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Abstract
We consider an iterated form of Lavrentiev regularization, using a null sequence
(αk) of positive real numbers to obtain a stable approximate solution for ill-posed
nonlinear equations of the form F(x)= y, where F : D(F)⊆ X→ X is a nonlinear
operator and X is a Hilbert space. Recently, Bakushinsky and Smirnova [“Iterative
regularization and generalized discrepancy principle for monotone operator equations”,
Numer. Funct. Anal. Optim. 28 (2007) 13–25] considered an a posteriori strategy to
find a stopping index kδ corresponding to inexact data yδ with ‖y − yδ‖ ≤ δ resulting
in the convergence of the method as δ→ 0. However, they provided no error estimates.
We consider an alternate strategy to find a stopping index which not only leads to the
convergence of the method, but also provides an order optimal error estimate under a
general source condition. Moreover, the condition that we impose on (αk) is weaker
than that considered by Bakushinsky and Smirnova.
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1. Introduction

In this paper we are interested in obtaining a stable approximate solution for a
nonlinear ill-posed operator equation of the form

F(x)= y, (1.1)

where F : D(F)⊂ X→ X is a monotone operator and X is a Hilbert space. We shall
denote the inner product and the corresponding norm on a Hilbert space by 〈·, ·〉 and
‖ · ‖, respectively. We recall that F is a monotone operator if it satisfies the relation

〈F(x)− F(y), x − y〉 ≥ 0 ∀x, y ∈ D(F). (1.2)
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We assume that (1.1) has a solution, namely x†, and, for δ > 0, yδ ∈ X is the available
noisy data in place of y such that

‖y − yδ‖ ≤ δ. (1.3)

As the given operator equation is ill-posed, its solution need not depend continuously
on the data, that is, small perturbations in the data can cause large deviations in the
solutions. In order to obtain stable approximate solutions, regularization methods are
often used. Tikhonov regularization is one of the classical regularization methods
used in the literature (see [4, 6, 7, 11, 12, 15]). Since F is monotone, one can also use
the Lavrentiev regularization method (see [16, 17]). In Lavrentiev regularization, the
approximate solution is obtained as a solution of the equation

F(x)− yδ + α(x − x0)= 0, (1.4)

where α ≥ 0 is called the regularization parameter and x0 is an initial guess for
the solution x†. We also assume that F is Fréchet differentiable in an appropriate
neighbourhood of x†. From the monotonicity and the Fréchet differentiability of F ,
it follows that (1.4) has a unique solution (see [5, Theorem 11.2]). Also, from the
Fréchet differentiability of F , we note that Equation (1.4) can be reformulated as

x = x0 + (Ax + α I )−1
[yδ − F(x)+ Ax (x − x0)],

where Ax := F ′(x) is the Fréchet derivative of F . This motivates us to define the
iterations

xδk+1 = x0 + (A
δ
k + αk I )−1

[yδ − F(xδk )+ Aδx (x
δ
k − x0)] (1.5)

or equivalently

xδk+1 = xk − (A
δ
k + αk I )−1

[F(xδk )− yδ + αk(x
δ
k − x0)] for k = 0, 1, 2, . . . ,

(1.6)
where Aδk := F ′(xδk ) and (αk) is a sequence of positive real numbers such that
limk→∞ αk = 0. It is important to stop the iterations at an appropriate step, say for
k = kδ , and show that xk is well defined for 0≤ k ≤ kδ and xδkδ → x† as δ→ 0. It is
also desirable to see whether the choice kδ leads to an estimate for ‖x†

− xδkδ‖ which
is order optimal with respect to some source set.

The iteration given in (1.6) has been considered by Bakushinsky and Smirnova [3].
They considered a generalized discrepancy principle as in [1, 2] to choose the stopping
index kδ , by requiring it to satisfy

‖F(xkδ )− yδ‖2 ≤ τδ < ‖F(xk)− yδ‖2 where 0≤ k < kδ,

for some appropriate τ > 1, and they showed that xδkδ → x† as δ→ 0 under the
following assumptions.

(i) There exists L > 0 such that ‖F ′(x)− F ′(y)‖ ≤ L‖x − y‖ for all x, y ∈ D(F).
(ii) There exists p > 0 such that

αk − αk+1

αkαk+1
≤ p ∀k ∈ N. (1.7)
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(iii)
√
(2+ Lσ)‖x0 − x†‖td ≤ σ − 2‖x0 − x†

‖t ≤ dα0, where

σ := (
√
τ − 1)2, t := pα0 + 1 and d = 2(t ‖x0 − x†

‖ + pσ).

However, no error estimate was given in [3].
In this paper, motivated by the work of Qi-Nian Jin [10] for an iteratively regular-

ized Gauss–Newton method, we consider an alternate stopping criterion which not only
ensures the convergence, but also derives an order optimal error estimate under a
general source condition on x†

− x0. Moreover, the condition that we impose on (αk)

is weaker than (1.7).
In Section 2, we consider some basic assumptions required throughout the paper.

Section 3 deals with the stopping rule and a result that establishes the existence of the
stopping index. In Section 4 we prove results for the iterations based on the exact data,
and in Section 5 the error analysis for the noisy data case is proved. The main order
optimal result using the a posteriori stopping rule is proved in Section 6.

2. Basic assumptions and some preliminary results

The results in this paper are derived by making the following assumptions. The
first assumption is on the differentiability of F and a certain property that F ′(x) must
satisfy.

ASSUMPTION 2.1.

(i) There exists r > 0 such that Br (x†)⊆ D(F) and F is Fréchet differentiable at
all x ∈ Br (x†), where

Br (x
†) := {x ∈ X : ‖x − x†

‖< r}.

(ii) There exists a constant k0 > 0 such, that for every x, u ∈ Br (x†) and v ∈ X , there
exists an element, say 8(x, u, v) ∈ X , satisfying

[F ′(x)− F ′(u)]v = F ′(u)8(x, u, v), ‖8(x, u, v)‖ ≤ k0‖v‖‖x − u‖

for all x, u ∈ Br (x†) and v ∈ X .

The following two propositions are based on Assumption 2.1 and will be used in
due course.

PROPOSITION 2.2. For x,u ∈ Br (x†) and α > 0,

‖(F ′(u)+ α I )−1
[F(x)− F(u)− F ′(u)(x − u)]‖ ≤

k0

2
‖x − u‖2.

PROOF. Using the fundamental theorem of integration, for x, u ∈ Br (x†),

F(x)− F(u)=
∫ 1

0
F ′(u + t (x − u))(x − u) dt,
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so that by Assumption 2.1(ii),

F(x)− F(u)− F ′(u)(x − u) =
∫ 1

0
[F ′(u + t (x − u))− F ′(u)](x − u) dt

=

∫ 1

0
F ′(u)8(u + t (x − u), u, x − u) dt

= F ′(u)
∫ 1

0
8(u + t (x − u), u, x − u) dt.

Again, by Assumption 2.1(ii) and the inequality ‖(F ′(u)+ α I )−1 F ′(u)‖ ≤ 1,

‖(F ′(u)+ α I )−1
[F(x)− F(u)− F ′(u)(x − u)]‖

≤

∫ 1

0
‖8(u + t (x − u), u, x − u)‖ dt

≤

∫ 1

0
k0‖x − u‖2t dt ≤

k0

2
‖x − u‖2.

This completes the proof. 2

PROPOSITION 2.3. For x, u ∈ Br (x†) and α > 0,

α
∥∥[(F ′(x)+ α I )−1

− (F ′(u)+ α I )−1]∥∥≤ k0‖x − u‖. (2.1)

PROOF. Denoting Tx,u = α((F ′(x)+ α I )−1
− (α I + F ′(u))−1), for every v ∈ X we

have
Tx,u = α(F

′(x)+ α I )−1(F ′(u)− F ′(x))(α I + F ′(u))−1v.

Hence, using Assumption 2.1(ii) and the relations ‖(F ′(x)+ α I )−1 F ′(x)‖ ≤ 1 and
‖(F ′(u)+ α I )−1

‖ ≤ 1/a, we obtain

‖Tx,uv‖ =

∥∥∥(F ′(x)+ α I )−1 F ′(x)8
(

u, x, α(α I + F ′(u))−1v
)∥∥∥

≤ k0‖x − u‖‖v‖ ∀v ∈ X.

