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Abstract

We consider an iterated form of Lavrentiev regularization, using a null sequence
(o) of positive real numbers to obtain a stable approximate solution for ill-posed
nonlinear equations of the form F(x) =y, where F : D(F) € X — X is a nonlinear
operator and X is a Hilbert space. Recently, Bakushinsky and Smirnova [“Iterative
regularization and generalized discrepancy principle for monotone operator equations”,
Numer. Funct. Anal. Optim. 28 (2007) 13-25] considered an a posteriori strategy to
find a stopping index ks corresponding to inexact data y® with ||y — y?|| < § resulting
in the convergence of the method as § — 0. However, they provided no error estimates.
We consider an alternate strategy to find a stopping index which not only leads to the
convergence of the method, but also provides an order optimal error estimate under a
general source condition. Moreover, the condition that we impose on (o) is weaker
than that considered by Bakushinsky and Smirnova.
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1. Introduction

In this paper we are interested in obtaining a stable approximate solution for a
nonlinear ill-posed operator equation of the form

F(x) =y, (1.1)

where F': D(F) C X — X is a monotone operator and X is a Hilbert space. We shall
denote the inner product and the corresponding norm on a Hilbert space by (-, -) and
| - ||, respectively. We recall that F is a monotone operator if it satisfies the relation

(F(x) = F(y),x—y)>0 Vx,ye D(F). (1.2)
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We assume that (1.1) has a solution, namely xT, and, for § > 0, y‘S € X is the available
noisy data in place of y such that

ly — %l <. (1.3)

As the given operator equation is ill-posed, its solution need not depend continuously
on the data, that is, small perturbations in the data can cause large deviations in the
solutions. In order to obtain stable approximate solutions, regularization methods are
often used. Tikhonov regularization is one of the classical regularization methods
used in the literature (see [4, 6, 7, 11, 12, 15]). Since F' is monotone, one can also use
the Lavrentiev regularization method (see [16, 17]). In Lavrentiev regularization, the
approximate solution is obtained as a solution of the equation

F(x)—y8+oz(x—x0)=0, (1.4)

where o > 0 is called the regularization parameter and xo is an initial guess for
the solution xT. We also assume that F is Fréchet differentiable in an appropriate
neighbourhood of x. From the monotonicity and the Fréchet differentiability of F,
it follows that (1.4) has a unique solution (see [5, Theorem 11.2]). Also, from the
Fréchet differentiability of F, we note that Equation (1.4) can be reformulated as

x=x0+ (Ay +aD)7 [y — F(x) + A (x — x0)],

where A, := F’/(x) is the Fréchet derivative of F. This motivates us to define the
iterations
X =%+ (A + DY’ = F(x)) + A2 (x — x0)] (1.5)

or equivalently

xp=x — (AL + oD TF () — ¥ + o (xf — x0)] fork=0,1,2,...,
(1.6)

where Ai =F (x,‘z) and (ag) is a sequence of positive real numbers such that
limy_, o o = 0. It is important to stop the iterations at an appropriate step, say for
k = ks, and show that x; is well defined for 0 < k < ks and x,‘fﬁ —xtasd—0. Itis
also desirable to see whether the choice ks leads to an estimate for ||xT — x,‘; || which
is order optimal with respect to some source set.

The iteration given in (1.6) has been considered by Bakushinsky and Smirnova [3].
They considered a generalized discrepancy principle as in [1, 2] to choose the stopping
index ks, by requiring it to satisfy

IF (xk) = ¥° 1 < 78 < IF () — »° 11> where 0 < k < ks,
for some appropriate t > 1, and they showed that x,‘za — x" as § — 0 under the
following assumptions.

(i) There exists L > 0 such that || F'(x) — F'(y)|| < L||x — y|| for all x, y € D(F).
(i1) There exists p > 0 such that

O — Ok+1
O Of+1

<p VkeN. (1.7)
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(ii1) \/(2 + Lo)|lxo — xT|ltd <o = 2|lxg — xT ||t < dag, where
o=Wt—-12 t:=pay+1 and d=2@|xo—x"|| + po).

However, no error estimate was given in [3].

In this paper, motivated by the work of Qi-Nian Jin [10] for an iteratively regular-
ized Gauss—Newton method, we consider an alternate stopping criterion which not only
ensures the convergence, but also derives an order optimal error estimate under a
general source condition on x% — x¢. Moreover, the condition that we impose on (o)
is weaker than (1.7).

In Section 2, we consider some basic assumptions required throughout the paper.
Section 3 deals with the stopping rule and a result that establishes the existence of the
stopping index. In Section 4 we prove results for the iterations based on the exact data,
and in Section 5 the error analysis for the noisy data case is proved. The main order
optimal result using the a posteriori stopping rule is proved in Section 6.

2. Basic assumptions and some preliminary results

The results in this paper are derived by making the following assumptions. The
first assumption is on the differentiability of F and a certain property that F’(x) must
satisfy.

ASSUMPTION 2.1.

(i) There exists r > 0 such that B,(x") C D(F) and F is Fréchet differentiable at
all x € B, (x"), where

B :={xeX:|x—xT<r).

(i1) There exists a constant kg > O such, that for every x, u € B, (x™) and v € X, there
exists an element, say ®(x, u, v) € X, satisfying

[F'(x) = F'wlv=F ®x, u,v), [P, u, v)| <kollvllllx — ul

forall x, u € B,(x") and v € X.

The following two propositions are based on Assumption 2.1 and will be used in
due course.

PROPOSITION 2.2. Forx,u € B,(x") and a« > 0,
/ —1 ’ ko 2
I(F'(w) +al)” [F(x) — Fu) — F(u)(x —w)]|l < Ellx —ull”.

