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KRULL SEMIGROUPS AND DIVISOR CLASS GROUPS 

LEO G. CHOUINARD II 

1. Introduction and notation. R. Matsuda has shown that a group 
ring is a Krull domain if and only if the coefficient ring is a Krull domain 
and the group is a torsion-free abelian group satisfying the ascending 
chain condition (ace) on cyclic subgroups [6]. D. F. Anderson has used 
this to obtain a partial determination of when a semigroup ring is a 
Krull domain, and under certain circumstances to describe the divisor 
class group of such a ring ([1], [2]). Using some of Anderson's techniques, 
but taking a different approach, we arrive at a complete answer of a 
different nature to these questions. We call a semigroup satisfying the 
major new conditions arising a Krull semigroup, and define its divisor 
class group. 

In particular, every abelian group is the divisor class group of such a 
ring, and it follows that every abelian group is the divisor class group of 
a quasi-local ring, which seems to be a new result. We also obtain a 
condition which can be used in theory to classify the isomorphism classes 
of semigroups with a given divisor class group. Although we will not 
pursue the point, from the results in this paper it also follows that there 
are algorithms to determine if a finitely generated cancellative com­
mutative semigroup is Krull, and if it is, to determine its divisor class 
group. In a subsequent paper, we will show that if S is a Krull semigroup 
with torsion divisor class group, and D is a Dedekind domain, then 
finitely generated projective D[S]-modules are extended from D, thus 
generalizing the Quillen-Suslin result. 

All rings are commutative with unit 1 ^ 0 , and semigroups are 
commutative, cancellative, with unit and have torsion-free total quotient 
group. Note that this poses no real restriction since for a semigroup ring 
to be an integral domain, the semigroups must have these properties. If 
S is a semigroup, (S) will denote its total quotient group. 

Semigroups are written additively. If S is a semigroup we write a\b, or 
a divides b, if b = a + x for some x £ S. An ideal of S is a subset closed 
under addition of the elements of S. If T is a subset of S, S + (-T) 
denotes the subsemigroup of (S) generated by 5 U (-T). 

Z denotes the integers; if F = © a ç / Zxa is a free abelian group with 
given basis {xa\a £ I} , we let pra: F —» Z denote the projection onto the 
coefficient of xa for any a £ I, and set 

F+ = {x Ç F\ pra (x) ^ 0 for all a G / } . 
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If R is a domain, q.f.(-R) is the quotient field of R] if R is a Krull 
domain, Cl(i?) denotes the divisor class group of R. When R is a ring 
and S is a semigroup, we use R[S] for the semigroup ring of S with 
coefficients in R. We write the elements of R[S] in the form 
x = ^sçs rsX

s, rs £ R, all but finitely many rs = 0. With x as above, 

supp (x) = {s Ç 5| rs 5* 0} ; 

note supp (x) = 0 if and only if x — 0. 

2. Krull semigroups. It turns out that if care is taken, most of the 
results in VII. 1 nos. 1-4 and 6 of [4] have semigroup analogs, except for 
the last result in each of Sections 1, 4, and 6. As we shall need some of 
these analogs, in this section we present the definitions necessary to 
state these results together with a few other items. 

If S is a semigroup, a principal fractional ideal of S is a subset of (S) 
of the form [t + s\s £ S} for some t Ç (S). A divisorial fractional ideal 
of 5 is a nonempty intersection of principal fractional ideals. There is, as 
with rings, a natural semigroup structure on D(S)y the set of divisorial 
fractional ideals. Furthermore, Prin (S), the set of principal fractional 
ideal of 5, is a subgroup of D(S), so we may define the divisor class 
semigroup of 5 to be CI (5) = D(S) /Prin (S). 