From this (2.1) follows. 2

The next two assumptions concern a source condition based on a source function ϕ
and a property that ϕ must satisfy.

ASSUMPTION 2.4. There exists a continuous, strictly monotonically increasing func-
tion ϕ : (0, a] → (0,∞) with a ≥ ‖F ′(x†)‖ satisfying limλ→0 ϕ(λ)= 0 and ρ > 0,
v ∈ X with ‖v‖ ≤ ρ such that x0 − x†

= ϕ(F ′(x†))v.

ASSUMPTION 2.5. The function ϕ in Assumption 2.4 satisfies

sup
λ≥0

αϕ(λ)

λ+ α
≤ cϕϕ(α) ∀α ∈ (0, a].

Next we assume a condition on the sequence (αk) considered in (1.5).
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ASSUMPTION 2.6. The sequence (αk) of positive real numbers is such that
limk→∞ αk = 0 and there exists µ > 1 such that

1≤
αk

αk+1
≤ µ ∀k ∈ N. (2.2)

We note that the condition (2.2) on (αk) is weaker than (1.7) considered by
Bakushinsky and Smirnova [3]. In fact, if (1.7) is satisfied, then it also satisfies (2.2)
with µ= pα0 + 1, but the converse need not be true. This is seen by taking αk =

{1/k2
} or αk = {e−k

}. Note that, for these choices of (αk), αk/αk+1 is bounded
whereas (αk − αk+1)/αkαk+1→∞ as k→∞.

Assumption 2.1(ii) is used in the literature for regularization of many nonlinear
ill-posed problems (see [10, 11, 16–18]).

Assumption 2.4 is known as a general source condition, and it is similar to that
considered in [14] by Nair and Tautenhahn for the linear case and it is also analogous
to the source condition considered recently by the current authors [13]. It includes
both the well-known source conditions, namely, the Hölder-type source condition,
that is, ϕ(λ)= λµ, and the logarithmic source condition, that is, ϕ(λ)= [log(1/λ)]−µ.
Assumption 2.5 shows how the source condition should be related to the Lavrentiev
regularization.

3. Stopping rule

Let δ > 0 be given and let yδ ∈ Y be such that (1.3) is satisfied.

THE STOPPING RULE. Given c0 > 4, choose kδ to be the first nonnegative integer
such that xδk in (1.5) is defined for each k ∈ {0, 1, . . . , kδ} and

‖αkδ (A
δ
kδ + αkδ I )−1(F(xδkδ )− yδ)‖ ≤ c0δ for c0 > 4. (3.1)

In the following we establish the existence of such a kδ . First, we consider the
positive integer N ∈ N satisfying

αN ≤
(c − 1)δ
‖x0 − x†‖

< αk ∀k ∈ {0, 1, . . . , N − 1}, (3.2)

where c > 1 and α0 > (c − 1)δ/‖x0 − x†
‖.

The following technical lemma will be used to prove some of the results of
subsequent sections.

LEMMA 3.1. Let a > 0 and let b ≥ 0 be such that 4ab ≤ 1, and let
θ := (1−

√
1− 4ab)/2a. Let θ1, . . . , θn be nonnegative real numbers such that

θk+1 ≤ aθ2
k + b and θ0 ≤ θ. Then θk ≤ θ for all k = 1, . . . , n.

PROOF. We note that θ := (1−
√

1− 4ab)/2a is one of the two (real) roots of the
equation at2

+ b = t . Given that θ0 ≤ θ , now let us assume that θk ≤ θ for some
k ∈ N ∪ {0}. Hence,

θk+1 ≤ aθ2
k + b ≤ aθ2

+ b = θ.

Thus, θk ≤ θ , k = 1, . . . , n. 2
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The following theorem establishes the existence of the stopping index kδ as
suggested in (3.1).

THEOREM 3.2. Let (1.2), (1.3), (2.2) and Assumption 2.1 be satisfied. Let N be as
in (3.2) for some c > 1 and 2ck0‖x0 − x†

‖/(c − 1)≤ 1. Then xδk is defined iteratively
for each k ∈ {0, 1, . . . , N }, and

‖xδk − x†
‖ ≤

2c‖x0 − x†
‖

c − 1
∀k ∈ {0, 1, . . . , N }. (3.3)

In particular, if r > 2c‖x0 − x†
‖/(c − 1), then xδk ∈ Br (x†) for k ∈ {0, 1, . . . , N }.

Moreover,

‖αN (A
δ
N + αN I )−1(F(xδN )− yδ)‖ ≤ c0δ for c0 := 3c + 1. (3.4)

PROOF. We will show (3.3) by induction. It is obvious that (3.3) holds for k = 0. Now,
assume that (3.3) holds for some k ∈ {0, 1, . . . , N }. From (1.6),

xδk+1 − x†
= xδk − x†

− (Aδk + αk I )−1
{F(xδk )− yδ + αk(x

δ
k − x0)}

= (Aδk + αk I )−1
(
(Aδk + αk I )(xδk − x†)− {F(xδk )− yδ + αk(x

δ
k − x0)}

)
= (Aδk + αk I )−1

(
Aδk(x

δ
k − x†)+ yδ − F(xδk )+ αk(x0 − x†)

)
= αk(A

δ
k + αk I )−1(x0 − x†)+ (Aδk + αk)

−1(yδ − y)

+ (Aδk + αk I )−1
{F(x†)− F(xδk )+ Aδk(x

δ
k − x†)}. (3.5)

Using (1.3), the estimates ‖(Aδk + αk)
−1
‖ ≤ 1/αk and ‖(Aδk + αk)

−1 Aδk‖ ≤ 1, and
Proposition 2.2,

‖αk(A
δ
k + αk I )−1(x0 − x†)+ (Aδk + αk)

−1(yδ − y)‖ ≤ ‖x0 − x†
‖ +

δ

αk

and

‖(Aδk + αk I )−1
{F(x†)− F(xδk )+ Aδk(x

δ
k − x†)}‖ ≤

k0

2
‖xδk − x†

‖
2.

Thus,

‖xδk+1 − x†
‖ ≤ ‖x0 − x†

‖ +
δ

αk
+

k0

2
‖xδk − x†

‖
2.

But, by (3.2), δ/αk ≤ ‖x0 − x†
‖/(c − 1). Hence,

‖xδk+1 − x†
‖ ≤

c‖x0 − x†
‖

c − 1
+

k0

2
‖xδk − x†

‖
2

which leads to the recurrence relation

θk+1 ≤ aθ2
k + b,
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where

θk = ‖x
δ
k − x†

‖, a =
k0

2
and b =

c‖x0 − x†
‖

c − 1
.

From the hypothesis of the theorem, we have 4ab = 2ck0‖x0 − x†
‖/(c − 1) < 1. It is

obvious that

θ0 ≤ ‖x0 − x†
‖ ≤ θ :=

1−
√

1− 4ab

2a
=

2b

1+
√

1− 4ab
≤ 2b =

2c‖x0 − x†
‖

c − 1
.

Hence, by Lemma 3.1, we get

‖xδk − x†
‖ ≤ θ ≤

2c‖x0 − x†
‖

c − 1
for k ∈ {0, 1, . . . , N }. (3.6)

In particular, if r > 2c‖x0 − x†
‖/(c − 1), then we have that xδk ∈ Br (x†) for all

k ∈ {0, 1, 2, . . . , N }.
Next, let γ = ‖αN (AδN + αN I )−1(F(xδN )− yδ)‖. Then, using the estimates

‖αN (A
δ
N + αN I )−1

‖ ≤ 1, ‖αN (A
δ
N + αN I )−1 AδN‖ ≤ αk

and Proposition 2.2,

γ ≤ δ +

∥∥∥αN (A
δ
N + αN I )−1

(
F(xδN )− y + AδN (x

δ
N − x†)− AδN (x

δ
N − x†)

)∥∥∥
= δ +

∥∥∥αN (A
δ
N + αN I )−1

[F(xδN )− F(x†)− AδN (x
δ
N − x†)+ AδN (x

δ
N − x†)]

∥∥∥
≤ δ + αN

{
k0
‖xδN − x†

‖
2

2
+ ‖xδN − x†

‖

}

≤ δ + αN‖x
δ
N − x†

‖

{
1+ k0

‖xδN − x†
‖

2

}

≤ δ +
2αN‖x0 − x†

‖c

c − 1

[
1+

k0‖x0 − x†
‖c

c − 1

]
≤ δ + 2cδ

[
1+

1
2

]
≤ (3c + 1)δ.

