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1. Introduction

The purpose of this paper is to answer the question: which self-adjoint operators
on a separable Hilbert space are the real parts of quasi-nilpotent operators? In the
finite-dimensional case the answer is: self-adjoint operators with trace zero. In the
infinite dimensional case, we show that a self-adjoint operator is the real part of a
quasi-nilpotent operator if and only if the convex hull of its essential spectrum
contains zero. We begin by considering the finite dimensional case.

Theorem 1. A self-adjoint square matrix is the real part of a nilpotent matrix if
and only if it has trace zero.

Proof. Let A be the real part of a nilpotent matrix N. Since N is unitarily
equivalent to an upper triangular matrix with main diagonal 0, we have tr N = 0,
tr N* = 0, and tr A = i(tr N + tr N*) = 0.

Conversely, if tr A = 0, then A is unitarily equivalent to a matrix B with main
diagonal zero. (Proof: by induction on the size of the matrix, using the observation
that 0 belongs to the numerical range of A; for details see (1)). Then obviously
2B = N + N* with N strictly upper triangular and hence nilpotent. But B — Re N and
it follows that A is the real part of a nilpotent matrix.

2. The main result

Let #f be a separable infinite-dimensional Hilbert space. We will denote the
essential spectrum of an operator T by ae(T), and the convex hull of a set 5 by
conv S. If T is an operator on W, then T = (CD) denotes the matrix of T with respect
to an orthogonal decomposition 5if = M © N into infinite-dimensional subspaces.

Theorem 2. / / A is the real part of a quasi-nilpotent operator Q, then 0 belongs to
the convex hull of the essential spectrum of A.

Proof. First we show that A cannot be positive and invertible. If A is positive
and invertible, B self-adjoint, and T = A + iB, then A~mTA-m = I + iA~mBA-m is
invertible, and so T cannot be quasi-nilpotent. By considering —A in place of A we
also conclude that A cannot be negative and invertible, and therefore zero belongs to
conv a(A). The same argument applies in any C*-algebra, in particular in the Calkin
algebra si, and since the image of Q in si is quasi-nilpotent, we have 0 G conv ae(A).
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To prove the converse of Theorem 2 we need several Lemmas.

Lemma 1. / / A is self-adjoint and 0 G conv at(A), then A = (A
o' i2) with 0 G

conv ae(Ai) for i = 1,2.

Proof. If <re(A) contains a positive number and a negative number, then A = (? ")
with B 25 0 and C =£ 0. Take M to be the direct sum of a "half" of the first coordinate
space which reduces B and a half of the second coordinate space which reduces
C. The matrix of A relative to the decomposition <dC = M@ML has the required
property.

To complete the proof it is enough to consider the case where A is essentially
positive. If the null space of A is infinite-dimensional, we can take M to be half of the
null space. Otherwise there must exist a sequence {an} of positive numbers decreasing
to zero such that E(an+\,an)W is non-zero for every n, where E is the spectral
resolution of A. If 8 is the union of the intervals (an+l, an) for n even and M = E{8)%e,
then the decomposition #f = M®ML has the required property.

Lemma 2. / / T is an operator with OGconv a-e(T), then T = (*, K) with K a
compact operator.

Proof. A result of Fillmore, Stampfli, and Williams (2, Theorem 5.1) asserts this
conclusion if 0 lies in the essential numerical range of T. But the essential numerical
range contains the convex hull of the essential spectrum.

Lemma 3. / / A and B are real parts of quasi-nilpotent operators, then so is (<-• a).

Proof. Let A (respectively B) be the real part of the quasi-nilpotent operator Qt

(respectively Q2), and let Q = ($ (£). The real part of Q is obviously (£ s), and
furthermore Q - A is invertible for every nonzero A, so Q is quasi-nilpotent.

Theorem 3. / / A is self-adjoint and 0 G conv cre(A), then A is the real part of a
quasi-nilpotent operator.