PROOF. Using the fundamental theorem of integration, for x, u € B, xM,

1
F(x)— F(u) =/ F'(u+t(x —u)x —u)dt,
0
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so that by Assumption 2.1(ii),
1
F(x)—Fu) — F (W& —u) = / [F'(u+t(x—u)—F@]lx—u)dt
0
1
= / F'u)®w +t(x —u), u, x —u) dt
0

1
= F’(u)/ Su+t(x —u),u, x —u)dt.
0

Again, by Assumption 2.1(ii) and the inequality ||(F'(u) + ozI)_1 F'w| <1,
I(F'u) + a) ™' [F(x) — Fu) — F'(u)(x — w)]|

1
5/ 1D+ 1(x — 1), u, x — )] dr
0

1
ki
5/ kollx — ull® dt < ~2|x — ul|?.
0 2

This completes the proof. g

PROPOSITION 2.3. Forx,u € B,(x") and o > 0,
a|[(F')+aD)™ = (F'(u) +aD)™ ]| <kollx — ul. (2.1)

PROOF. Denoting T, = a((F'(x) +al)~! — (al + F'(u))~"), for every v € X we
have
Tew=a(F (x)+al) " (F'(u) — F'(x))(al + F' )" v.

Hence, using Assumption 2.1(ii) and the relations |(F’(x) +aI)"'F/(x)|| <1 and
I (F"(u) + 1)~ 1| < 1/a, we obtain
ITuvl = | (F'@) +aD) ™ Feo® (u, x, at@l + F'w)™'v)|
< kollx —ullllvll VveX.
From this (2.1) follows. O

The next two assumptions concern a source condition based on a source function ¢
and a property that ¢ must satisfy.

ASSUMPTION 2.4. There exists a continuous, strictly monotonically increasing func-
tion ¢ : (0, a] — (0, o0) with a > || F/(xT)|| satisfying lim; .o ¢(A) =0 and p > 0,
v € X with ||lv]] < p such that xog — xT = @(F’(x"))v.

ASSUMPTION 2.5. The function ¢ in Assumption 2.4 satisfies

agp(r)

sup " <cpp(a) VYo e(0,al.

A=0

Next we assume a condition on the sequence (o) considered in (1.5).
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ASSUMPTION 2.6. The sequence (o) of positive real numbers is such that
limg_, 5o @ = 0 and there exists x> 1 such that

1<% <, VkeN. 2.2)
Ok+1

We note that the condition (2.2) on (ox) is weaker than (1.7) considered by
Bakushinsky and Smirnova [3]. In fact, if (1.7) is satisfied, then it also satisfies (2.2)
with u = pag + 1, but the converse need not be true. This is seen by taking oy =
{l/kz} or ax = {e~¥}. Note that, for these choices of (ay), o) /a1 is bounded
whereas (ot — Qg+1) /o)1 — 00 as k — 00.

Assumption 2.1(ii) is used in the literature for regularization of many nonlinear
ill-posed problems (see [10, 11, 16—18]).

Assumption 2.4 is known as a general source condition, and it is similar to that
considered in [14] by Nair and Tautenhahn for the linear case and it is also analogous
to the source condition considered recently by the current authors [13]. It includes
both the well-known source conditions, namely, the Holder-type source condition,
that is, ¢ (1) = A*, and the logarithmic source condition, that is, ¢ (1) = [log(1/A)]™*.
Assumption 2.5 shows how the source condition should be related to the Lavrentiev
regularization.

3. Stopping rule
Let § > 0 be given and let y‘S € Y be such that (1.3) is satisfied.

THE STOPPING RULE. Given cg > 4, choose ks to be the first nonnegative integer
such that x,‘j in (1.5) is defined for each k € {0, 1, ..., ks} and

lloks (AD, + o D)™ (F () — YOI < co8 for co > 4. (3.1)

In the following we establish the existence of such a ks. First, we consider the
positive integer N € N satisfying
c—1)8
aN§%<ak Vke{0,1,..., N —1}, (3.2)
llxo — x|
where ¢ > 1 and g > (¢ — 1)8/lxo — x7||.
The following technical lemma will be used to prove some of the results of
subsequent sections.

LEMMA 3.1. Let a>0 and let b>0 be such that 4ab <1, and let
0 .= —+/1—4ab)/2a. Let 61, ...,0, be nonnegative real numbers such that
Ok +1 §a9k2—|—band00§0. Then Oy <0 forallk=1,...,n.

PROOF. We note that 6 := (1 — 4/1 — 4ab)/2a is one of the two (real) roots of the
equation at®> + b =t. Given that 6y <6, now let us assume that 6; <6 for some
k € NU {0}. Hence,

Oks1 <abf +b<ab®+b=0.

Thus, 6, <60, k=1, ...,n. |
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The following theorem establishes the existence of the stopping index ks as
suggested in (3.1).

THEOREM 3.2. Let (1.2), (1.3), (2.2) and Assumption 2.1 be satisfied. Let N be as
in (3.2) for some ¢ > 1 and 2ckg||xo — xT||/(c — 1) <1. Then x,‘z is defined iteratively
foreachk €{0, 1, ..., N}, and

2 .
||x,§—x*||56”x°—1x” Vke{0,1,.... N). (3.3)
c_
In particular, if r > 2c||xg — lel/(c — 1), then x,‘f € B, (x") for ke{0,1,..., N}.
Moreover,
lan (A +anD)THF ) — ¥l < o8 forco:=3c+ 1. (3.4)

PROOF. We will show (3.3) by induction. It is obvious that (3.3) holds for k = 0. Now,
assume that (3.3) holds for some k € {0, 1, ..., N}. From (1.6),

2y —xT=x) = 2T — (AL + ) THF () — ) + el — x0))
= (A} + D™ (A + D = 2 = (F) = + o] = x0)))
= (A} + D)™ (AL — D)+ = Fe) + anto = x)

= (AL + o) (o — 1)+ (AL + )T (0 — )
+ (AL + o D THF (T — F(xd) + AL (xf — xT)). 3.5)

Using (1.3), the estimates [|[(A§ + o) 71| < 1/ and [[(A§ + o)1 A2|| < 1, and
Proposition 2.2,

