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ABSTRACT. The numerical solution to a time-dependent two-dimensional problem of an avalanche
impact against a wall is presented. The height of the wall is much larger than the flow depth.
Compressibility of the moving snow as well as the effect of gravity is taken into account. Calculations
are made for an impact of low-density avalanches with densities <100 kgm–3 obeying the equation of
state for a mixture of two gases (air and gas of ice/snow particles). The pressure, density and velocity
distributions in the flow as functions of time and space coordinates are calculated, as well as the
variation of the flow depth. In particular, the flow height at the wall, the pressure at the wall and the
pressure distribution on the slope near the wall are given, demonstrating peaks and falls due to
compression shocks and rarefaction waves.

INTRODUCTION
Calculation of an avalanche impact pressure is one of the
most important problems in engineering practice. Much has
been written about this problem (see, e.g., Mellor, 1975;
Lang and Brown, 1980; Salm and others, 1990; Hákonar-
dóttir, 2004). Most of the authors have ignored snow com-
pressibility and the possibility of compression shock waves,
though it is known that snow density is changed by flow
impact against an obstacle.

The effect of snow compressibility was taken into
account by Briukhanov and others (1967), Gonor and Pik-
Pichak (1983) and Eglit and others (2007). Briukhanov and
others (1967) dealt with stationary overflow of a wedge by
an avalanche; Eglit and others (2007) considered a non-
stationary process of impact against a wall but ignored the
influence of the flow boundaries, so the problem is one-
dimensional. Gonor and Pik-Pichak (1983) presented a
numerical solution of the two-dimensional (2-D) problem of
a dense avalanche impact against a wall, taking account of
the flow boundaries, but they ignored gravity, so they could
not calculate the maximum flow height at the wall. This
paper presents a numerical solution to a time-dependent
2-D problem of an avalanche impact against a wall, taking
account of both compressibility and gravity. The assumed
equations of state for moving snow differ from those used by
Gonor and Pik-Pichak (1983) since here we consider low-
density dry avalanches with densities <100 kgm–3. In these
avalanches the average spacing between centers of snow/ice
particles is sufficiently large (Eglit and others, 2007) that
particles do not have permanent contacts with each other,
and the flow of snow–air mixture behaves like a flow of a
mixture of two gases (air and gas of particles). The equations
of state for low-density avalanches that follow from this
assumption were proposed by Briukhanov and others (1967)
and Eglit and others (2007).

STATEMENT OF THE PROBLEM
Consider a 2-D avalanche flow, where both the flow and
the obstacle are wide, and lateral movement is ignored.
The flow velocity is u0 and its depth is H. The air pressure
is p0, and the flow density at the upper surface is �0. Note

that the pressure and the density inside the flow depend on
the depth, due to gravity and compressibility of the moving
snow. At an instant t ¼ 0 the flow meets a high solid wall.
The wall is perpendicular to the local slope, and its height
is larger than the incoming flow height (see Fig. 1). After
the impact the flow starts to pile up at the wall, and a
shock wave appears, moving upstream and interacting with
the flow boundaries. We are interested in the pressure,
density and velocity distributions in the flow after the
impact, and particularly in the pressure and the flow height
at the wall.

The continuity, momentum and energy equations are:

@�

@t
þ u

@�

@x
þ v

@�

@y
þ �

@u
@x
þ @v
@y

� �
¼ 0; ð1Þ

@u
@t
þ u

@u
@x
þ v

@u
@y
þ 1

�

@p
@x
¼ g sin�; ð2Þ

@v
@t
þ u

@v
@x
þ v

@v
@y
þ 1

�

@p
@y
¼ �g cos�; ð3Þ

@e
@t
þ u

@e
@x
þ v

@e
@y
þ p

�

@u
@x
þ @v
@y

� �
¼ 0: ð4Þ

Here t is time, x and y are coordinates along the slope and
normal to it, respectively, g is the gravitational acceleration,
u and v are the velocity components, and �, p and e are the
flow density, pressure and the internal energy density,

Annals of Glaciology 49 2008

Fig. 1. A sketch of the flow after impact.
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respectively. The impact process is assumed to be adiabatic,
and shear stresses are neglected. The following equation
may be used instead of Equation (4):
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Here a is the sound velocity in an avalanche flow. Equa-
tion (5) is true on condition that the flow is adiabatic (the
entropy s is constant).