So, we have ‖αN (AδN + αN I )−1(F(xδN )− yδ)‖ ≤ c0δ, where c0 = 3c + 1. 2

4. Error bound for the case of noise-free data

To carry out the error analysis concerning the iterates xδk in Sections 5 and 6, in
this section we shall make use of some results proved for the iterates xk , obtained
from (1.6) by replacing yδ by y, that is,

xk+1 = xk − (Ak + αk I )−1
[F(xk)− y + αk(xk − x0)] for k = 0, 1, 2, . . . . (4.1)

We show that each xk is well defined and belongs to Br (x†) for r > 2‖x0 − x†
‖. To

do so, we make use of the following lemma.
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LEMMA 4.1. Let Assumption 2.1 hold. Suppose that, for each k ∈ {0, 1, . . . , n}, xk
in (4.1) is well defined, and ρk := ‖αk(Ak + αk I )−1(x0 − x†)‖ for some n ∈ N. Then

ρk − k0
‖xk − x†

‖
2

2
≤ ‖xk+1 − x†

‖ ≤ ρk + k0
‖xk − x†

‖
2

2
, (4.2)

for every k ∈ {0, 1, . . . , n}.

PROOF. By definition,

xk+1 − x†
= xk − x†

− (Ak + αk I )−1
[F(xk)− y + αk(xk − x0)]

= (Ak + αk I )−1
{(Ak + αk I )(xk − x†)− [F(xk)− y + αk(xk − x0)]}

= (Ak + αk I )−1
{F(x†)− F(xk)− Ak(x

†
− xk)+ αk(x0 − x†)}

= αk(Ak + αk I )−1(x0 − x†)

+ (Ak + αk I )−1
{F(x†)− F(xk)− Ak(x

†
− xk)}.

Note that ρk = ‖αk(Ak + αk I )−1(x0 − x†)‖ and, by Proposition 2.2,

‖(Ak + αk I )−1
{F(x†)− F(xk)− Ak(x

†
− xk)}‖ ≤

k0

2
‖x†
− xk‖

2.

Thus, it follows that

ρk − k0
‖xk − x†

‖
2

2
≤ ‖xk+1 − x†

‖ ≤ ρk + k0
‖xk − x†

‖
2

2
,

completing the proof. 2

THEOREM 4.2. Let Assumption 2.1 hold. If 2k0‖x0 − x†
‖ ≤ 1 and r > 2 ‖x0 − x†

‖,
then, for each k ∈ N, the iterates xk in (4.1) are well-defined and

‖xk − x†
‖ ≤

2‖x0 − x†
‖

1+
√

1− 2k0‖x0 − x†‖
≤ 2‖x0 − x†

‖ ∀k ∈ N. (4.3)

PROOF. Assume that 2k0‖x0 − x†
‖ ≤ 1 and r > 2 ‖x0 − x†

‖. Note that

2‖x0 − x†
‖

1+
√

1− 2k0‖x0 − x†‖
≤ 2‖x0 − x†

‖< r.

We prove (4.3) by induction on k so that xk ∈ Br (x†) for each k ∈ N ∪ {0}.
Clearly (4.3) holds for k = 0 and x0 ∈ Br (x†). Suppose that (4.3) holds for some
k ∈ N ∪ {0}. Then, by taking

θk = ‖xk − x†
‖, a =

k0

2
and b = ‖x0 − x†

‖,

it follows from (4.2) by noting ‖αk(Ak + αk I )−1(x0 − x†)‖ ≤ ‖x0 − x†
‖ that

θk+1 ≤ aθk
2
+ b.
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Now, by the hypothesis of the theorem we have 4ab = 2k0‖x0 − x†
‖ ≤ 1. Hence, by

Lemma 3.1, we get

‖xk+1 − x†
‖ = θk+1 ≤

2‖x0 − x†
‖

1+
√

1− 2k0‖x0 − x†‖
≤ 2‖x0 − x†

‖.

Thus, we have proved that xk ∈ Br (x†) and (4.3) hold for all k ∈ N. 2

The next lemma is crucial for proving subsequent results of this paper.

LEMMA 4.3. Let Assumptions 2.1 and 2.6 hold and let r > 2‖x0 − x†
‖. Assume that

‖A‖ ≤ ηα0 and 2µ(1+ η−1)k0‖x0 − x†
‖ ≤ 1 for some η with 0< η < 1. Then, for

each k ∈ N,

1
(1+ η)µ

‖xk − x†
‖ ≤ ‖αk(A + αk I )−1(x0 − x†)‖ ≤

1
1− η

‖xk − x†
‖, (4.4)

1− η
(1+ η)µ

‖xk − x†
‖ ≤ ‖xk+1 − x†

‖ ≤

(
1

1− η
+

η

(1+ η)µ

)
‖xk − x†

‖. (4.5)

PROOF. For k ∈ N ∪ {0}, let

ρk := ‖αk(Ak + αk I )−1(x0 − x†)‖, ρ̃k := ‖αk(A + αk I )−1(x0 − x†)‖,

where Ak = F ′(xk) and A = F ′(x†). Then

|ρ̃k − ρk | =

∣∣∣‖αk(αk I + A)−1(x0 − x†)‖ − ‖αk(αk I + Ak)
−1(x0 − x†)‖

∣∣∣
≤ ‖αk{(A + αk I )−1

− (αk I + Ak)
−1
}(x0 − x†)‖.

Hence, by Proposition 2.3, we have |ρ̃k − ρk | ≤ k0‖xk − x†
‖‖x0 − x†

‖, which also
implies that

−k0‖xk − x†
‖‖x0 − x†

‖ ≤ ρk − ρ̃k ≤ k0‖xk − x†
‖‖x0 − x†

‖. (4.6)

From Lemma 4.1,

ρk −
k0‖xk − x†

‖
2

2
≤ ‖xk+1 − x†

‖ ≤ ρk +
k0‖xk − x†

‖
2

2
. (4.7)

Using (4.6) in (4.7), we get

ρ̃k − k0‖xk − x†
‖‖x0 − x†

‖ −
k0‖xk − x†

‖
2

2
≤ ‖xk+1 − x†

‖ (4.8)

and

‖xk+1 − x†
‖ ≤ ρ̃k + k0‖xk − x†

‖‖x0 − x†
‖ +

k0‖xk − x†
‖

2

2
. (4.9)
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From Theorem 4.2, we know that ‖xk − x†
‖ ≤ 2‖x0 − x†

‖. Using this inequality
in (4.8) and (4.9), we get

ρ̃k − 2k0‖xk − x†
‖‖x0 − x†

‖ ≤ ‖xk+1 − x†
‖ ≤ ρ̃k + 2k0‖xk − x†

‖‖x0 − x†
‖.

Thus, denoting β := 2k0‖x0 − x†
‖,

ρ̃k − β‖xk − x†
‖ ≤ ‖xk+1 − x†

‖ ≤ ρ̃k + β‖xk − x†
‖. (4.10)

Now, from the right-hand inequality in (4.10),

‖xk+1 − x†
‖

ρ̃k+1
≤

ρ̃k

ρ̃k+1
+ β
‖xk − x†

‖ρ̃k

ρ̃k+1ρ̃k
. (4.11)

Let Eλ be the spectral family of A := F ′(x†). Then, using the relations

α2
k+1

(λ+ αk+1)2
≤

α2
k

α2
k+1

≤
α2

k

α2
k+1

α2
k+1

(λ+ αk+1)2

and the spectral representation

ρ̃2
k =

∫
‖A‖

0

α2
k

(λ+ αk)2
d‖Eλ(x0 − x†)‖2 ∀k ∈ N ∪ {0},

it follows that
ρ̃k+1 ≤ ρ̃k ≤ µρ̃k+1. (4.12)

Denoting σk := ‖xk − x†
‖/ρ̃k , from (4.11) and (4.12) we obtain

σk+1 ≤ µ+ βµσk . (4.13)

Using the relation βµ≤ η/(η + 1) in (4.13), we obtain

σk+1 ≤ µ+
η

1+ η
σk . (4.14)

We note that

ρ̃0 = ‖α0(A + α0 I )−1(x0 − x†)‖ ≥
α0‖x0 − x†

‖

‖A + α0 I‖
≥
α0‖x0 − x†

‖

η + 1
.