Proof. By Lemmas 1 and 2,

A =

*
*
0
0

*

0
0

0
0
*
*

0
0
*
K

with K\ and K2 compact. By interchanging the second and fourth direct summands
the matrix becomes
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In view of Lemma 3, it is now enough to prove that if K is compact then (5 £) is the
real part of a quasi-nilpotent. (The reduction of the general problem to this class of
operators is similar to the one used by Sam Holby (3) in treating the Brown-Pearcy
commutator theorem.) So let A = (o K); since we may write K as a direct sum K\ © K2

where K2 is of trace-class, and then absorb K\ into B, we will assume that K is of
trace-class. Write K as a direct sum of operators Kn for n ^ 0, and let KQ = B. We
may assume that these operators act on a fixed Hilbert space %, so that

on 12{W). Let M = 2 \\Kn\\, and observe that M < °° since

2 IIK.II« 2 tr (K*Kny>2 = tr (K*K)"\

Let L2([0, 1], 30 be the Hilbert space of %-valued weakly measurable functions on
[0,1] with

!=fVo)ll2«ft
Jo

<oo.

We will construct a quasi-nilpotent integral operator on L2([0, 1], 3f) whose real part is
unitarily equivalent to A. To this end, let

4>{s,t)= § e2™(i-"Kn

for 0=£.s, t^\. The series converges uniformly and defines a continuous function
from [0,1] x [0, 1] into S3(3if). Define an operator V on L2([0,1], Sif) by

(see (4), Sections 3.5 and 3.7 for basic facts about vector-valued (Bochner) integrals).
Such Volterra-type integral operators are well-known to be quasi-nilpotent, at least in
the scalar case. For completeness we include a proof of this fact in Lemma 4 below. It
remains only to show that Re V is unitarily equivalent to A. First observe that

and that <£(f, s)* = <f>(s, t), and therefore

((Re V)f)(s)=

If / 6 L2([0, 1], %) has Fourier expansion

f(t) = V e2mntx x g 5if V llv ip = |

then easily

((Re V)f)(s) = 2 e2"""KnJcn,
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and it follows that A is unitarily equivalent to Re V. This is because the subspaces X
consisting of all g(t) = e2™'x, xE.%, are pairwise orthogonal, span L2([0, 1], df), and
are invariant for Re V with Re V\3Cn unitarily equivalent to Kn.

Corollary 1. The set of real parts of quasi-nilpotent operators is closed in the
uniform operator topology.

Proof. If An -»/4 in norm and F is a closed set with <re(An) D F ^ 0 for every n,
then ae(A) D F ^ 0 by the upper semi-continuity of the spectrum. Applying this with
F = [0, +0°) and F = (-oo, 0] gives the result.

Corollary 2. / / A is a compact self-adjoint operator then A is the real part of a
compact quasi-nilpotent operator.

Proof. We need only show that the operator V constructed in the proof of
Theorem 3 (with Ko compact) is a compact operator. Let Vn be the operator defined
by

(VJ)(*) = Kn f' €2™(J-"/(0 dt.

Jo

Then Vn is compact for all n, V = S"=-« Vn, and 21| V j =£ S ||*:J <oo, so V is compact.

Lemma 4. Let % be a Hilbert space, and let (s,t)^> K(s,t)G@(S£) be weakly
measurable on 0 « t « s s l and satisfy M = /o' /,? \\K(s, t)\\2 dt ds < °°. Then the
operator V defined on L2([0, 1], VC) by

is quasi-nilpotent.

=f K(s,t)f(t)dt
Jo

Proof. Let / G L2([0, 1], T). Then

\\(Vf)(s)\\2 = \\( K(s,t)f(t)dt\\2

Jo

where a(s) = /o
s \\K(s, t)\\2 dt. By induction

||(V7)(s)||2« a(s) I' a(Sl) f" a(s2)... {^ a(sn-t) dsn->... ds^ff
Jo Jo Jo

for all n 5s 1, and therefore
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f' o(s,) f ' a ( 5 2 ) . . . C"1 a(sn) d s n . . . dsx\\ff
Jo Jo Jo

so that || VW11"->0.

3. Operators with imaginary spectrum and nilpotent operators

Which operators are the real parts of nilpotent operators? Which operators are the
real parts of operators with imaginary spectrum? The following result answers the
second question.

Theorem 4. For any self-adjoint operator A the following conditions are
equivalent:

(a) A is the real part of an operator with (purely) imaginary spectrum;
(b) A is the real part of a quasi-nilpotent operator;
(c) 0 G conv cxe(A).