We call S integrally closed if x £ (S), a £ S and nx = a for some 
n ^ 1 implies x G S. S is completely integrally closed if x G (S), a £ S 
and a + nx 6 5 for all n ^ 1 implies x Ç S (this is Anderson's condition 
(*) in [1], Section 7). As with domains, if 5 is completely integrally 
closed then it is integrally closed, and the two conditions are equivalent 
if S satisfies the ace on ideals, so in particular if S is finitely generated 
(the proofs are similar to those for domains). It follows that the con­
dition " r is integrally closed" can be added to the equivalent conditions 
of Corollary 7.10 of [1]. More importantly, D(S) and CI (5) are groups 
if and only if 5 is completely integrally closed. 

Next, define a discrete valuation of a group G to be a group map 
v: G —» Z. The valuation semigroup of v is {x G G\v{x) ^ 0} and the 
residue group of the valuation is ker (v). We say v is normed if it is 
surjective. Note that if v is nontrivial, the valuation semigroup of v is 
isomorphic to (ker v) X Z + (since every nontrivial subgroup of Z is 
isomorphic to Z). 

Definition. The semigroup S is a Krull semigroup if there exists a 
family (z><) *e/ of discrete valuations of (S) such that S is the intersection 
of the valuation semigroups of the vu and for every x Ç 5, \i G I\vt(x) > 
0} is finite. 

The above definition is obviously a semigroup analogue to the usual 
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definition of Krull domains. However, in this setting the definition can 
be reformulated in a simpler way. 

PROPOSITION 1. Sis a Krull semigroup if and only if S = G X Si where 
G is a group and Si is a sub semigroup of a free group F = 0 i € 7 Zx* such 
that Si = (S i>n F+. 

Proof. If 5 is Krull, let the indexing set for F equal that for a set of 
valuations on (S) which shows S to be Krull, and define a group map \f/ 
from (S) to F by 

pr,(iKa;)) = Vi(x). 

Then S = ^-1(F+)1 and 

<S>^ker(*) X im(^) 

(since im \p is free), so setting Si = \f/(S) and G = ker \f/, we have the 
desired isomorphism. Conversely, if S = G X Si as described, it is clear 
that the valuations (Vi)iei of (S) defined by 

Viix) = pr* (pr<Sl>(x)) 

satisfy the requirements necessary to show S is a Krull semigroup. 

The following result is proved similarly to Theorem 2 in [4], VII. 1. 

PROPOSITION 2. S is a Krull semigroup if and only if it is completely 
integrally closed and satisfies the a.c.c. on divisorial ideals in S. In that 
case, the set P(S) of maximal proper divisorial ideals of S forms a Z-basis 
for D(S), such that under this basis D(S)+ corresponds to the divisorial 
ideals in S. 

Proposition 2 allows us to define the essential valuations of the Krull 
semigroup S as with Krull domains. These essential valuations are in 
one to one correspondence with the elements of P(S), which in turn 
can be identified with the set of minimal (nonempty) prime ideals of S 

Remark 1. It can be shown that for any semigroup map \f/: S —> Z with 
S a finitely generated semigroup, there exists a (calculable) finite 
generating set for the semigroup ^ - 1(Z+). Using induction on the 
number of valuations, this implies that a Krull semigroup S is finitely 
generated if and only if (S) is finitely generated. 

We shall state analogues to other results from VII. 1 of [4] as needed. 

3. Semigroup rings which are Krull domains. We first observe 
that if S ~ G X Si is a Krull semigroup with G and Si as in Proposition 1, 
then (S) satisfies the ace on cyclic subgroups if and only if G does. 
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THEOREM 1. A[S] is a Krull domain if and only if A is a Krull domain 
and S is a Krull semigroup such that (S) satisfies the ace on cyclic subgroups. 

Proof. Since A[(£)] can be regarded as a localization of A[S], if A[S] 
is Krull so is A[(S)] ([4], Proposition 6, VII. 1.4). Thus by Matsuda's 
result ([6], Proposition 3.3; or see [1], Theorem 2.7), A is a Krull domain 
and (S) satisfies the ace on cyclic subgroups. Moreover, if {va\a G /} is 
the set of essential valuations of A[S], their restriction to (S) C q.f. 
(A[S\) show that S is Krull. 