_ _ )
o (AS + )~ (xo — xT) + (AL + ) 1<y5—y)||s||xo—x*||+a—k

and
- ko ;
(AR + ) THF G = FOe) + A0 = 2D < -l — 2712
Thus, L
b 0 .
8 ¥ ¥ ) 112
X x| ZHlxo—x"l + — + —llxg —x"[|".
g =T < o ="l 4 o 4 -l — Tl
But, by (3.2), 8/ax < |lxo — x7||/(c — 1). Hence,
T
S cllxo — x| ko S 2
ey =T = ———— + Sl =)

which leads to the recurrence relation

Or+1 =< a9;3 + b,
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where ;
k —
O = |lxf — x|, a="="2 and b:M.
2 c—1
From the hypothesis of the theorem, we have 4ab = 2ckg||xg — x /(e —1) < 1. 1tis
obvious that

1 —/1—4ab 2b —op 2¢|lxo — x|

b0 < llxo— x| <6 := =

2a 1+/T—4ab ™~ c—1
Hence, by Lemma 3.1, we get
_ 2¢|lxg — x 7
||x;§—x1||5956”x°—1x” fork € {0,1,..., N). (3.6)
C_

In particular, if 7 > 2¢|xo — x||/(c — 1), then we have that x} € B,(x7) for all
ke{0,1,2,..., N}
Next, let y = ||aN(A‘13\, + ozNI)_l(F(x?\,) — y8)||. Then, using the estimates

lan (A +anD 7 <1, llan(AY +anD AR < ox
and Proposition 2.2,
y =8+ [anad +ann™ (Fad) =y + a5, —H = ad 0 = )|

=48+ HaN(A?v +(¥NI)_1[F(X?V) — Fixh— A(]sv(x}sv xha A?V(x?\l —xT)]”

) 12
Xy —x'|
+||x;3v—xT||}

3 — x|
2

§s+aN||x?v—x*||{1+ko

2 - k _ it 1
55+M 1 kollxo — xTllc <8+2e8 |14 =|<@c+1)8.
c—1 c—1 2
So, we have [y (A% + an ) THF (x3) — ¥°)|l < co8, where co =3¢ + 1. O

4. Error bound for the case of noise-free data

To carry out the error analysis concerning the iterates x,‘f in Sections 5 and 6, in
this section we shall make use of some results proved for the iterates xj, obtained
from (1.6) by replacing y° by y, that is,

X1 =Xk — (Ag oD F(xp) — y + o (xx — x0)] fork=0,1,2,.... (4.1)

We show that each xj is well defined and belongs to B, (x) for r > 2||xg — xT||. To
do so, we make use of the following lemma.

https://doi.org/10.1017/51446181109000418 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181109000418

198 P. Mahale and M. T. Nair [8]

LEMMA 4.1. Let Assumption 2.1 hold. Suppose that, for each k € {0, 1, ..., n}, xi
in (4.1) is well defined, and py := ||k (Ax + ax 1)~ (xg — x| for some n € N. Then
e — x7 |12 llxx — x")1?
Pk — koT < llxksr — xT < pe + koT, (4.2)
foreveryk €{0, 1, ..., n}.

PROOF. By definition,

Xep1 — X =xp —xT — (Ap F o D) TIF () — y + g (x — x0)]
= (Ax + o) (A + o D) (x — x7) = [F () — ¥ + e (e — x0)1}
= (Ax + o) F(xT) = Fxp) — Ae(x™ = xp) + i (g — x )}
= ap(Ax +ar D) (xo — xT)
+ (Ax + oD HF () — F) — Ac(x™ = xp).

Note that p; = |joax (Ax + ox )~ (xop — x7)| and, by Proposition 2.2,
_ ; ko
1Ak + e DTHF () = Fou) = Are™ —xodl < " —

Thus, it follows that

llxx — x| llxx — x|
pk — ko——=—— < lxxy1 — x| < px + ko————,
2 2
completing the proof. O

THEOREM 4.2. Let Assumption 2.1 hold. If 2ko|lxo — x'|| <1 and r > 2 ||xg — x7|,
then, for each k € N, the iterates xy in (4.1) are well-defined and

) 2lxo — xF
e — xT) < Ixo — 7]
1+ /1 = 2kollxg — xT||

PROOF. Assume that 2kg|lxo — x7|| <1 and r > 2 ||xo — xT||. Note that

<2|lxo —x'|| VkeN. (4.3)

2|lxo — x|
1+ /1 — 2ko|lxo — x|
We prove (4.3) by induction on k so that xj € B, (x") for each k € NU {0}.

Clearly (4.3) holds for k =0 and xg € B, (x). Suppose that (4.3) holds for some
k € NU {0}. Then, by taking

<2lxo —xT|| <.

k
O = llxx — xT1l, a=3° and b= xo—x",

it follows from (4.2) by noting |lox (Ax + ax )~ (xg — xT)|| < |lxo — x7|| that

Oks1 < a9k2 + b.
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Now, by the hypothesis of the theorem we have 4ab = 2ko|lxg — x7|| < 1. Hence, by
Lemma 3.1, we get

i 2o — x| ;
Xk+1 — x| = Ok41 < <2[xo — x|
1+ /1= 2kollxo — x7|
Thus, we have proved that x; € B, (x") and (4.3) hold for all k € N. O

The next lemma is crucial for proving subsequent results of this paper.
LEMMA 4.3. Let Assumptions 2.1 and 2.6 hold and let r > 2||xg — x||. Assume that
Al < nao and 21 + ™ Hkollxo — x|l < 1 for some n with 0 < n < 1. Then, for
eachk e N,

ook — x| < llow(A 4+ o) (xo — x| < e —xTIl,  (4.4)

dI+mu -7
)nxk — x|l @5)

—-n T ¥ n
——lxk — x| = I 1—x'II§( +
(I+mu * Il—n (d+nu

PROOF. For k € NU {0}, let
or = llox (A + oD o —xDI, - proi= llaw(A + )™ o — x D,

where Ay = F'(x¢) and A = F’(x"). Then

B¢ — pil = [l (@il + ) (o — xll = (el + 4~ (xo — D]
< ol (A + o D)™! = (e + Ao — x D).