Systems (1–4) or (1–3), (5) are not complete. Equations of
state are needed for a complete system. For low-density
avalanches the following equations of state are assumed (see
Eglit and others, 2007):

p ¼ �Rð1� �ÞT
1� �

; e ¼ �c þ ð1� �ÞcV½ �T ¼ ð1� �Þp
ð�� 1Þ� ;

� ¼ �
�

�i
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�c þ ð1� �ÞcV :

Here R is the gas constant for air, � and � are the mass and
the volume fractions of ice in the ice–air mixture, respect-
ively, T is the flow absolute temperature, �i is the density of
ice, c is the specific capacity of ice, cV and cP are specific
capacities of air at constant volume and at constant pressure,
respectively, and � is the ratio of specific capacities of the
mixture at constant volume and at constant pressure. The
formula for the sound speed is a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p=½�ð1� �Þ�p
:

We also need to write the initial and boundary condi-
tions. Let the equation of the upper surface of the flow be
y ¼ f(x,t), where f is an unknown fucntion of the time t and
the coordinate along the slope x (see Fig. 1). The wall is
located at x ¼ 0. Consider the part of the flow between
x ¼ –X and x ¼ 0 (see Fig. 1). The domain where the
differential equations should be solved is �X � x � 0;
0 � y � f ðx, tÞ: The initial conditions are

f ðx, 0Þ ¼ H; uðx, y, 0Þ ¼ u0 at x < 0

0 at x ¼ 0

�
;

vðx, y, 0Þ ¼ 0; �ðx, y, 0Þ ¼ �1ðyÞ; pðx, y, 0Þ ¼ p1ðyÞ:

The density �1(y) and the pressure p1(y) in the incoming
avalanche flow depend on the depth due to gravity and
compressibility. If the density and pressure in the flow upper
layer are �0, p0 then �1(y) and p1(y) are calculated by the
relations

p1ðyÞ ¼ p0 þ g cos�
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with � the slope angle near the wall, and l the integration
variable. These relations follow from the assumptions that
before the impact the pressure across the flow obeys the
hydrostatic law, and the temperature is constant.

Let us write the boundary conditions. Supposing that
the disturbances from the wall do not reach the left
boundary x ¼ –X during the time period under considera-
tion, we have

f ð�X, tÞ ¼ H; uð�X, y, tÞ ¼ u0; vð�X, y, tÞ ¼ 0;

�ð�X , y, tÞ ¼ �1ðyÞ; pð�X, y, tÞ ¼ p1ðyÞ:
The impermeability condition at the bottom (y ¼ 0) is
vðx, 0, tÞ ¼ 0 and at the wall (x ¼ 0) is uð0, y, tÞ ¼ 0: We
assume that the flow does not reach the top of the wall
during the time period studied.

The dynamic and kinematics conditions at the upper free
surface of the flow are pðx, f ðx, tÞ, tÞ ¼ p0; ½@f ðx, tÞ�=@tþ
uðx, f ðx, tÞ, tÞ½@f ðx, tÞ�=@x¼vðx, f ðx, tÞ, tÞ: The problem can
be written in dimensionless form introducing dimensionless
variables
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Here a0 ¼ aðp0, �0Þ is the sound speed in the avalanche
surface layer before impact. When the problem is formu-
lated in dimensionless form, the following dimensionless
parameters enter the equations and boundary conditions:

Fr ¼ u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hg cos�

p ; M ¼ u0
a0

;

Eu ¼ p0
�0u2

0
; �0 ¼ �

�0
�i

; �; �

which are the Froude number, the Mach number, the Euler
number, the volume concentration of ice in the top layer of
an avalanche before impact, the mixture specific heat ratio
and the slope angle at the location of the wall, respectively.
Note that the Euler number Eu can be calculated by M, �0
and �.