Conversely, if A and 5 satisfy the second part of the theorem, the 
result of Matsuda cited above proves that A [(S)] is a Krull domain. Thus 
it suffices to define discrete valuations va on 4[(S)] such that each 
nonzero element of A[(S)] has nonzero value at only finitely many of 
the valuations, and such that if 0 ^ / 6 4[(S)] , then / € A[S] if and 
only iiva(f) ^ 0 for all such va. Let (vt) *<=/ be a set of discrete valuations 
of the group (S) which show that S satisfies the definition of a Krull 
semigroup. For each i £ I, let vt be the inf valuation of A[(S)] defined 
by vu i.e., if 0 5*/G A[(S)], let 

vt(f) = inf {Vi(g)\g e supp ( / ) } 

([3]). Anderson and Ohm show that this is a valuation by noting that 
the partial order on (S) induced by vt extends to at least one total order 
of (5), and examining the minimal elements under any such total order 
in supp (/i) and supp (^2), 0 9e fi, f2 £ A[(S)], it is easily seen that 

Viifxf*) = vt(fi) + Vi(f2) and 

» < ( / i + / 2 ) è i n f M / i ) , 0 , ( / 2 ) ) . 

But clearly vt(f) ^ 0 for all i Ç / if and only if vt (supp ( / )) Q Z+ 

for all i £ / if and only if / G A [S], as desired. 

4. The class group of a Krull semigroup. 

LEMMA 1. Let A [S] be a Krull domain, so S = G X Si as in Proposition 
1. Then 

Cl(i4[5]) S Ë C I (A) 0 Cl(Si). 

Proof. By Proposition 7.3 and Corollary 6.7 of [1], 

Cl(A[S]) ^C\(A) 0 Cl(i£[S]) 

^ ci(i4) e c\(K[G]) e CICK^SI]) 

^ci(^) e c i^ i^ i ) 

where K = q.f. (A) and Ki = q.f. (K[G]), using the natural iso­
morphism K[G X Si] = K[G] [Si]. So we need only see that if Ki is a 
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field and Si is Krull semigroup, then 

Cl(2i:i[Si])^Cl(Si). 

By the comments following the proof of Theorem 4.2 in [1], however, 

ClCKTxK]) ^ HDiv(#i[Si])/HPrin(Xi[Si]), 

where HDiv(i£i[Si]) is the subgroup of Div(i£i[Si]) generated by the 
homogeneous height 1 prime ideals of i£i[Si], while 

HPrinCKifSi]) = Prin(X1[5i])nHDiv(2S:i[5i]), 

with Prin(i£:i[5i]) the image of q.f.(i£i[Si]) - {0} in D i v ^ S i ] ) . But 
there is a one to one correspondence from the homogeneous height 1 
prime ideals of i£i[Si] to P(Si) defined by p *—> p C\ Sx (again regarding 
Si as a subset of Ki[Si]), setting up a natural isomorphism between 
H D i v ^ x I ^ ] ) and D(Si). If, though, x Ç q.f.(^i[5i]) - {0} which 
maps into HDiv(i£i[Si]), then in the localization i£i[(Si)], x must be a 
unit, since every surviving valuation corresponds to a nonhomogeneous 
height 1 prime of Ki[Si]} where the value assigned x is by hypothesis 0. 
Since the units of i£i[(Si)] are exactly the nonzero homogeneous elements, 
x is homogeneous, i.e., x = kXg, k Ç K\, g £ (Si). But then the image 
of x in D(Si) under the above isomorphism equals the image of X°, which 
equals the image of g. This last equality can be checked at each element 
of P(Si) by first localizing Si (and i^i[5i]) by the complement of that 
prime ideal of Si, and noting that since the resulting semigroup must be 
a Krull semigroup with just one essential valuation, it has the form 
Gi X Z+, with Gi a group. Thus HPrin(2Ci[Si]) maps isomorphically 
onto Prin(Si) under the given isomorphism from HDiv(i^i[Sx]) to D(Si), 
and 

Cl( i^ 1[S 1])^Cl(S 1) . 