Hence, by Proposition 2.3, we have |p; — px| < kollxx — x"|||lxo — xT||, which also
implies that

—kollxx — x[[llxo — x|l < px — Br < kollxx — xT|l[lx0 — x 7. (4.6)
From Lemma 4.1,

kollxx — xT|1? kollxx — xT|1?
Y T R

Using (4.6) in (4.7), we get

kol — 272

> < lxggr — x| (4.8)

i — kollxk — x " l1lxo — x|

and ‘0
N kollxg — x|
kst — xT 1 < B + kollxx — x"[[]lxo — x|l + — (4.9)
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From Theorem 4.2, we know that |lx; —xT|| <2|lxo — x7||. Using this inequality
in (4.8) and (4.9), we get

i — 2kollxe — x"llxo — x| < k1 — x 71l < Ae + 2kollxe — x 7 [[llxo — x T
Thus, denoting B := 2ko|lxo — x|,
P = Bllxk = x "Il < vt = 2711 < v+ Bl — x7. (4.10)
Now, from the right-hand inequality in (4.10),

£ ~ T ~
Xyl — X! k Xk — x| ok
llxk+ ||< 0 —|—ﬂ” II/O.

= <= —— 4.11)
Pk+1 Pk+1 Pk+1Pk
Let Ej, be the spectral family of A := F’(x"). Then, using the relations
oy - of < o oy
Gt "o T oaf, A+ org)?
and the spectral representation
fii = /lAl % gig - DI VEeNUO)
0o (a2 ’
it follows that
Pk+1 = Pk < Pk+1- 4.12)
Denoting oy := ||x;x — x*||/,5k, from (4.11) and (4.12) we obtain
Ok+1 < 4 + Buok. (4.13)
Using the relation S < n/(n + 1) in (4.13), we obtain
Ok+1 < p+ T nUk- (4.14)

We note that
aollxg — x| _ @ollxo — x|

50 = llao(A + aol) ' (xo — x| = >
oo = |l ) )| 1A+ ool ——

Thus,

llxo — xTl
00

Now, from (4.14), it follows by induction that o < (1 + n) for all k € N U {0}. Thus,

00 <n+41.
e =TIl < Aty + 1) Vk e NU{0}. (4.15)
Now from the left-hand inequality of (4.10),

kg1 — x> px — Bl — xTI| > oy — lxe —xT| Yk e NU {0}.

_n
n+ Du

https://doi.org/10.1017/51446181109000418 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181109000418

[11] Iterated Lavrentiev regularization for nonlinear ill-posed problems 201
This, together with (4.12), implies that

k1 — 71 = (1= e = (= 1)t

We also note that

po < llxo — x| < llxxg — x|
I—n
which implies [xo — xT|| > (1 — 1) fo. Thus,
lxe —xTl = (1 —mpe Yk e NU{0}. (4.16)

Now, from (4.15) and (4.16), we get the following relation:

ook —xTI < or < e — xFI. (4.17)

(I+nu 1—n
Using the relation (4.17) in (4.10), we find that

<; - ﬂ) e — 3T < teas — 27 < (# + /3) =2l @18)
u(l+n) - “\l—-n

Using the relation B < n/(n + 1) in (4.18), we get

l1—n 1 n T
e — 2Tl < l—x*ns( + )nxk—x I
(n+ Dp " I—n M+ Du
This completes the proof. O

The following corollary follows from Lemma 4.3 by taking n = 1/3. We shall see
that this particular case of Lemma 4.3 is better suited for our later results.

COROLLARY 4.4. Let Assumptions 2.1 and 2.6 hold and let r > 2||xog — x"||. Assume
that ||A|| < ao/3 and 8ukg|lxg — xT| < 1. Then, foreachk € N,

3 t -1 tyl < = i
@ka —x'[| < llex(A+oxd)” (xo — x| < §||xk —x'l, (4.19)

lxe — x|
2p

The next theorem shows that under the appropriate conditions on x™ — xo and F the
iterates defined by (4.1) converge to the solution xT as k — oo.

< lxxg1 — x| <2l — x7.

THEOREM 4.5. Let the assumptions of Lemma 4.3 hold. If xy is chosen such that
xo —x" e N(F'(x")L, then limg_, o0 x5 = x7.

PROOF. From the left-hand inequality of (4.4),

oo —x"Il < (1 + mullor(A +ax )" (xo — xD)| with A = F/(x7).
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Hence it is enough to show that |jox (A + o) Vg —x)|| - 0 as k — co. We
show that |lax (A + o)~ 'w| — 0 for every w € R(A). Letw € R(A) and u € D(F)
such that w = Au. Then we have

lox(A 4+ ax D) w) = ag (A 4+ ax 1) Aul| < agflull — 0 as k — oo.

Now using the fact that ||ox (A + oax )7V <1 and for R(A) a dense subspace of
N(A)*, we get

ok (A + o) (o — x| = 0 ask — oo,

which gives x; — xT as k — oo. O

LEMMA 4.6. Let the assumptions of Lemma 4.3 hold for n satisfying

/ n
1—- /1—— )1 2u—1 2 4 2. 4.20
< (1+n)u>[+(u n+2ul+4n < (4.20)

Then, for k, 1 e NU {0} with k > [,

N A UF _
||x1—x*||scn{||xk—x'n+”“’(“Z+ e ””},

(673
where
_ (€ + Dn
ch:=(1—->by) lmax{u,l—F— )
! ! 2(1—mn)
1 1—-41-—
p= Ut pea 1o Vlma e T
1—n 2 a d+nun

PROOF. Letk, [ € NU {0} with k > /. We observe that

Xk — X =uq + uz + u3s,

where
uy = log—1 (Ag—1 + g1 D™ — o1 (A=y + a1 1" (xo — x D),
up i= (Aj—1 + oy DV (Fx—1) —y — Aim1 (-1 — x1)),
uz = (Ak—1 + o1 D'y = Fla—) — Ak (7 — x-).