Thus,

σ0 =
‖x0 − x†

‖

ρ̃0
≤ η + 1.

Now, from (4.14), it follows by induction that σk ≤ µ(1+ η) for all k ∈ N ∪ {0}. Thus,

‖xk − x†
‖ ≤ ρ̃kµ(η + 1) ∀k ∈ N ∪ {0}. (4.15)

Now from the left-hand inequality of (4.10),

‖xk+1 − x†
‖ ≥ ρ̃k − β‖xk − x†

‖ ≥ ρ̃k −
η

(η + 1)µ
‖xk − x†

‖ ∀k ∈ N ∪ {0}.
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This, together with (4.12), implies that

‖xk+1 − x†
‖ ≥ (1− η)ρ̃k ≥ (1− η)ρ̃k+1.

We also note that

ρ̃0 ≤ ‖x0 − x†
‖ ≤

1
1− η

‖x0 − x†
‖

which implies ‖x0 − x†
‖ ≥ (1− η)ρ̃0. Thus,

‖xk − x†
‖ ≥ (1− η)ρ̃k ∀k ∈ N ∪ {0}. (4.16)

Now, from (4.15) and (4.16), we get the following relation:

1
(1+ η)µ

‖xk − x†
‖ ≤ ρ̃k ≤

1
1− η

‖xk − x†
‖. (4.17)

Using the relation (4.17) in (4.10), we find that(
1

µ(1+ η)
− β

)
‖xk − x†

‖ ≤ ‖xk+1 − x†
‖ ≤

(
1

1− η
+ β

)
‖xk − x†

‖. (4.18)

Using the relation βµ≤ η/(η + 1) in (4.18), we get

1− η
(η + 1)µ

‖xk − x†
‖ ≤ ‖xk+1 − x†

‖ ≤

(
1

1− η
+

η

(η + 1)µ

)
‖xk − x†

‖.

This completes the proof. 2

The following corollary follows from Lemma 4.3 by taking η = 1/3. We shall see
that this particular case of Lemma 4.3 is better suited for our later results.

COROLLARY 4.4. Let Assumptions 2.1 and 2.6 hold and let r > 2‖x0 − x†
‖. Assume

that ‖A‖ ≤ α0/3 and 8µk0‖x0 − x†
‖ ≤ 1. Then, for each k ∈ N,

3
4µ
‖xk − x†

‖ ≤ ‖αk(A + αk I )−1(x0 − x†)‖ ≤
3
2
‖xk − x†

‖, (4.19)

‖xk − x†
‖

2µ
≤ ‖xk+1 − x†

‖ ≤ 2‖xk − x†
‖.

The next theorem shows that under the appropriate conditions on x†
− x0 and F the

iterates defined by (4.1) converge to the solution x† as k→∞.

THEOREM 4.5. Let the assumptions of Lemma 4.3 hold. If x0 is chosen such that
x0 − x†

∈ N (F ′(x†))⊥, then limk→∞ xk = x†.

PROOF. From the left-hand inequality of (4.4),

‖xk − x†
‖ ≤ (1+ η)µ‖αk(A + αk I )−1(x0 − x†)‖ with A = F ′(x†).
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Hence it is enough to show that ‖αk(A + αk I )−1(x0 − x†)‖→ 0 as k→∞. We
show that ‖αk(A + αk I )−1w‖→ 0 for every w ∈ R(A). Let w ∈ R(A) and u ∈ D(F)
such that w = Au. Then we have

‖αk(A + αk I )−1w‖ = αk‖(A + αk I )−1 Au‖ ≤ αk‖u‖→ 0 as k→∞.

Now using the fact that ‖αk(A + αk I )−1
‖ ≤ 1 and for R(A) a dense subspace of

N (A)⊥, we get

‖αk(A + αk I )−1(x0 − x†)‖→ 0 as k→∞,

which gives xk→ x† as k→∞. 2

LEMMA 4.6. Let the assumptions of Lemma 4.3 hold for η satisfying(
1−

√
1−

η

(1+ η)µ

)
[1+ (2µ− 1)η + 2µ] + 4η < 2. (4.20)

Then, for k, l ∈ N ∪ {0} with k ≥ l,

‖xl − x†
‖ ≤ cη

{
‖xk − x†

‖ +
‖αl(αl + A)−1(F(xl)− y)‖

αk

}
,

where

cη := (1− bη)
−1 max

{
µ, 1+

(ε + 1)η
2(1− η)

}
,

bη :=
(1+ ε)η

1− η
+
εa

2
, ε :=

1−
√

1− a

a
and a :=

η

(1+ η)µ
.

PROOF. Let k, l ∈ N ∪ {0} with k ≥ l. We observe that

xk − xl = u1 + u2 + u3,

where

u1 := [αk−1(Ak−1 + αk−1 I )−1
− αl−1(Al−1 + αl−1 I )−1

](x0 − x†),

u2 := (Al−1 + αl−1 I )−1(F(xl−1)− y − Al−1(xl−1 − x†)),

u3 := (Ak−1 + αk−1 I )−1(y − F(xk−1)− Ak−1(x
†
− xk−1)).

By Proposition 2.2,

‖u2‖ ≤
k0

2
‖xl−1 − x†

‖
2, ‖u3‖ ≤

k0

2
‖xk−1 − x†

‖
2. (4.21)

We note that k0‖x0 − x†
‖ ≤ η/2(1+ η)µ. Using this inequality in (4.3), we get

‖xl−1 − x†
‖ ≤ 2

√
(η + 1)µ‖x0 − x†

‖
√
(η + 1)µ+

√
(η + 1)µ− η

= 2ε‖x0 − x†
‖. (4.22)

Using (4.22) in (4.21), we get

‖u2‖ ≤ k0ε‖x0 − x†
‖‖xl−1 − x†

‖, ‖u3‖ ≤ k0ε‖x0 − x†
‖‖xk−1 − x†

‖. (4.23)
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Now, we find an estimate for ‖u1‖:

u1 := [αk−1(Ak−1 + αk−1 I )−1
− αl−1(Al−1 + αl−1 I )−1

](x0 − x†)

= αk−1(Ak−1 + αk−1 I )−1(x0 − x†)− αk−1(A + αk−1 I )−1(x0 − x†)

+ αk−1(A + αk−1 I )−1(x0 − x†)− αl−1(A + αl−1 I )−1(x0 − x†)

+ αl−1(A + αl−1 I )−1(x0 − x†)− αl−1(Al−1 + αl−1 I )−1(x0 − x†),

‖u1‖ ≤
∥∥αk−1

(
(Ak−1 + αk−1 I )−1

− (A + αk−1 I )−1)(x0 − x†)
∥∥

+ ‖[αl−1(A + αl−1 I )−1(x0 − x†)− αk−1(A + αk−1 I )−1
](x0 − x†)‖

+ ‖αl−1[(Al−1 + αl−1 I )−1
− (A + αl−1 I )−1

](x0 − x†)‖. (4.24)

By Proposition 2.3,

‖αk−1[(Ak−1 + αk−1 I )−1
− (A + αk−1 I )−1

](x0 − x†)‖ ≤ k0‖xk−1 − x†
‖‖x0 − x†

‖

(4.25)
and

‖αl−1[(Al−1 + αl−1 I )−1
− (A + αl−1 I )−1

](x0 − x†)‖ ≤ k0‖xl−1 − x†
‖‖x0 − x†

‖.