As a result of Lemma 1, to calculate C1(-4[S]) it suffices to be able 
to calculate CI (̂ 4) (which is often known) and C1(S), which is a much 
easier problem in many cases. Furthermore, we may assume S = Si, i.e., 

SQ F = 0 , € / Z x , a n d S = (S) Pi 7 v 

As Anderson points out in [2], K[S] can then be regarded as a monomial 
generated subring of a polynomial ring. He showed in Theorem 3 there 
that if F/(S) is torsion and S is reduced in F (i.e., pr*|<,s>: (S) —» Z is 
surjective for all i Ç / ) , then C1(S) ^ F/(S). We generalize this to 
eliminate the torsion requirement in the following result, which is the 
key to calculating class groups of Krull semigroups (note Anderson's 
hypotheses imply (2) below). 
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THEOREM 2. Let F = 0 ^ 7 Z x * be a free abelian group, S a subsemi­
group of F such that S = (S) C\ F+. The following are equivalent and imply 
C\(S) £ÉF/(S): 

(1) If a, 13 £ I, then pr«| <s) is an essential valuation of S, and pr«| <s> = 
pr/3|<s) implies a = fi. 

(2) 5 is a reduced subsemigroup of F, and for every a, fi £ I with a ^ fi, 
there exists an s £ S such that pr^s) > 0 = pra(s). 

(3) The set Ta = {xp + (S)\a ^ fi Ç /} generates F/(S) as a semigroup 
for every a G F 

Proof. If (1) holds, since essential valuations are always surjective, it 
follows that S is a reduced subsemigroup of F. However, analogously to 
Proposition 6 of [4], VII. 1, we have that for any Krull semigroup S, if 
P Ç P(S) then P is prime and the semigroup of vP is S + (-T) where 
T is the complement of P in S. Note also that 

P = {x e S\vP(x) > 0}. 

Thus if prp(s) > 0 implies pr«(s) > 0, 

{s e S\ pra(s) > 0} 3 {s e S\ prp(s) > 0}, 

so the valuation semigroup for p r ^ s ) contains that for pra|<s>, and they 
are equal. Thus the valuations are equal, a contradiction. So (1) implies 
(2). 

To show (2) implies (1), we note that (2) implies the pra|<,s> are 
clearly distinct normed valuations on (S). But analogously to Corollary 2 
to Theorem 3 of [4], VII. 1, if S is a Krull semigroup and v a normed 
valuation of (S), then v is an essential valuation of S if and only if 
{s G S|ÎJ(S) > 0} is a minimal (nonempty) prime ideal of 5 and v(s) ^ 0 
for all 5 Ç 5, Thus in our case it suffices to show that if a £ / , sa Ç 5 
such that pra(sa) > 0, then every element of S divides some element of 
the semigroup generated by ker (pra|s) U {sa}. However, since 
5 = (S) C\ F+, divisibility in S agrees with divisibility in F+ for elements 
of S. But pra(sa) > 0 and by (2) elements can be chosen from ker(pra|,s) 
which make any other projection positive, so any element of F+ divides 
an appropriate product of elements from ker(pra |s) and a power of sa. 

