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Spectral identities for Schrödinger operators

Namig J. Guliyev

Abstract. We obtain a system of identities relating boundary coefficients and spectral data for the
one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz–
Nevanlinna functions of the eigenvalue parameter. These identities can be thought of as a kind of
mini version of the Gelfand–Levitan integral equation for boundary coefficients only.

1 Introduction and main result

In this paper, we are interested in boundary value problems generated by the one-
dimensional Schrödinger equation

−y′′(x) + q(x)y(x) = λy(x)(1.1)

and the boundary conditions

y′(0)
y(0) = − f (λ), y′(π)

y(π) = F(λ),(1.2)

where f and F are rational Herglotz–Nevanlinna functions. Their spectral theory is
mostly analogous to the classical case – when the coefficients f and F in (1.2) are
constants – not only for summable potentials [8] but also for distributional potentials
[10] and those with inverse square singularities [12]. There appear, of course, some
new phenomena. For example, two spectra may no longer be sufficient to determine
the coefficients of (1.1)–(1.2) uniquely [9] and it is quite possible for eigenfunctions not
to be a basis for L2(0, π), even after removing some of them [11]. However, it is still
possible to determine the coefficients of (1.1)–(1.2) from the knowledge of its spectral
data consisting of the eigenvalues and the so-called norming constants (see (2.3)
below). The purpose of this short paper is to establish some simple identities relating
the boundary coefficients (i.e., f and F) and the spectral data of (1.1)–(1.2) with a real-
valued potential q ∈ L1(0, π), and which, in particular, allow one to find the boundary
coefficients in a much more direct way. Remarkably, some of the objects that we use
in this paper, namely the polynomial ω f and the matrices of (1.4), are very similar to,
but not quite identical with, those encountered in other areas of mathematics [14].

Apart from being interesting in their own right, eigenvalue problems with
boundary conditions dependent on the eigenvalue parameter have found numerous
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applications in various fields of science. We refer the interested reader to [5] and
the references therein for many specific examples of such eigenvalue problems
that arise naturally in a variety of physical problems, including heat conduction,
diffusion, vibration, and electric circuit problems. More recently, problems with
eigenparameter-dependent boundary conditions have been considered in the
literature in connection with such diverse areas as heat transfer [2], quantum
mechanics [6], string theory [13], fluid dynamics [15], biology [16], mathematical
finance [19], and quantum computing [20]. Interestingly, the last-mentioned paper
also discusses some identities of the kind considered in Remark 2 below. On the other
hand, from an operator-theoretic point of view, eigenparameter-dependent boundary
conditions are related to the so-called exit space extensions of the minimal differential
operator generated by (1.1) (see, e.g., [1, Section 6.6]). Then boundary conditions
containing rational Herglotz–Nevanlinna functions are those that correspond to
self-adjoint extensions with finite-dimensional exit spaces [3], [4].

We now recall some necessary notation from [8] related to rational Herglotz–
Nevanlinna functions. Each such function can be written as

f (λ) = h0 λ + h +
d
∑
k=1

δk

hk − λ
(1.3)

with h0 ≥ 0, h ∈ R, δk > 0, and h1 < ⋅ ⋅ ⋅ < hd . To every function f of this form, we
assign two polynomials f↑ and f↓ by writing this function as

f (λ) = f↑(λ)
f↓(λ) ,

where

f↓(λ) ∶= h′0
d
∏
k=1

(hk − λ), h′0 ∶=
⎧⎪⎪⎨⎪⎪⎩

1/h0 , h0 > 0,
1, h0 = 0.

We also associate to f its index

ind f ∶=
⎧⎪⎪⎨⎪⎪⎩

2d + 1, h0 > 0,
2d , h0 = 0,

which counts each finite pole of this function twice and its pole at infinity (if any) once.
To each rational Herglotz–Nevanlinna function f, we also assigned in [8] a monic
polynomial

ω f (λ) ∶= (−1)⌊
ind f

2 ⌋λ f↓ (λ2) − (−1)⌈
ind f

2 ⌉ f↑ (λ2) ,

where ⌊⋅⌋ and ⌈⋅⌉ are the usual floor and ceiling functions. The second and third
coefficients of the latter polynomial appear in the asymptotics of the eigenvalues
[8, Section 4.1] and trace formulas [8, Section 4.3] for the problem (1.1)–(1.2).