(4.26)
Using (4.25) and (4.26) in (4.24), we get

‖u1‖ = ‖v‖ + k0‖x0 − x†
‖
(
‖xk−1 − x†

‖ + ‖xl−1 − x†
‖
)
, (4.27)

where

v :=
(
αl−1(A + αl−1 I )−1

− αk−1(A + αk−1 I )−1
)
(x0 − x†)= v1 + v2 + v3

with

v1 :=

(
1−

αk−1

αl−1

)
(A + αk−1 I )−1(F(xl)− y),

v2 :=

(
1−

αk−1

αl−1

)
(A + αk−1 I )−1(A(xl − x†)− F(xl)+ y),

v3 :=

(
1−

αk−1

αl−1

)
(A + αk−1 I )−1 A

(
αl−1(A + αl−1 I )−1(x0 − x†)− (xl − x†)

)
.

By Proposition 2.2 and the relation (4.22),

‖v2‖ ≤ k0
‖xl − x†

‖
2

2
≤ k0ε‖x0 − x†

‖‖xl − x†
‖. (4.28)

It can be seen that

v3 = αl−1
(
(A + αl−1 I )−1

− (αl−1 I + Al−1)
−1)(x0 − x†)

+ (Al−1 + αl−1 I )−1(F(xl−1)− y − Al−1(xl−1 − x†)
)
.

Hence, by Propositions 2.2 and 2.3 and the relation (4.22), we obtain

‖v3‖ ≤ k0‖xl−1 − x†
‖‖x0 − x†

‖ + εk0‖xl−1 − x†
‖‖x0 − x†

‖,
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or equivalently
‖v3‖ ≤ (1+ ε)k0‖xl−1 − x†

‖‖x0 − x†
‖. (4.29)

Now, we estimate ‖v1‖. We have that

‖v1‖ :=

∥∥∥∥(1−
αk−1

αl−1

)
(A + αk−1 I )−1(F(xl)− y)

∥∥∥∥
≤ ‖(A + αk−1 I )−1(F(xl)− y)‖.

Therefore, using the spectral representation of (A + αk−1 I )−1 and the fact that
αk ≤ αk−1 ≤ αl−1,

‖(A + αk−1 I )−1x‖2 =
∫
‖A‖

0

d‖Eλx‖2

(αk−1 + λ)2

≤
1

α2
k−1

∫
‖A‖

0

(
αl−1

αl−1 + λ

)2

d‖Eλx‖2

≤

(
αl−1

αk−1αl

)2 ∫ ‖A‖

0

(
αl

αl + λ

)2

d‖Eλx‖2

≤

(
µαl

αk−1

)2 ∫ ‖A‖

0

1

(αl + λ)2
d‖Eλx‖2

=

(
µ

αk

)2

‖αl(A + αl I )−1x‖2.

Thus,

‖v1‖ ≤ µ
‖αl(A + αl I )−1(F(xl)− y)‖

αk
. (4.30)

Hence, from (4.28), (4.29) and (4.30),

‖v‖ ≤ µ
‖αl(A + αl I )−1(F(xl)− y)‖

αk
+ k0ε‖x0 − x†

‖‖xl − x†
‖

+ (1+ ε)k0‖xl−1 − x†
‖‖x0 − x†

‖. (4.31)

Using (4.31) in (4.27),

‖u1‖ = µ
‖αl(A + αl I )−1(F(xl)− y)‖

αk
+ k0ε‖x0 − x†

‖‖xl − x†
‖

+ (2+ ε)k0‖xl−1 − x†
‖‖x0 − x†

‖ + k0‖xk−1 − x†
‖‖x0 − x†

‖. (4.32)

From (4.23) and (4.32), we get

‖xk − xl‖ ≤ µ
‖αl(A + αl I )−1(F(xl)− y)‖

αk
+ k0ε‖x0 − x†

‖‖xl − x†
‖

+ 2(1+ ε)k0‖xl−1 − x†
‖‖x0 − x†

‖

+ (ε + 1)k0‖xk−1 − x†
‖‖x0 − x†

‖. (4.33)
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From the left-hand side of (4.5), we get the inequality

‖xk−1 − x†
‖ ≤

(1+ η)µ
1− η

‖xk − x†
‖.

Using this inequality in (4.33), we get

‖xk − xl‖ ≤ µ
‖αl(A + αl I )−1(F(xl)− y)‖

αk

+

(
ε +

2(1+ ε)(η + 1)µ
1− η

)
k0‖x0 − x†

‖‖xl − x†
‖

+
(1+ η)µ

1− η
(ε + 1)k0‖x0 − x†

‖‖xk − x†
‖

≤ µ
‖αl(A + αl I )−1(F(xl)− y)‖

αk

+

[
η

1− η
+ ε

(
η

2(1+ η)µ
+

η

1− η

)]
‖xl − x†

‖

+
(ε + 1)η
2(1− η)

‖xk − x†
‖. (4.34)

Using (4.34) with ‖xl − x†
‖ ≤ ‖xl − xk‖ + ‖xk − x†

‖ gives

‖xl − x†
‖ ≤ µ

‖αl(A + αl I )−1(F(xl)− y)‖

αk

+

[
η

1− η
+ ε

(
η

2(1+ η)µ
+

η

1− η

)]
‖xl − x†

‖

+

[
1+

(ε + 1)η
2(1− η)

]
‖xk − x†

‖.

Let

bη :=
(1+ ε)η

1− η
+

ηε

2(1+ η)µ
.

It can be seen that bη < 1 if and only if(
1−

√
1−

η

(1+ η)µ

)
[1+ (2µ− 1)η + 2µ] + 4η < 2.

Thus, for η satisfying (4.20),

‖xl − x†
‖

≤
(1− bη)−1

αk

[
µ‖αl(A + αl I )−1(F(xl)− y)‖ +

(
1+

(ε + 1)η
2(1− η)

)
‖xk − x†

‖

]
.
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Hence, we get

‖xl − x†
‖ ≤ cη

{
‖xk − x†

‖ +
‖αl(A + αl)

−1(F(xl)− y)‖

αk

}
,

where cη = (1− bη)−1 max{µ, 1+ (ε + 1)η/2(1− η)}. 2

REMARK 4.7. It can be seen that (4.20) is satisfied if η ≤ 1/3+ 1/24.

Now, if we take η = 1/3, that is, k0‖x0 − x†
‖µ≤ 1/8 in Lemma 4.6, then it takes

the following form.

LEMMA 4.8. Let the assumptions of Lemma 4.3 hold with η = 1/3. Then, for
k ≥ l ≥ 0,

‖xl − x†
‖ ≤ c1/3

{
‖xk − x†

‖ +
‖αl(A + αl)

−1(F(xl)− y)‖

αk

}
,

where

c1/3 :=

{
1−

4µ+ (4µ+ 1)ε
8µ

}−1

max
{
µ, 1+

ε + 1
4

}
and

ε :=

√
4µ

√
4µ+

√
4µ− 1

.

5. Error analysis with noisy data

The first result in this section gives an error estimate for ‖xδk − xk‖ where
k = 0, 1, 2, . . . , N .

LEMMA 5.1. Let Assumption 2.1 hold and let k0‖x0 − x†
‖ ≤ 1/m where we have

m > (5+
√

33)/2 and let N be the integer satisfying (3.2) with

c >
m2
− 4m − 2

m2 − 5m − 2
.

Then, for all k ∈ {0, 1, . . . , N },

‖xδk − xk‖ ≤
δ

(1− κ)αk
where κ :=

1
m

(
5+

1
c − 1

+
2
m

)
. (5.1)

PROOF. Inequality (5.1) is trivial for k = 0. From the definition of xδk and xk ,

xδk+1 − xk+1 = w1 + w2 + w3,

where

w1 = (Ak + αk I )−1
(

F(xk)− y − Ak(xk − x†)
)

− (Aδk + αk I )−1
(

F(xδk )− y − Aδk(x
δ
k − x†)

)
,
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w2 = αk

(
(Aδk + αk I )−1

− (Ak + αk I )−1
)
(x0 − x†),

w3 = (A
δ
k + αk I )−1(yδ − y).

Using Proposition 2.3,

‖w2‖ ≤ k0‖x
δ
k − xk‖‖x0 − x†

‖.