By Proposition 2.2,

ko ko
e N2 sl < > 1 = X2 4.21)

We note that ko||xo — x|l < n/2(1 4+ n)u. Using this inequality in (4.3), we get

Vi F Dplxo = x7|
Vo +Dr+Vm+Du—n
Using (4.22) in (4.21), we get

lx—1 —xT| <2 = 2ellxo — xT|. (4.22)

I,

luall < koellxo — x|l lxi—1 — x lusll < koellxo — x Ikt — xT|I.  (4.23)
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Now, we find an estimate for ||u1||:
g o= [ag—1(Ag—1 a1 D7 = (A—1 + a1 D7 (o — x7)
= a1 (Ag—1 + k1 D7 o — x7) — a1 (A + a1 D7 (xo — x7)
+ o1 (A + o1 D o —x7) — a1 (A + oy D7 (g — x7)
+a1(A+a D g — xN) — a1 (Ai—1 + a1 D7 g — x D),
lurll < o1 ((Ar—1 +oax1 D" = (A + a1 D7) (xg — x 1|
+ Me—1(A 4+ a1 D o — x7) — a1 (A + ax1 D)7 (xo — x|
+ lleu—1 (A=t + oy D™ = (A + oy Do — x D). (4.24)
By Proposition 2.3,
lotk—1[(Ak—1 + otx—1 ™" = (A + o1 D" 1(xo — x| < kollxk—1 — x"[ll|xo — x|

4.25)
and

lar—1[(A—1 + a1 D7 = (A + a1 D7 o — xD < kollxi—1 — xT[l]lx0 — x|
(4.26)
Using (4.25) and (4.26) in (4.24), we get

lurll = vl + kollxo — x 1 (Ixk—1 — x "I + llxi—1 — x 1), (4.27)
where

vi= (061—1(14 tap D)7 — a1 (A + Olk—ll)_l)(xo —xN=v +tvtuv

with
Ok—1 -1
v = (1 - —)(A +oag—11)" (F(x) —y),
o1
— k-1 -1 ¥
v = 1= w1 (A+oax—1 )" (Al —x") = F(x1) + y),
o1 _ _
vy 1= (1 . ﬁ) (A +ax_11) IA(ozl_l(A Fa D o — xT) — (x — x*)).
By Proposition 2.2 and the relation (4.22),
g — x| ; ;
lvall < kOT < ko€llxo — x"[[[lxr — x"|. (4.28)

It can be seen that
vy =01 ((A+ o1 D" = (1T + A—) ™) (xo — xT)
+ (Am1 + oo DTN F (o) — y — Aisi (g — x1)).
Hence, by Propositions 2.2 and 2.3 and the relation (4.22), we obtain

lvsll < kollx—1 — xTl[lxo — x| + ekollxi—1 — x|l lxo — x7 |,
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or equivalently

lvsll < (1 + e)kollxi—1 — x[l[lxo — x 7. (4.29)
Now, we estimate ||vq||. We have that
Qg1 —1
vy ]| == H <1 - H) (A+ a1 DN F(x) — y)H

< A+ a1 D™YHF @) — .

Therefore, using the spectral representation of (A + ax—1/)~! and the fact that
O = -1 =01,

1AL g1 12
e R v
0

(k-1 + )2
1 1Al g \2
<— <—) d||Exx|®
a;_; Jo -1+ A

woy \2 (11 g N2 ,
5( ) / ( ) dI1E;x|
10 0 o+ A

2 rllAl 1
[0
(Z) [y i
a-1/) Jo  (u+2)

2
M _
=<—> llou (A + o 1)~ x|
(094

Thus,
o (A + o DN (F (xp) — p) I
lorll < : (4.30)
Ok
Hence, from (4.28), (4.29) and (4.30),
s (A 4+ a1 ~H(F (x) — )|
vl < u ” + koellxo — x|l — x|
+ (1 + ©kollxy—1 — xT||[lxo — x 7. 4.31)

Using (4.31) in (4.27),

oA+ aD)~ (Fx) =yl
O
+ Q2+ kollxi—1 — x"llxo — x "I + kollxe—1 — x" [0 — x| (4.32)

From (4.23) and (4.32), we get
ler (A + ey )N (F (xp) — p) |

+ koellxo — x Il — x|

llurll =

loox —xill < ” + koellxo — x|l — x|
+2(1 + €)kollx—1 — x| lxo — x|
+ (e + Dkollxg—1 — x| llxo0 — x . (4.33)
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From the left-hand side of (4.5), we get the inequality

d+nu
[T oy e .

Using this inequality in (4.33), we get

o (A + o 1)L (F (xp) — )l

lxx — X/l <

(275
20+e)(n+ DHu
+ (e + > kollxo — x*[lllxr — x|
d+mn
o, (€t Dkollxo = xF [l — x|
_ NaA+aD ™ (Fa) -yl
<u
(475
Ui U U +
+|——+e€ + llxg — x|
[1 —1 (2(1+n)u 1—77)}
(e+ 1y ¥
——— e =«
2(1 - 1)

Using (4.34) with [lx; — x"|| < [l — xell + lloee — x7|| gives

e (A + ey D™HF (xp) — )|
78

n n n s
+ +e + lx; — xT|
[l—n (2(1+n)u l—n)}

(€ + Dn oy
+[1+—2(1_n)]||xk x'.

Il — T <

Let
_(1+on ne

by = .
L=—n  2(1+mn
It can be seen that b, < 1 if and only if

/ n
l— [1———— J[14+Qu—Dn+2u]+4n<2.
( (1+n)u>[ QCu—=Dn+2u]l+4n <

Thus, for n satisfying (4.20),

1 — x|

- (1—by~!

(07 2(1—mn)
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Hence, we get

A+a) U(F _
R
k

where ¢, = (1 — by) ™! max{u, 1 + (¢ + Dn/2(1 — n)}. =

REMARK 4.7. It can be seen that (4.20) is satisfied if n < 1/3 4+ 1/24.

Now, if we take n = 1/3, that is, kg||xo — xfu < 1/8 in Lemma 4.6, then it takes
the following form.

LEMMA 4.8. Let the assumptions of Lemma 4.3 hold with n=1/3. Then, for
k>1>0,

A L F(x) —
||xz—xT||5c1/3{||xk—xTu L —I—az)ak( ) y)u}’

where

4 dp+ e ]! 1
01/3;2{1_M} max{u,1+€+} and

8 4
€:= e
L VA A =T

5. Error analysis with noisy data

The first result in this section gives an error estimate for ||x,‘§ — xi|| where
k=0,1,2,..., N.