To prove (2) implies (3), we note that if a ^ fi and s £ S = (S) P\ F+ 

such that prp(s) > 0 = pra(s), then x$\s and xa \ s, so 

—xp + s = ^2 nyxy G —XQ + (S), w T ^ 0 for all 7, 

so — xp + (S) is in the subsemigroup of F/(S) generated by Ta, and this 
subsemigroup is a subgroup. But since 5 C F is reduced, (S) contains 
an element of the form xa + X/y^« nyxJ} which demonstrates — xa + (5) 
is in the subsemigroup generated by Ta. Reversing this argument shows 
that (3) implies (2). 
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It remains to be seen that (1) implies CI (5) == F/(S). First, we claim 
that (pri)iç.r contains all the essential valuations of 5. For there is a 
one to one correspondence between the essential valuations of 5 and the 
elements of P(S), and also a one to one correspondence between the 
elements of P(S) and the height one homogeneous primes of K[S], K a 
field. But our proof of Theorem 1 shows that K[S] is the intersection of 
i£[(£)] with the valuation rings of the inf valuations corresponding to 
the (pr^iÉ/, so by Corollary 2 to Proposition 5 in [4], VII. 1.4, every 
essential valuation of K[S] must be equivalent to one of these, so every 
minimal prime of K[S] must arise from one of these. But the minimal 
prime corresponding to a valuation from i£[(5)] is nonhomogeneous, 
while the prime in K[S] corresponding to the inf valuation from pr* is 
the prime obtained by extending to K[S] the prime of 5 corresponding 
to prz. Thus if any essential valuation of S were missing, there would also 
be an essential valuation of K[S] missing, which is impossible. (This also 
serves to establish the analogue of Corollary 2 to Proposition 5 in [4] for 
Krull semigroups.) Now, if the identification between ( p r t ) ^ 7 and the 
set of essential valuations of 5 has pr* corresponding to Pt £ P(S), then 

Prin(S) = { E p r * ( g ) i M g 6 (S)} 

while 

(-5)= { £ p r , ( g ) * , U e (S)\ 

so the isomorphism rj: F—>D(S) such that 77(xr) = Pi takes (S) to 
Prin(5), and 

CI(S) = D(S)/Prm(S) 9Ë F/(S). 

Remark 2. If H is a subgroup of F such that (3) holds with (S) replaced 
by Hj then H = {H Pi F+). If further if is a finitely generated group, 
then H C\ F+ is a finitely generated Krull semigroup by Remark 1, and 
satisfies C l ( # n F+) ^ F/H. 

Remark 3. Statement (3) in principle determines the isomorphism 
classes of Krull semigroups in which only the identity is invertible, and 
which have a given divisor class group G. By (3) and Remark 2, such 
semigroups are exactly those of the form F+ P\ ker (0), where <j>: F = 
0 i e j Zxt —> G is any group map such that for every 0 Ç I, <t>({xa\a ?£ 0}) 
generates G as a semigroup. If <t>'\ Fr = 0 ^ , / Zjj —» G satisfies similar 
conditions, the corresponding Krull semigroups are isomorphic if and 
only if there exists a bijection r: / —» I and an automorphism or of G 
such that 

t'bj) = <K«(*r(i))) for a l l j 6 / . 

Note that since F+ C\ ker <j> must also satisfy (2), it cannot be finitely 
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generated unless F is, while by Remark 2 if F is finitely generated, 
ker(#) C\ F+ must be also. 

Example 1. Let F = Z#i © Zx2 © Zx3, and define <j>: F —> Z3o = 
Z/(30Z) by 

*(*i) = 2, 0(5c2) = 3, </>(x3) = 5, S = F+ H ker(0). 

Then 5 is a Krull semigroup with CI (5) = Z30. As a semigroup, 5 
requires 21 generators. If instead we had set <£(x3) = — 5, 5 would have 
required only 10 generators. 

Remark 4. To determine the generators of F+ P\ ker <t>, as in the 
example, is the same problem as to determine the minimal nonzero 
elements of F+ C\ ker (j> under the partial ordering on F with positive 
cone F+ — {0}. When the class group is torsion and F is finitely generated, 
we can immediately bound the coefficients of each basis element of F 
above by the smallest positive multiple of that basis element which sits 
in ker <f>, and thus reduce the problem to a finite search. Thus in the 
example above, we know that any generator x of S will satisfy 

0 g pri(x) g 15, 0 ^ pr2(x) ^ 10, and 0 g pr3(x) g 6. 