From (1.3) and the estimate ‖(Aδk + αk I )−1
‖ ≤ 1/αk , we have ‖w3‖ ≤ δ/αk . So,

‖xδk+1 − xk+1‖ ≤ ‖w1‖ + k0‖x
δ
k − xk‖‖x0 − x†

‖ +
δ

αk
.

Now, let us write w1 = w
1
1 + w

2
1 with

w1
1 =

(
(Ak + αk I )−1

− (Aδk + αk I )−1
)(

F(xk)− y − Ak(xk − x†)
)
,

w2
1 = (A

δ
k + αk I )−1

(
F(xk)− F(xδk )− Ak(xk − x†)+ Aδk(x

δ
k − x†)

)
.

Using Assumption 2.1(ii), we get

w1
1 = [(A

δ
k + αk I )−1

− (Ak + αk I )−1
][y − F(xk)− Ak(x

†
− xk)]

= (Aδk + αk I )−1(Ak − Aδk)(Ak + αk I )−1
[F(x†)− F(xk)− Ak(x

†
− xk)]

= (Aδk + αk I )−1 Aδk8(xk, xδk , zk),

where zk := (Ak + αk I )−1(F(x†)− F(xk)− Ak(x†
− xk)). Hence, by the relation

‖(Aδk + αk I )−1 Aδk‖ ≤ 1, the Assumption 2.1(ii) and Proposition 2.2, we have

‖w1
1‖ ≤ ‖(A

δ
k + αk I )−1 Aδk8(xk, xδk , zk)‖

≤ k0‖xk − xδk‖‖zk‖ ≤
k2

0

2
‖xk − xδk‖‖xk − x†

‖
2.

Next, we observe that

w2
1 = (A

δ
k + αk I )−1

(
F(xk)− F(xδk )− Ak(xk − x†)+ Aδk(x

δ
k − x†)

)
= (Aδk + αk I )−1

[F(xk)− F(xδk )− Aδk(xk − xδk )+ (A
δ
k − Ak)(xk − x†)].

By Proposition 2.2 and Assumption 2.1(ii),

‖(Aδk + αk I )−1
[F(xk)− F(xδk )− Aδk(xk − xδk )]‖ ≤

k0

2
‖xk − xδk‖

2

and

‖(Aδk + αk I )−1(Aδk − Ak)(xk − x†)‖ ≤ ‖(Aδk + αk I )−1 Aδk8(x
δ
k , xk, xk − x†)‖

≤ ‖8(xδk , xk, xk − x†)‖

≤ k0‖x
δ
k − xk‖‖xk − x†

‖.
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Thus,

‖w2
1‖ ≤ k0(‖xk − xδk‖ + 2‖xk − x†

‖)
‖xδk − xk‖

2
.

Hence,

‖w1‖ ≤ ‖w
1
1‖ + ‖w

2
1‖ ≤

k0

2
‖xk − xδk‖‖xk − x†

‖(2+ k0‖xk − x†
‖)+

k0

2
‖xk − xδk‖

2.

Now, denoting εk := ‖xk − xδk‖ and using the estimate ‖xk − x†
‖ ≤ 2‖x0 − x†

‖, we
get

‖w1‖ ≤ 2k0εk‖x0 − x†
‖(1+ k0‖x0 − x†

‖)+
k0

2
ε2

k and ‖w2‖ ≤ k0εk‖x0 − x†
‖.

Thus,

εk+1 ≤ k0εk‖x0 − x†
‖(2+ 2k0‖x0 − x†

‖)+
k0

2
ε2

k + k0εk‖x0 − x†
‖ +

δ

αk

≤ k0εk‖x0 − x†
‖(3+ 2k0‖x0 − x†

‖)+
k0

2
ε2

k +
δ

αk

≤ k0εk‖x0 − x†
‖(3+ 2k0‖x0 − x†

‖)+
k0

2
εk(‖x

δ
k − x†

‖ + ‖xk − x†
‖)+

δ

αk
.

Now using the estimates

‖xk − x†
‖ ≤ 2‖x0 − x†

‖ and ‖xδk − x†
‖ ≤

2c‖x0 − x†
‖

c − 1
,

we get

εk+1 ≤ k0εk‖x0 − x†
‖(3+ 2k0‖x0 − x†

‖)+ k0‖x0 − x†
‖εk

(
c

c − 1
+ 1

)
+
δ

αk

≤ k0‖x0 − x†
‖εk

(
4+

c

c − 1
+ 2k0‖x0 − x†

‖

)
+
δ

αk
. (5.2)

Using the assumption that k0‖x0 − x†
‖ ≤ 1/m in (5.2), we obtain

εk+1 ≤
1
m

(
5+

1
c − 1

+
2
m

)
εk +

δ

αk
. (5.3)

Denoting κ = (5+ 1/(c − 1)+ 2/m)/m and multiplying both sides of (5.3) by αk+1,

αk+1εk+1 ≤
καk+1αkεk

αk
+
αk+1δ

αk
.

Denoting `k+1 := αk+1εk+1,
`k+1 ≤ κ`k + δ. (5.4)

We note that κ < 1 for c > (m2
− 4m − 2)/(m2

− 5m − 2). Now, we claim that

`k ≤
δ

(1− κ)
for k ∈ {0, 1, . . . , N }.
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The inequality is trivial for k = 0. Now, let us assume that `k ≤ δ/(1− κ) for some
k ∈ {0, 1, . . . , N − 1}. From (5.4),

`k+1 ≤ κ`k + δ ≤
δ

(1− κ)
.

Hence we get

‖xδk − xk‖ ≤
δ

(1− κ)αk
for k ∈ {0, 1, . . . , N }. 2

If we take m = 8 in Lemma 5.1, then we get the following corollary as a particular
case of Lemma 5.1. We make use of it in the following error analysis.

COROLLARY 5.2. Let Assumption 2.1 hold and take 8k0‖x0 − x†
‖ ≤ 1. Let N be the

integer defined by (3.2) with c > 15/11. Then, for all κ ∈ {0, 1, . . . , N },

‖xδk − xk‖ ≤
δ

(1− κ)αk
where κ =

21c − 17
32(c − 1)

.

LEMMA 5.3. Let the assumptions of Lemma 5.1 hold. Then

‖αkδ (A + αkδ I )−1(F(xkδ )− y)‖ ≤ c1δ.

Moreover, if kδ > 0, then for all integers 0≤ k < kδ ,

‖αk(A + αk I )−1(F(xk)− y)‖ ≥ c2δ,

where

c1 =

(
1+

2ck0‖x0 − x†
‖

c − 1

)(
c0 +

2− κ
1− κ

+
k0µ‖x0 − x†

‖

2(1− κ)2(c − 1)

)
,

c2 =
c0 − ((2− κ)/(1− κ))− (k0‖x0 − x†

‖/2(1− κ)2(c − 1))
1+ 2(ck0‖x0 − x†‖/(c − 1))

,

with c0 = 3c + 1 and κ as in Lemma 5.1.