LEMMA 5.1. Let Assumption 2.1 hold and let ko|lxo — x| < 1/m where we have

m > (5 4+ +/33)/2 and let N be the integer satisfying (3.2) with
m? —4m —2

c>————.

m? —5m —2

Then, forallk € {0, 1, ..., N},

||x8—x||< 5 whereK'—1 5+ ! +2 5.1
k k T (1 =K)oyg T m c—1 m)’ '

PROOF. Inequality (5.1) is trivial for kK = 0. From the definition of x,‘j and xy,

s
Xp41 — Xk+1 = W1 + w2 + w3,

where
wi = A+ oD (F) —y = Aco —x1)

— A+ (Fad -y — Ajed = xD),
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wa = e (A} + D™ = (A + D) o — 1,
w3 = (A + o)1 — ).
Using Proposition 2.3,
lwall < kollxp — xllllxo — x|l

From (1.3) and the estimate [ (A2 + o 1) ™! || < 1/, we have ||ws |l < §/o. So,
8 b T 8
Ixer1 — Xkl < Nlwill + kollxg — xkllllxo — x|l + "

Now, let us write w| = wl1 + w% with

wh = (A + D™ = (A} + D) (Fxo) =y = Ax = x1))),
w? = (A + g 1)~ (F(xk) — F(xp) — Acre — x1) + AL (xf — x*)).
Using Assumption 2.1(ii), we get

wh = [AS + o)™ — (A + o DNy — F) — Ar(x¥ — xp)]
= (A + oD Ay — AD A+ oD THFGD) = F) — Ar(xt — xp)]
= (A} + o TP AL D (xg, X0, 7)),

where z := (Ax + ax )" (F(xT) — F(xx) — Ax(x™ — x;)). Hence, by the relation
I (Ai +ap)! Ai || <1, the Assumption 2.1(ii) and Proposition 2.2, we have

lwill < (A 4+ ax D) PAS® (xx, X2, )|
2

k
1 0 s 2
= kollxi = xillllzell = - e — gl — 7.

Next, we observe that
w? = (A} 4+ o 1)~ (F(xk) — F(d) — AeGr —x1) + AS(xf — xT)>
= (A} + )T F(x) — F(x) — AQ (e — ) + (A} — Ap) (g — x )],
By Proposition 2.2 and Assumption 2.1(ii),
1A} + e D™ IF (i) — F(x) — AQ (e — x| < %uxk —xpl?
and

1A} + e )™ (A} — A Gk — XD < (A + o)A@ (), xp, x5 — x|
< @G, xe x — x|

)
< kollx{ — xicllllxx — xTI.
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Thus,
)
llxp — xill

lw?l < ko(llxk — {1+ 2llxe — x 71 5

Hence,

ko ko
lwill < will + [wi] < I — xp e — xT1Q2 + kollxe — xTI) + I —xp|%

Now, denoting & := |lx; — x,‘gll and using the estimate |lx; — x| < 2|lxo — x|, we
get
ko
llwi || < 2koexllxo — xII(1 + kollxo — xT) + 38,% and  [wal| < koexllxo — x|
Thus,
i iy o K0 2 oy O
ek1 < koegllxo — x| (2 + 2kollxo — x'[]) + > &k + koggllxo — x| + =
: tiy g K02 8
< koerllxo — x"|(3 + 2kollxo — x"||) + > &k + o

ko )
< koexllxo — x 1|3 + 2kollxo — xT[1) + Eeunxi — x|+ e = T + "

Now using the estimates

2¢|lxo — x|

e =Tl < 2lxo —xTll - and -l —xT = =,

we get

. . N c I}
ex+1 < koexllxo — x| (3 4 2kollxo — xTII) + kollxp — x ||sk( + 1) +—

c—1 o

+ c + 1)

< kollxo — x"|lex { 4 + —— + 2kollxo — x"|| ) + —. (5.2)
c—1 o

Using the assumption that ko||xg — xf <1 /m in (5.2), we obtain

1 1 2 )

Ck+1 < —| 5+ + — )er + —. (5.3)
m c—1 m o

Denoting « = (5 + 1/(c — 1) 4+ 2/m)/m and multiplying both sides of (5.3) by ak1,

KO 10 E +Otk+15
ag ag

Of418k+1 =

Denoting €41 = otk 18k+1,
Liv1 <kl +34. 5.4)

We note that k < 1 for ¢ > (m? — 4m — 2)/(m? — 5m — 2). Now, we claim that

< forke{0,1,..., N}.
(I =)
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The inequality is trivial for k = 0. Now, let us assume that £; < §/(1 — k) for some

ke{0,1,..., N —1}. From (5.4),
L <l < .
k+1 < kb + =U0-0
Hence we get
8
b x|l < ———— forkef0,1,..., N}. O
”xk Xk”_(l—K)ak {a ’ ) }

If we take m = 8 in Lemma 5.1, then we get the following corollary as a particular
case of Lemma 5.1. We make use of it in the following error analysis.

COROLLARY 5.2. Let Assumption 2.1 hold and take 8ko||xo — x| < 1. Let N be the

integer defined by (3.2) with ¢ > 15/11. Then, forallx € {0, 1, ..., N},
s ) 21lc — 17
lxp — xkll < ——— where k = —.
(1 — k) 32(c -1

LEMMA 5.3. Let the assumptions of Lemma 5.1 hold. Then
loky (A + e ™" (F (xi) = )| < €18
Moreover, if ks > 0, then for all integers 0 < k < ks,
llak (A + ax )™ (F (xx) — »)| = €28,

where

2ckolxo — x| 2—k kowllxo — x|
=4 200072 0
“ ( Tt Ot T —0e—n )

0= (@ =0/ =) = (kollxo = xI/2(1 = k)2 (c — 1))
2 1+ 2(ckollxo — x[[/(c — 1))

with co = 3c + 1 and k as in Lemma 5.1.