Just starting with this and a basis such as (15,0,0) , ( — 3, + 2 , 0 ) , 
( — 1, — 1 , + 1 ) for ker 0, it is not hard to determine the minimal elements 
of 5 — {0} by hand. If the divisor class group is not torsion, determining 
the minimal nonzero elements of F+ P\ ker <j> can still be done algorith-
mically, as indicated in Remark 1, but the only general algorithm the 
author is aware of uses the result mentioned in that remark, which is 
often awkward to use. A better algorithm which does not require an 
inductive procedure based on the number of valuations would be 
desirable. 

Remark 5. The comment in the proof of Theorem 2 that the semi­
group analogue of Corollary 2 to Proposition 5 in [4], VII. 1.4 holds can 
also be used to assist in determining the divisor class group of a semi­
group 5 C F = 0 ^ / Z X Î such that 5 = (5) C\ F+ but not satisfying 
( l ) - (3) . Namely, by replacing basis elements of F by appropriate 
multiples we may change to the case where (S) is a reduced subsemigroup 
of F. Next eliminate duplication on the projections, i.e., if for every 
element of 5, the coefficients of xt and Xj agree, eliminate one of {i, j) 
from / , and continue eliminating coordinates until no two agree on 5. 
Finally, eliminate any a £ I which does not satisfy condition (2) in 
Theorem 2 for every p £ i". This eliminates the valuations that corre­
spond to non-minimal primes of S. What remains is a free group 
F' = 0 < € / ' Z ( « ^ f ) such that Sembeds in F' so that S = (S) C\ F+

f and 
the embedding satisfies (2) in Theorem 2. 
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Example 2. Let 5 be the subsemigroup of F = Zxi © Zx2 © TJXZ 
generated by (1, 0, 1) and (0, 5, 2). It is easily checked that 5 = {S)C\ F+. 
We first make 5 reduced in F by dividing the second coordinate by 5 
(which is equivalent to replacing x2 by 5x2). Thus 5 is now generated 
by (1, 0, 1) and (0, 1,2). Since the third coordinate cannot be made 0 
while the first (or second) coordinate is positive, we eliminate it. Now 5 
is generated by (1, 0) and (0, 1). This embedding satisfies Theorem 2, 
and we see Cl (S) ^ 0. 

COROLLARY 1. Every abelian group is the class group of a Krull semi­
group. The semigroup can be chosen to be finitely generated if and only if 
the group is finitely generated. 

Proof. If G is the abelian group, let {zj\j £ J) be a set of semigroup 
generators for G. Note / can be chosen to be finite if and only if G is 
finitely generated as a group. Let / = {0, 1} X / and define 

</>: F = 0 i c z Ixx ~> G 

by 

*(*<«..») = zi f°r anY (ô J) £ !• 

By Remark 3, 5 = F+C\ ker(<£) has class group isomorphic to G. By 
Remark 2, if J is finite, this semigroup is finitely generated. 

In view of Claborn's result [5] that every abelian group is the divisor 
class group of a Dedekind domain, the above does not seem too exciting. 
Indeed, since S can only be chosen finitely generated if Cl (S) is to be so, 
the resulting semigroup rings are often non-Noetherian. However, 
following [2], Theorem 10, the above implies a more interesting result. 

COROLLARY 2. If G is any abelian group, there exists a quasi-local Krull 
domain A such that CI (̂ 4) ~ G. 

Proof. Let S be as in the proof of Corollary 1, K a field, and A — K\S\M 
where M is the maximal ideal of K[S] consisting of elements whose 
coefficient of the identity is 0. Since only the identity is invertible in 5, 
K[S] is a Krull domain by Theorem 1. Grading K[S] by assigning to 
each s Ç S the degree of the sum of its essential valuations, Proposition 
7.4 of [7] implies that 

Cl(i4) ^C1(X[5]) ^G. 
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