NUMERICAL METHOD
At first we transformed the equations introducing the new
variables t 0, x 0, y 0: t 0 ¼ �t; x 0 ¼ �x; y 0 ¼ �y=½�f ð�x, �tÞ�: With the
new variables the equations have a more complicated form.
However, they are convenient because the flow domain is
transformed into a rectangle � �X � x 0 � 0; 0 � y 0 � 1: Cal-
culations were made using a finite-difference method based
on the McCormack scheme for internal nodes and on the
Kentzer method for points at the upper free surface (Anderson
and others, 1984). The Courant condition determined the

Fig. 2. Dimensionless pressure at the wall vs dimensionless time at
three levels above the ground.
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value of the step in time. A special smoothing procedure was
used to decrease oscillations in the domains of shocks
(Zhmakin and others, 1977). However, we could not get rid
of some numerical oscillations at the very beginning of the
process. The software was successfully tested on the known
gas-dynamics analytical solution to the problem of an impact
of an infinite gas flow against an infinite wall. Horizontal
flows (� ¼ 0) with different values of M, �0, � and Fr were
studied. The following values of the flow parameters were
taken as a basic variant:

�a ¼ 1:25 kg m�3; �i ¼ 916:7 kg m�3;

cv ¼ 718 J ðkg KÞ�1; cP ¼ 1005 J ðkg KÞ�1;
ci ¼ 2170 J ðkg KÞ�1; �0 ¼ 100 kg m�3;

p0 ¼ 100 kPa; u0 ¼ 20 m s�1

H ¼ 2 m; X ¼ 10 m:

ð7Þ

These parameter values give a0 ¼ 33.5m s–1, pW ¼ 1.96p0,
where pW is the value of the impact pressure at the base of the
wall, calculated by the formula for a direct shock wave (Eglit
and others, 2007), and

�0 ¼ 0:108; � ¼ 1:002;

Fr ¼ 4:52; M ¼ 0:6; �X ¼ 5:
ð8Þ

RESULTS OF CALCULATIONS
The results of the calculations presented in Figures 2–8 were
obtained for the values of dimensionless parameters (Equa-
tion (8)). Figure 2 shows the behavior of the pressure at the
wall at three levels above the ground in time. Oscillations
seen for dimensionless time less than 0.6 are numerical, not
physical (corresponding to the values (7) of the input-
parameters dimensional time t <0.03 s. The impact pressure
at the base of the wall is constant until dimensionless time is
almost equal to 1, i.e. until the moment when the rarefaction
wave originating at the top boundary of the flow reaches the
base. This maximum value of the impact pressure is equal to
pW, so the formulas proposed by Eglit and others (2007) can
be used to estimate the maximum value of the impact

pressure. The distribution of the pressure at the ground near
the wall is plotted in Figure 3. A frontal shock wave moving
upstream is easily distinguished. Note that there arise zones
where the pressure is less than the atmospheric pressure.
We can see an analogous effect in Figure 4, where the
distributions of the pressure along the wall at three moments
of time are given. The pressure, velocity and density fields
inside the flow at different instants after impact are shown in
Figures 5–8. The shape of the flow-free surface is seen in
Figures 5 and 6. A hydraulic jump can be noticed in the flow
after a certain time interval (see Fig. 6). The height of the
jump is less than that in an incompressible flow. If the flow of
an incompressible fluid with velocity u0 ¼ 20ms–1 and
initial depth H ¼ 2m strikes a high wall, then, according to
the shallow-water theory, the height of the jump is 14.1m,
while in our calculations it is about 12.5m. This is connected
to compressibility of the snow and is in accordance with
results of granular flow measurements (see Hákonardóttir,
2004). Figure 9 and Table 1 demonstrate the dependence of
the dimensionless pressure coefficient cD defined by