Proof. The implication (c) 4> (b) is Theorem 3, and (b) => (a) is trivial. The proof
of (a) ^> (c) is similar to the proof of Theorem 2. If T = A + iB and if ir is the
canonical projection of 38($f) onto the Calkin algebra, let t = TT(T), a = ir(A), b =
TT(B). If a is positive and invertible, and A is a real number, then a~"\t - i\)a~m =
1 + ia'm(b - A)a~"2 is invertible, and so t - /A is invertible for every A. If t has purely
imaginary spectrum, then a cannot be positive and invertible. The same applies to -a,
so 0 G conv a(a) = conv ae(A).

Let SfceJf denote the class of operators which are real parts of nilpotent operators. The
next result shows that the norm-closure of @leJf is the set of real parts of quasi-nilpotent
operators, and also gives another characterisation of the latter.

Theorem 5. For any self-adjoint operator A the following conditions are
equivalent:

(a) A belongs to the norm-closure of 0ttJf,
(b) A is the real part of a quasi-nilpotent operator;
(c) for each e > 0, there exists a decomposition I = Ex + • • • + Em into pairwise

orthogonal projections such that ^EkAEk^ < e for all k.

Proof. The implication (a) =>(b) follows from Corollary 1. To prove (b)=>(c) it
suffices to show that every quasi-nilpotent operator satisfies condition (c). Let Q be a
quasi-nilpotent operator and let e > 0. By a theorem of Rota (6), there is an invertible
operator S such that ||S"'Q5|| < e/2. If S = PU is the polar decomposition of S, where
P is positive and U is unitary, then ||P"'0P|| = ||S"'Q5||< e/2. By the spectral
theorem, there is a positive operator Po with finite spectrum {A,,..., Am} such that
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\\PolQPo~ P'lQP\\<e/2. If Ek is the spectral projection for Po associated with At,
then P0Ek = \kEk and EkPo' = \k

lEk, and so

\\EkQEk\\ = \\EkPo 'QPoEk\\ « UPo'QPoll < *•

Finally we show (c) 4> (a). Let A be a self-adjoint operator, let e > 0, and let Ek be
as in condition (c). Let T = 2 2i<kEjAEk. Then Tm = 0 and

Therefore

||Re T-A\\ = | |2 EtAEkj = max \\EkAEk\\ < e

and (a) follows.

4. Final remarks

1. An operator A is called a self-commutator if A = T*T-TT* for some operator T.
Radjavi (5) showed that a self-adjoint operator A is a self-commutator if and only if
0 £ conv o-e(A). Consequently the class of self-commutators is the same as the class of
real parts of quasi-nilpotents. It should be noted that the last assertion is also valid on
finite-dimensional spaces (both coincide with the class of operators of trace zero).
2. The set of real parts of quasi-nilpotents is closed in the uniform operator topology.
However, the set of real parts of nilpotent operators 0leJf is not (except on
finite-dimensional spaces). For example a projection of rank one is the real part of a
quasi-nilpotent by Theorem 3, and hence belongs to @teN by Theorem 5. But if N is a
nilpotent operator, then there is an orthonormal basis {en} such that (Nen, en) = 0 for all
n, so that if Re N is of trace class, it must have trace zero. In particular Re N can
never be a projection of rank one.
3. We have confined our attention to separable Hilbert spaces. However, the tech-
niques used here can be modified to allow us to describe the real parts of quasi-
nilpotents on a non-separable Hilbert space Sif. Let £ be the largest closed ideal in
28(3€), i.e., the closure of the ideal of all operators A such that the dimension of the
closure of the range of A is less than the dimension of $f. Let 770 denote the canonical
projection of 38($f) onto 33(3€)l^- The analogue of Theorems 2, 3 and 4 is the
following theorem.

Theorem. Let A be a self-adjoint operator on an infinite-dimensional Hilbert
space. The following conditions are equivalent:

(i) A is in the closure of the set of real parts of nilpotent operators;
(ii) A is the real part of a quasi-nilpotent operator;

(iii) A is the real part of an operator with imaginary spectrum;
(iv) 0 6 convcr(7roG4));
(v) A can be written as the direct sum 1 © Aa, with each Aa acting on a separable

space and 0 £ conv o-e(Aa).
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Finally, since Corollary 1 extends to the non-separable case, we note that Theorem
5 is valid (with the same proof) on non-separable Hilbert spaces.
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