PROOF. Let kδ be as in (3.4) and 0≤ k ≤ kδ . Since∥∥∥αk(A
δ
k + αk I )−1(F(xδk )− F(xk))

∥∥∥
can be written as∥∥∥αk(A

δ
k + αk I )−1(F(xk)− F(xδk )− Aδk(xk − xδk )+ Aδk(xk − xδk )

)∥∥∥,
it follows from the relation ‖αk(Aδk + αk I )−1 Aδk‖ ≤ 1 and Proposition 2.2 that

‖αk(A
δ
k + αk I )−1(F(xδk )− F(xk))‖

≤ αk

{
k0‖xk − xδk‖

2

2
+ ‖xk − xδk‖

}
= αk

(
k0‖xk − xδk‖

2
+ 1

)
‖xk − xδk‖.
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Using the estimate ‖xk − xδk‖ ≤ δ/(1− κ)αk from Lemma 5.1, we get

‖αk(A
δ
k + αk I )−1(F(xδk )− F(xk))‖ ≤

(
1+

δk0

2(1− κ)αk

)
δ

(1− κ)
. (5.5)

Similarly

‖αkδ (A
δ
kδ + αkδ I )−1(F(xδkδ )− F(xkδ ))‖ ≤

(
1+

δk0

2(1− κ)αkδ

)
δ

(1− κ)
. (5.6)

By (2.2) and the definition of N ,

δ

αkδ
≤

µδ

αkδ−1
≤
µ‖x0 − x†

‖

c − 1
(5.7)

and
δ

αk
≤
‖x0 − x†

‖

(c − 1)
. (5.8)

Using (5.7) in (5.6) and (5.8) in (5.5), we get

‖αkδ (A
δ
kδ + αkδ I )−1(F(xδkδ )− F(xkδ ))‖ ≤

(
1+ k0

µ‖x0 − x†
‖

2(1− κ)(c − 1)

)
δ

(1− κ)
(5.9)

and

‖αk(A
δ
k + αk I )−1(F(xδk )− F(xk))‖ ≤

(
1+ k0

‖x0 − x†
‖

2(1− κ)(c − 1)

)
δ

(1− κ)
. (5.10)

Now using (1.3), (3.1) and (5.9), we get

‖αkδ (A
δ
kδ + αkδ I )−1(F(xkδ )− y)‖

≤ ‖αkδ (A
δ
kδ + αkδ I )−1(F(xδkδ )− F(xkδ ))‖

+ ‖αkδ (A
δ
kδ + αkδ I )−1(F(xδkδ )− yδ)‖ + ‖yδ − y‖

≤

(
1+ k0

µ‖x0 − x†
‖

2(1− κ)(c − 1)

)
δ

1− κ
+ c0δ + δ

≤

(
c0 +

2− κ
1− κ

+
k0µ‖x0 − x†

‖

2(1− κ)2(c − 1)

)
δ.

Again using (1.3), (3.1) and (5.10), we obtain

‖αk(A
δ
k + αk I )−1(F(xk)− y)‖

=

∥∥∥αk(A
δ
k + αk I )−1 (F(xδk )− yδ − F(xδk )+ F(xk)+ yδ − y

)∥∥∥
≥ ‖αk(A

δ
k + αk I )−1(F(xδk )− yδ)‖

− ‖αk(A
δ
k + αk I )−1(F(xδk )− F(xk))‖ − ‖y

δ
− y‖
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≥ c0δ −

(
1+ k0

‖x0 − x†
‖

2(1− κ)(c − 1)

)
δ

(1− κ)
− δ

≥

(
c0 −

2− κ
1− κ

−
k0‖x0 − x†

‖

2(1− κ)2(c − 1)

)
δ. (5.11)

Denoting

ak := ‖αk(A + αk I )−1(F(xk)− y)‖ and bk := ‖αk(A
δ
k + αk I )−1(F(xk)− y)‖

we have

akδ = ‖αkδ (A + αkδ I )−1(F(xkδ )− y)‖

≤ ‖αkδ (A
δ
kδ + αkδ I )−1(F(xkδ )− y)‖

+ ‖αkδ (αkδ I + A)−1
− (Aδkδ + αkδ I )−1(F(xkδ )− y)‖

≤ bkδ + ‖(A + αkδ I )−1(Aδkδ − A)αkδ (A
δ
kδ + αkδ I )−1(F(xkδ )− y)‖

≤ bkδ + k0‖x
δ
kδ − x†

‖‖αkδ (αkδ I + Aδkδ )
−1(F(xkδ )− y)‖

≤

(
1+ 2

c

c − 1
k0‖x0 − x†

‖

)
bkδ

≤

(
1+ 2

c

c − 1
k0‖x0 − x†

‖

)(
c0 +

2− κ
1− κ

+
k0µ‖x0 − x†

‖

2(1− κ)2(c − 1)

)
δ.

Hence,
‖αkδ (A + αkδ )

−1(F(xkδ )− y)‖ ≤ c1δ,

where

c1 =

(
1+

2ck0‖x0 − x†
‖

c − 1

)(
c0 +

2− κ
1− κ

+
k0µ‖x0 − x†

‖

2(1− κ)2(c − 1)

)
.

Now we have

bk = ‖αk(A
δ
k + αk I )−1(F(xk)− y)‖

≤ ‖αk(A + αk I )−1(F(xk)− y)‖

+ ‖αk(A
δ
k + αk I )−1

− (A + αk I )−1(F(xk)− y)‖

≤ ak + ‖(A
δ
k + αk I )−1(A − Aδk)αk(A + αk I )−1(F(xk)− y)‖

≤ ak + k0‖x
δ
k − x†

‖‖αk(A + αk I )−1(F(xk)− y)‖ ≤

(
1+

2ck0‖x0 − x†
‖

c − 1

)
ak .

So, we get

ak ≥
bk

1+ (2ck0‖x0 − x†‖/(c − 1))

≥
c0 − ((2− κ)/(1− κ))− (k0‖x0 − x†

‖/2(1− κ)2(c − 1))
1+ (2ck0‖x0 − x†‖/(c − 1))

.
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Thus, ‖αk(A + αk I )−1(F(xk)− y)‖ ≥ c2δ, where

c2 =
c0 − ((2− κ)/(1− κ))− (k0‖x0 − x†

‖/2(1− κ)2(c − 1))
1+ (2ck0‖x0 − x†‖/(c − 1))

. 2

THEOREM 5.4. Let Assumptions 2.1 and 2.6 hold. If 8µk0‖x0 − x†
‖ ≤ 1 and the

integer kδ is chosen according to stopping rule (3.1) with c0 > 56/11, then

‖xδkδ − x†
‖ ≤ ξ inf

{
‖xk − x†

‖ +
δ

αk
: k = 0, 1, . . .

}
, (5.12)

where

ξ =max
{

2µ%,
c1/3c1 + 1

1− κ
, c

}
and % := 1+

µ

c2(1− κ)
(1+ k0‖x0 − x†

‖)

(5.13)
with c1/3 and κ as in Lemma 4.8 and Corollary 5.2, respectively and c1 and c2 as in
Lemma 5.3.

PROOF. We consider two cases.
Case (i) k > N . From the definition of N and the estimate

‖xδk − x†
‖ ≤

2c‖x0 − x†
‖

c − 1

from Theorem 3.2,
δ

αk
≥

2‖x0 − x†
‖

c − 1
≥
‖xδkδ − x†

‖

c
,

which implies that

‖xδkδ − x†
‖ ≤

cδ

αk
∀k > N .

Hence, we get

‖xδkδ − x†
‖ ≤

cδ

αk
+ ‖xk − x†

‖ ∀k > N .

So, we get

‖xδkδ − x†
‖ ≤ c

{
δ

αk
+ ‖xk − x†

‖

}
∀k > N . (5.14)

Case (ii) 0≤ k ≤ N . To prove the result in this case we will show that, for all
integers k ≤ N ,

‖xkδ − x†
‖ +

δ

αkδ
≤ c̃

{
‖xk − x†

‖ +
δ

αk

}
,

for some constant c > 0. We further divide this case into two subcases.
Case (iia) kδ ≤ k ≤ N . From Lemma 5.3, we get

‖αkδ (A + αkδ I )−1(F(xkδ )− y)‖ ≤ c1δ.
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Now from Lemma 4.8,

‖xkδ − x†
‖ ≤ c1/3

{
‖xk − x†

‖ +
‖αkδ (A + αkδ I )−1(F(xkδ )− y)‖

αk

}

≤ c1/3

{
‖xk − x†

‖ + c1
δ

αk

}
≤ c1/3 c1

{
‖xk − x†

‖ +
δ

αk

}
.

So, we get

‖xkδ − x†
‖ +

δ

αkδ (1− κ)
≤ c1/3 c1

{
‖xk − x†

‖ +
δ

αk

}
+

δ

αkδ (1− κ)
.

We note that δ/αkδ (1− κ)≤ δ/αk(1− κ). Hence we have

‖xkδ − x†
‖ +

δ

αkδ (1− κ)
≤

1+ c1/3 c1

(1− κ)

{
‖xk − x†

‖ +
δ

αk

}
. (5.15)

Case (iib) k ≤ kδ . First we show that the map α→‖α(A + α I )−1(x0 − x†)‖ is
monotonically increasing on [0,∞).