’

PROOF. Let ks be asin (3.4) and 0 < k < ks. Since
o A] + )™ (F ) = F )|

can be written as

Hak(Ai o) (F ) — Fd) — A — x2) + A2 (xi — xD)

it follows from the relation ||ozk(A,‘i +ap)7! Ai || <1 and Proposition 2.2 that

ok (AS 4+ o DN F (x0) — F ()l

kollxe — 112 kollxk — x|
Sak{fk‘f‘”xk—)ﬁf” =o| ==+ 1|l — %1l

https://doi.org/10.1017/51446181109000418 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181109000418

210 P. Mahale and M. T. Nair [20]

Using the estimate ||x; — x,‘z || <6/(1 — K)o from Lemma 5.1, we get

lok (A + o)™ (F(xp) — Fa) I <[ 1+ oo ’ (5.5
ke T Ok k KN = 20— ) 1 —x) :
Similarly
oty (A2, + s )™ (F O ) — Fag <14+ ——2%0 g (5.6)
k1% T Hho ks ka2 = 2(1— oy ) A —k) '
By (2.2) and the definition of N,
B
8oz =Tl 5
ks Okg—1 c—1
and ;
8 —
8 _lwo =T 5.8)
ol (c—1
Using (5.7) in (5.6) and (5.8) in (5.5), we get
e (A2 + o D (FS) = Foa )l <1+ plxo — | 5 (59
o s T s s o= 20 -0c-1) d-n)

and

llxo = x7|

) ) . (5.10)
20 =x)(c—=1)/) (1 —«)

ok (A2 + ax D ™HF (xd) — F(xi)) | 5(1 + ko

Now using (1.3), (3.1) and (5.9), we get

llorks (AQ, + ey D™ (F (xg) — )|
< lloks (A}, + o DN (F (xp) — F ()|
+ s (AL, + o DTHE ) = YOI+ 11y = vl

wllxo — x| )
<|(1+k 6+4
—< O e —n) 1= 0T

2— k —xt
§<60+ € omllxo — x|l )8.

l—k  2(1—x)2(c—1)
Again using (1.3), (3.1) and (5.10), we obtain
loak (AR + D)™ (F (i) = )|
= A} + D™ (FO) =3° = F) + Fx) +5° = )|
> llo(A} + D) (F(x)) — ¥
— e (A + o D™ (F (xp) = Fai) |l = [1y° = vl
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>c6—(1—|—k Ixo — x7 ) ’__
=0 DA —ec-1D)0=x)
2—«k kollxo — x|
E(CO_ =« 2(1-x)2(c— 1))8' G-1D

Denoting
ar = llex(A+ o D™ (F(x) — y)Il and by = o (A} + e )™ (F(x) = y)|
we have
aks = lloks (A + o, D™ (F () — )|
< llorks (A, + ety )™ (F (i) — )l
+ lloks (s I + A) ™" = (A + o D™ H(F (i) — W)
< by + (A + a1 7HAY, — Aas (A, + o D™ F () — p)|
< by + kollxp, — x "otk (s T + AZ) ™ (F (xis) — W)

5(1 +2—"kollxo —x*n)%
c—1
_ —_5F
< (1 +2- - kollxo — xT||> (eo n ? _i + sz‘i”g’z(cx_”l)>a.
Hence,
llotks (A + aks) ™ (F (i) — W) < 18,
where

2ckollxo — x| 2—« kopllxo — x|
S (5 el L el e .
“ ( L O et — e

Now we have
b = llok (AS + ax 1)~ (F (i) — y)|
< llok (A + o)™ (F (xx) — )
+ le (A2 + o DT — (A + a DTHF () — )l
< ap + (A2 + D)7 (A = ADar(A + a DN (F (xx) — )l

2cko|lxo — x"‘n)
—_— ) ag-.

< ai + kollxg — xllllow(A + )™ (F (i) = )| 5(1 +

So, we get

b
ai = £
1+ 2ckollxo — xT||/(c — 1))

o 0= (2 =x)/d =) — (kollxo — /20 =) = 1)
B 1+ (2ckollxo — xT1/(c — 1)) '
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Thus, [lax (A + ax 1)~ (F(x) — )|l = 28, where

= SO (2 =)/ =) = (kollxo — x"II/2(1 — )*(c — D)

O
1+ 2ckollxo — xTI/(c = 1))

THEOREM 5.4. Let Assumptions 2.1 and 2.6 hold. If 8ukol|lxo — x| <1 and the
integer kg is chosen according to stopping rule (3.1) with co > 56/11, then

8
lep, =7l < inf{nxk —xfl+ = k=01, } (5.12)
073
where
ciy3c) + 1
g =max{2ug, 2L ol and o:=1+—"—(1+kolxo—x'I)
1—« c2(1 —«)

(5.13)
with c1/3 and « as in Lemma 4.8 and Corollary 5.2, respectively and c¢i and c; as in
Lemma 5.3.

PROOF. We consider two cases.
Case (i) k > N. From the definition of N and the estimate
2c|lxo — x|
§ _ g 2o X
I =l = ===
from Theorem 3.2,
5 2xo—xt_ lxg, —xTl
— > > 3 ,
o c—1 - c
which implies that
5 + cé
xg, —x'll<— Vk>N.
(675
Hence, we get
8
led, — < & e =2l Ve N
(475
So, we get
) 8
lxp, — 7| §c=—+ llxk —x*||} Vk > N. (5.14)
7%

Case (ii)) 0 <k < N. To prove the result in this case we will show that, for all
integers k < N,
¥ ) ~ ¥ )
lxgs —x'l + — <cqllxk —x"l +—1¢,
s (07
for some constant ¢ > 0. We further divide this case into two subcases.
Case (iia) ks <k <N. From Lemma 5.3, we get

oty (A + o 1) ™1 (F (xi) — ¥)|| < €18.
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Now from Lemma 4.8,

llovks (A + s D™ (F (xy) = W)
Ok

e, — xTIl < ey { e — x " +

¥ I} " 1)
<ci3qllxk —x ”+Cloz_k <cieryllxe —x ||+a—k .
So, we get

) , ) §
Iy — x"I| + ——— <c1/3 Cl{llxk — x|l + —} +—.
ags (1 — k) ol ok (1 —«)

