | G^ |, we have [Go : N]\ps and s < r. It follows as in the last paragraph
of the proof of Theorem 7 that N = Ge, that <T> <I G ,̂ and that 21 is Desarguesian.

Thus we have proved the following theorem.

THEOREM 9. If®, is a TWA-plane of order q2, q^5,ll, 2 3 , 3 2 , and having kernel containing

GF(q), then 21 is a semi-field plane.

COROLLARY 9.1. Jfil is a WA-plane of order q2, q odd and q=£5,\\,2>2, having kernel

containing GF{q), then 21 is a semi-field plane.
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