Let α ≤ β and Eλ be the spectral family generated by A := F ′(x†). Then,

‖α(A + α I )−1(x0 − x†)‖2 =

∫
‖A‖

0

α2

(α + λ)2
d‖Eλ(x0 − x†)‖2

≤

∫
‖A‖

0

β2

(β + λ)2
d‖Eλ(x0 − x†)‖2

= ‖β(A + β I )−1(x0 − x†)‖2,

which shows that the map α→‖α(α I + A)−1(x0 − x†)‖ is monotonically increasing
on (0,∞). Hence by (4.19), for all l ≥ m,

‖xl − x†
‖ ≤

4
3µ‖αl(A + αl I )−1(x0 − x†)‖

≤
4
3µ‖αm(A + αm I )−1(x0 − x†)‖ ≤ 2µ‖xm − x†

‖,

which in particular implies that

‖xkδ − x†
‖ ≤ 2µ‖xk − x†

‖. (5.16)

Now from Lemma 5.3, Proposition 2.3 and the estimate ‖xδk − x†
‖ ≤ 2‖x0 − x†

‖, we
get

c2δ ≤

∥∥∥αkδ−1(A + αkδ−1 I )−1
(

F(xkδ−1)− y
)∥∥∥

≤

∥∥∥αkδ−1(A + αkδ−1 I )−1
(

F(xkδ−1)− F(x†)− F ′(x†)(xκδ−1 − x†)

+ F ′(x†)(xkδ−1 − x†)
)∥∥∥

≤ αkδ−1

(
1
2

k0‖xkδ−1 − x†
‖

2
+ ‖xkδ−1 − x†

‖

)
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≤ αkδ−1

(
1+ k0‖x0 − x†

‖

)
‖xkδ−1 − x†

‖

≤ µαkδ

(
1+ k0‖x0 − x†

‖

)
‖xkδ−1 − x†

‖

≤ 2µ2αkδ

(
1+ k0‖x0 − x†

‖

)
‖xk − x†

‖.

So, we get
δ

αkδ
≤ 2µ2

(
1+ k0‖x0 − x†

‖

)
‖xk − x†

‖

c2
.

Using (5.16), we get

‖xkδ − x†
‖ +

δ

(1− κ)αkδ

≤ 2µ‖xk − x†
‖

(
1+

µ

c2(1− κ)

(
1+ k0‖x0 − x†

‖

))
+
δ

αk
.

So,

‖xkδ − x†
‖ +

δ

αkδ (1− κ)

≤ 2µ
(

1+
µ

c2(1− κ)

(
1+ k0‖x0 − x†

‖

)){
‖xk − x†

‖ +
δ

αk

}
. (5.17)

From (5.14), (5.15) and (5.17), we get

‖xδkδ − x†
‖ ≤ ξ inf

{
‖xk − x†

‖ +
δ

αk
: k = 0, 1, . . .

}
,

where

ξ =max
{

2µ
(

1+
µ

c2(1− κ)

(
1+ k0‖x0 − x†

‖

))
,

c1/3 c1 + 1

1− κ
, c

}
. 2

6. Order optimal result with an a posterior stopping rule

Now we are in a position to give the main result of this paper. In the following
theorem we show the convergence xkδ → x† as δ→ 0 and also give an optimal error
estimate for ‖xkδ − x†

‖.

THEOREM 6.1. Let the assumptions of Theorem 5.4 hold and let kδ be the integer
chosen by (3.1). If x0 is chosen such that x0 − x†

∈ N (F ′(x†))⊥, then we have that
limδ→0 xδkδ = x†. Moreover, if Assumptions 2.4 and 2.5 are satisfied, then

‖xδkδ − x†
‖ ≤ ξ ′µcϕ‖v‖ψ

−1
(

δ

‖v‖cϕ

)
,

where ξ ′ := 8µξ/3 with ξ as in Theorem 5.4.
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PROOF. From (5.12),

‖xδkδ − x†
‖ ≤ ξ inf

{
‖xk − x†

‖ +
δ

αk
: k = 0, 1, . . .

}
. (6.1)

Now, using the estimate ‖xk − x†
‖ ≤ 4µ‖αk(A + αk I )−1(x0 − x†)‖/3 from (4.19)

in (6.1), we get

‖xδkδ − x†
‖ ≤ ξ ′ inf

{
‖αk(A + αk I )−1(x0 − x†)‖ +

δ

αk
: k = 0, 1, . . .

}
, (6.2)

where

ξ ′ =
4µ
3

max
{

2µ
(

1+
µ

c2(1− κ)
(1+ k0‖x0 − x†

‖)

)
,

c1/3 c1 + 1

(1− κ)
, c

}
.

We choose an integer mδ such that mδ =max{k : αk ≥
√
δ}. Then we have

‖xδkδ − x†
‖ ≤ ξ ′

{
‖αmδ (A + αmδ I )−1(x0 − x†)‖ +

δ

αmδ

}
. (6.3)

We note that
δ

αmδ

≤
√
δ and

δ

αmδ

→ 0 as δ→ 0.

To show that
‖αmδ (A + αmδ I )−1(x0 − x†)‖→ 0 as δ→ 0

it is enough to prove that ‖αmδ (A + αmδ I )−1w‖→ 0 for every w ∈ R(F ′(x†)). We
observe that, for every w ∈ R(F ′(x†)), we have w = F ′(x†)u for some u ∈ D(F),

‖αmδ (A + αmδ I )−1(x0 − x†)‖ ≤ αmδ‖u‖→ 0 as δ→ 0.

Now using the fact that ‖αmδ (A + αmδ I )−1
‖ ≤ 1 and for R(F ′(x†)) a dense subspace

of N (F ′(x†))⊥, we get

‖αmδ (A + αmδ I )−1(x0 − x†)‖→ 0 as δ→ 0.

Now from (6.3),

‖xδkδ − x†
‖ ≤ ξ ′

{
‖αmδ (A + αmδ I )−1(x0 − x†)‖ +

δ

αmδ

}
→ 0 as δ→ 0.

Hence, we get limδ→0 xδkδ = x†. Now using Assumptions 2.4 and 2.5,

‖αk(A + αk I )−1(x0 − x†)‖ ≤ cϕϕ(αk)‖v‖. (6.4)

Using (6.4) in (6.2), we get

‖xδkδ − x†
‖ ≤ ξ ′ inf

{
cϕϕ(αk)‖v‖ +

δ

αk
: k = 0, 1, . . .

}
. (6.5)
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We choose k̂δ such that

ϕ(αk̂δ
)αk̂δ
≤

δ

‖v‖cϕ
< ϕ(αk)αk for k = 0, 1, . . . , k̂δ − 1 (6.6)

which also implies that

ψϕ(k̂δ)≤
δ

‖v‖cϕ
<ψϕ(αk) for k = 0, 1, . . . , k̂δ − 1, (6.7)

where ψ : (0, ϕ(a)] → (0, aϕ(a)] is defined as

ψ(λ) := λϕ−1(λ), λ ∈ (0, ϕ(a)].

From (6.5),

‖xδkδ − x†
‖ ≤ ξ ′

{
cϕϕ(αk̂δ

)‖v‖ +
δ

αk̂δ

}
.

Using (6.6), (6.7) and the definition of ψ , we get

‖xδkδ − x†
‖ ≤ 2ξ ′

δ

αk̂δ

≤ 2ξ ′µ
δ

αk̂δ−1
≤ 2ξ ′µ

δ

ϕ−1ψ−1(δ/cϕ‖v‖)

= 2ξ ′µcϕ‖v‖ψ
−1
(

δ

cϕ‖v‖

)
,

which completes the proof. 2

7. Concluding remarks

In this paper, we have considered an iterative regularization procedure for nonlinear
ill-posed monotone operator equations. We have introduced a stopping criterion
analogous to the one considered by Qi-Nian Jin in [10] for the iteratively regularized
Gauss–Newton method. We have shown that this stopping criterion not only ensures
convergence, but also gives an order optimal error estimate. Here, an optimal error
estimate has been obtained under a general source condition. Hence, the results of this
paper can be applied to the larger class of ill-posed problems including both severely
as well as mildly ill-posed problems (see [8, 9]).
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