We note that § /o, (1 — ) < 8/ (1 — k). Hence we have

) 14+ €13 €1 ¥ 1)
ks — 71 + < {lek —x+ =1 (5.15)
: a,(1—0) = (1—x) a
Case (iib) k < ks. First we show that the map o — |la(A + o)~ (xo — xT)|| is
monotonically increasing on [0, 00).
Let o < B and E,,_ be the spectral family generated by A := F’(x"). Then,

- [V
(A + al) 1(xo—xT)nz:/0 mdnmxo—x*)u2
[IA] 52 JIE -

< [ —
_fo o dIE =

= IBA+BD " (xo — xDI%,

which shows that the map o« — || (ol + A Yxg — xN| is monotonically increasing
on (0, co). Hence by (4.19), for all [ > m,

I —xTll < Fplleu(A + ey D)~ (xo — x|
< Sl (A + o D™ (o — x| < 24w — X7,
which in particular implies that
ks — x| < 2l — X7 (5.16)

Now from Lemma 5.3, Proposition 2.3 and the estimate ||x;§ —xT| < 2|lxo — xT|), we
get

26 = |1 (A + a1 D)7 (Feg—) = v)|
< o1 (A + a1 D7 (F -0 = FGH = PN 01 = x)
+ F'e) ko = 1) |

1
< gy <5ko||xk5_1 — XTI + a1 — x*u)
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< a1 (1 + kollvo — 71 ) g1 — 1
< e (1 + kollro = 271 ) -1 — x|
< 242, (1 + Kollxo = x 1) ek — L.

So, we get

) xp —xT
— < z/ﬂ(l + kollxo — xTH)M.

ks 2

Using (5.16), we get

+ 1)

llxgs — x"|I + m

S
. . é
< 2ullxe = x T ( 1+ —F— (1 + kollo = 2711) ) + =
c2(1 —«) o

So,

llx _xTH_‘_#

o ags (1 — &)
<2 o i i )

<2u( 14+ ——(1+kollxo — x| lxg —x"| +—1¢. (5.17)

(1l —«) o

From (5.14), (5.15) and (5.17), we get
. 8
||x1§5 — x| fsinf{“xk - +—=:k=0,1,.. .},
1074

where

c13c1+ 1
£ = max|2u 1+L(1+ko||xo—x*||) Japsar’ L
(1 —«) 1 —«

6. Order optimal result with an a posterior stopping rule

Now we are in a position to give the main result of this paper. In the following
theorem we show the convergence xx; — x" as § — 0 and also give an optimal error
estimate for [|xg, — x .

THEOREM 6.1. Let the assumptions of Theorem 5.4 hold and let ks be the integer
chosen by (3.1). If xq is chosen such that xo — x' € N(F'(x"))L, then we have that
limg_, ¢ x,‘; =xT. Moreover, if Assumptions 2.4 and 2.5 are satisfied, then

5 tp < g -1 $
llxg, —x'll <& pueplivlly ;
lvllcy

where &' := 8u& /3 with & as in Theorem 5.4.

https://doi.org/10.1017/51446181109000418 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181109000418

[25] Iterated Lavrentiev regularization for nonlinear ill-posed problems 215

PROOF. From (5.12),
8
lxp, —xT| <& inf{ lxe — x|+ —:k=0,1, .. } (6.1)
A

Now, using the estimate ||xx — x' <4pllax(A + o)~ (xg — x¥)|| /3 from (4.19)
in (6.1), we get

. 5
lxp, —xT) <& inf{||ak(A + o) xo — xDH + —k=0,1,.. } (6.2)
k

where

4 Iz

M cizer+1
S/ — ? maX{ZM(l + m(l + kollxo —xTH))’ /—, C}

(I =)

We choose an integer m; such that ms = max{k : oz > NG }. Then we have

. ) _ 8
W%_XWS§{WMAA+WMU %m—xhu+;—}. (6.3)

ms
‘We note that

) §
— <48 and — — 0Qasd— 0.
s Qs

To show that
llotms (A + @y )" (g —xT)| = 0 ass— 0

it is enough to prove that ||oty; (A + ozm(sl)_lw” — 0 for every w € R(F'(xT)). We
observe that, for every w € R(F’(x")), we have w = F'(x")u for some u € D(F),

llotms (A + s 1)~ (xg — xT) || < @y lull = 0 as 8 — 0.

Now using the fact that ||a,,5 (A + ()tml)_1 | <1 and for R(F'(x")) a dense subspace
of N(F'(x")L, we get

Nt (A + s 1) (g —xT)| = 0 as 8 — 0.
Now from (6.3),

s ’ -1 T $
||xk(S x| <& o (A + s )™ (o —x")||+—¢ —>0 asé— 0.

Qs

Hence, we get lim;s_, ¢ x,‘; = x'. Now using Assumptions 2.4 and 2.5,

llok (A + ax 1)~ (xo — xT) || < cpp(an) 0]l (6.4)
Using (6.4) in (6.2), we get

+ ) 8
||x,fa —x'| §§’mf{c(pgo(ak)||v|| + ” k=0,1,.. } (6.5)
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‘We choose 125 such that

8 N
plap)ap < —— <@lapax fork=0,1,... . ks —1 (6.6)
8 T vlley

which also implies that

Yolks) < <Vol) fork=0,1,...,k—1, (6.7)

lvllee
where 1 : (0, ¢(a)] — (0, ap(a)] is defined as
Y0y =20~ (), Ae 0 @]
From (6.5),
e, — x "1l < & epplag) vl + %
Using (6.6), (6.7) and the definition of ¥, we get

8 5
Ix) —x"|| <28’ — <2&'u <2¢'u
. a, o o Ty=1(8/colvl)
= 2¢'pic ||v||w—‘( 5 )
Y collvll )’
which completes the proof. O

7. Concluding remarks

In this paper, we have considered an iterative regularization procedure for nonlinear
ill-posed monotone operator equations. We have introduced a stopping criterion
analogous to the one considered by Qi-Nian Jin in [10] for the iteratively regularized
Gauss—Newton method. We have shown that this stopping criterion not only ensures
convergence, but also gives an order optimal error estimate. Here, an optimal error
estimate has been obtained under a general source condition. Hence, the results of this
paper can be applied to the larger class of ill-posed problems including both severely
as well as mildly ill-posed problems (see [8, 9]).
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