cD ¼ pmax � p0
�0u2

0
ð9Þ

on the initial flow parameters. Here pmax is the maximum
value of the pressure at the base of the wall. In calculations
we varied the values of the input dimensionless parameters
by changing the initial velocity, initial flow density and initial
flow depth at constant values of the other parameters (7).
Figure 9 shows that cD depends mainly on the flow Mach
number M (especially at large values of M), since at fixed
value of the Mach number and strong variation (up to two
times) of the Froude number the values of cD vary slightly.
Calculations show that the latter variations in cD are caused
by variations of static pressure due to variations of the flow
height. The static component of cD is much less than the
dynamic component in the studied flows. Table 1 presents
the values of the ratios of the maximum pressure and density
at the base of the wall to the initial pressure and density in
the flow surface layer

�pmax ; ��max

Fig. 4. Distribution of dimensionless pressure along the wall at
different instants. For the values (7) of the flow parameters
dimensionless time values 0.17, 0.84 and 4.19 correspond to
dimensional time values 0.01 s, 0.05 s and 0.25 s respectively.

Fig. 3. Dimensionless pressure at the ground in front of the wall at
different instants. For the values (7) of the flow parameters,
dimensionless time values 0.17, 0.84 and 4.19 correspond to
dimensional time values 0.01 s, 0.05 s and 0.25 s respectively.
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at various values of the flow parameters. The density in the
bottom part of the flow just after impact may be significantly
larger than (up to 2.3 times) the initial flow density.

CONCLUSIONS
The two-dimensional problem of an avalanche impact
against a high wall is studied in this paper, taking account
of snow compressibility, gravity and the influence of flow
boundaries. It is shown that compression shocks and rare-
faction waves appear in the flow at impact. A frontal shock
wave moves upstream. Both zones with high pressure and
zones with low pressure can be observed on the wall
surface, as well as on the flow bottom and inside the flow.

A hydraulic jump is formed in the flow after a certain time
interval. The height of the jump is less than that in an in-
compressible flow.

Maximum pressure values are found at the first moment
of impact at the base of the wall.

Fig. 6. The shape of the flow and the dimensionless pressure
distribution inside the flow at dimensionless time 4.19.

Fig. 5. The shape of the flow and the dimensionless pressure
distribution inside the flow at dimensionless time 0.84.

Table 1. The ratios of the maximum pressure and density at the base of the wall to the pressure and density in the flow surface layer, and the
maximum pressure coefficient cD at various values of the flow parameters; p0 ¼ 100 kPa

�0 � � �0 a0 u0 M H Fr �pmax cD ��max

kgm–3 m s–1 m s–1 m

2 2.259 1.422 4.222 1.356
10 0.298 4 1.597 1.449 4.488 1.374

8 1.129 1.503 5.030 1.410

2 4.518 1.965 2.413 1.774
100 0.989 1.001 0.108 33.51 20 0.597 4 3.194 2.000 2.502 1.795

8 2.258 2.072 2.679 1.836

2 6.776 2.675 1.861 2.258
30 0.895 4 4.792 2.717 1.908 2.280

8 3.388 2.812 2.014 2.328

2 2.259 1.270 5.405 1.250
10 0.217 4 1.597 1.282 5.648 1.259

8 1.129 1.307 6.138 1.277

2 4.518 1.593 2.965 1.540
50 0.976 1.003 0.053 46.04 20 0.434 4 3.194 1.608 3.040 1.551

8 2.259 1.638 3.190 1.573

2 6.776 1.985 2.188 1.880
30 0.652 4 4.792 2.004 2.232 1.895

2 2.259 1.180 7.190 1.172
10 0.156 4 1.597 1.185 7.420 1.177

8 1.129 1.197 7.877 1.186

2 4.518 1.384 3.837 1.366
25 0.951 1.007 0.026 64.30 20 0.311 4 3.194 1.390 3.903 1.371

8 2.259 1.404 4.035 1.382

2 6.776 1.619 2.751 1.587
30 0.467 4 4.792 1.627 2.787 1.594

8 3.388 1.642 2.855 1.606
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The pressure on the upper part of the wall (more than four
times higher for initial flow depths) differs from atmospheric
pressure by not more than 5% during the studied time
interval.

The maximum snow height at the wall is less than that
calculated by shallow-water theory, but is still overestimated
by the present theory because friction is not taken into
account. Taking account of friction is a task for future work.

The maximum value of the pressure coefficient depends
mainly on the Mach number of the flow. The Mach number
should therefore be respected in physical models of the
impact process.

The static component of the maximum pressure on the
wall is much less than the dynamic component for the
studied flows.

The density varies inside the flow after impact, due to
shock and rarefaction waves. The maximum density increase
depends on the avalanche velocity and may be up to 2.3.

Only low-density avalanches are considered in this paper.
However, the software can easily be modified to study the
impact of dense avalanches by replacing an equation of
state by an equation suitable for modeling the behavior of
dense snow.

Direct comparison of the results of our calculations with
measurements in natural and laboratory avalanches is not
possible at present, mainly because data are lacking on the
density behavior at impact. Density measurement sensors
have been installed at some avalanche test sites (Sovilla and
others, 2008), but the data are not yet available. Another
cause of difficulty in directly comparing this theory with
measurements is the following: This paper deals with
situations when the incoming flow depth is lower than the
height of the wall. Such situations, which are common for
laboratory flows (Hákonardóttir, 2004) and occur in nature
(high dams and walls), have not yet been studied in detail for
natural flows. Impact pressure is usually measured on small
obstacles fully submerged into the flow (e.g. Gauer and
others, 2008; Sovilla and others, 2008). Mathematical
modeling of impact against small obstacles is a task for the
future. However, we believe that some important features of
the impact phenomena described in this paper are common
for phenomena of different spatial scales for different time
intervals and should be taken into account in studying the
process of avalanche impact against an obstacle.

ACKNOWLEDGEMENTS
This work was supported by the Russian Foundation of Basic
Research (08-01-0041) and Foundation Scientific School
(HW 610.2008.01). We thank the reviewers for valuable
comments.

REFERENCES
Anderson, D.L., J.C. Tannehill and R.H. Pletcher. 1984. Compu-

tational fluid mechanics and heat transfer. New York, Hemi-
sphere Publishing.

Fig. 8. The dimensionless density distribution in the flow at dimen-
sionless time 4.19.

Fig. 7. The dimensionless velocity field at dimensionless time 4.19.

Fig. 9. The pressure coefficient cD vs the flow Mach number. The
curve approximates the calculated values; small points show the
values of cD calculated at different values of the Froude number
(see Table 1).

Kulibaba and Eglit: Numerical modeling of an avalanche impact 31

https://doi.org/10.3189/172756408787814771 Published online by Cambridge University Press

https://doi.org/10.3189/172756408787814771


Briukhanov, A.V. and 6 others. 1967. On some new approaches to
the dynamics of snow avalanches. In Oura, H., ed. Physics of
snow and ice. Vol. 1, Part 2. Sapporo, Hokkaido University.
Institute of Low Temperature Science, 1223–1241.

Eglit, M.E., V.S. Kulibaba and M. Naaim. 2007. Impact of a snow
avalanche against an obstacle. Formation of shock waves. Cold
Reg. Sci. Technol., 50(1–3), 86–96.

Gauer, P., K. Lied and K. Kristensen. 2008. On avalanche measure-
ments at the Norwegian full-scale test-site Ryggfonn. Cold Reg.
Sci. Technol., 51(2–3), 138–155.

Gonor, A.L. and Ye.G. Pik-Pichak. 1983. Numerical simulation of
an avalanche encountering a protection wall. Fluid Dyn., 18(6),
905–909. [Translated from Izv. Akad. Nauk SSSR, Mekh, Zhadk.
Gaza 6 [1983], 86–91.]
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