Now we are ready to introduce the main players of this paper. Denote by λn the
eigenvalues of the boundary value problem (1.1)–(1.2) and by γn its norming constants
defined by (2.3) below. Consider the sums of the series
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σk ∶=
∞
∑
n=0

λk
n

γn
, k = 0, 1, . . . , ind f − 1

and

σind f ∶= ∑
n<L

λind f
n

γn
+ ∑

n=L

⎛
⎝

λind f
n

γn
− 1

π
⎞
⎠
+ ∑

n>L

⎛
⎝

λind f
n

γn
− 2

π
⎞
⎠

with

L ∶= ind f + ind F
2

,

whose convergence is an immediate consequence of the asymptotics of the eigenval-
ues and the norming constants [8, Theorem 4.2]. Alternatively, their convergence also
follows from the proof below (see Section 2). On the other hand, the above polynomial
ω f can be written as

ω f (λ) = λind f+1 + ω1 λind f + ⋅ ⋅ ⋅ + ωind f+1 .

It turns out that these two (ind f + 1)-tuples σ0, . . . , σind f and ω1, . . . , ωind f+1 are
related in a rather simple way.

Theorem 1 The following identities hold:

(−1)k ω1−k +
⌊(ind f+1−k)/2⌋

∑
i=−⌊k/2⌋

σind f−i−k ω2i+k = 0, k = 0, 1, . . . , ind f(1.4)

with the convention that ω0 = 1 and ωm = 0 if m < 0. Moreover, this system is uniquely
solvable, both when either ω1, . . . , ωind f+1 or σ0, . . . , σind f are treated as variables.

We will prove this theorem in the next section. It is interesting to note that the
system (1.4) resembles, in a sense, the Gelfand–Levitan integral equation. Indeed,
the numbers ωk are defined in terms of the coefficient f and play the role of the
Gelfand–Levitan kernel. The numbers σk , on the other hand, are defined in terms of
the eigenvalues and the norming constants, and thus play the role of the other function
of two variables from the Gelfand–Levitan equation, usually denoted by f (⋅, ⋅) or
F(⋅, ⋅).

Remark 2 The above theorem allows one to determine f in terms of the coefficients
of the polynomials f↓ and f↑. It is also possible to obtain some identities involving
the coefficients in the representation (1.3). Recall that [8, Section 2.2] the boundary
value problem (1.1)–(1.2) can also be stated as an eigenvalue problem for a self-adjoint
operator in a Hilbert space of the form L2 ⊕C

M for a suitable M, namely

M ∶= ⌈ ind f
2

⌉ + ⌈ ind F
2

⌉ .
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Parseval’s identity for the eigenvectors of this operator yields the identities

1
δk

=
∞
∑
n=0

1
γn

( f↓(λn)
λn − hk

)
2

, k = 1, . . . , d

and

1
h0

=
∞
∑
n=0

f 2
↓ (λn)

γn
,

including the possibility that both sides of this last identity are infinite. However, it
seems that we still need the above theorem to determine h1, . . . , hd , or equivalently
f↓. Such identities were obtained in [7] for the case when ind f = ind F = 2.

Remark 3 Of course, all of the above identities have their counterparts for the right
endpoint. One only needs to replace γn by β2

nγn everywhere, where βn is defined by
(2.2) below. This can be proven by repeating the corresponding arguments for the
left endpoint. A much shorter proof can also be given, based on a simple symmetry
argument: for the boundary value problem of the form (1.1)–(1.2) with q(x), f, and F
replaced by q(π − x), F, and f, respectively, the roles of the solutions φ and ψ defined
by (2.1) are interchanged, and hence that problem has the same eigenvalues λn and
the norming constants β2

nγn .

In addition to being interesting for their own sake, these identities also have a
multitude of applications to inverse problems. For example, for constant f (i.e., when
ind f = 0), the system (1.4) consists of only one identity and this identity is a key
ingredient in Korotyaev and Chelkak’s parametrization of sets of isospectral problems
[17]. The identities (1.4) also play an important role in the solution of the two-spectra
inverse problem [9, Lemma 2.1] for boundary value problems of the form (1.1)–(1.2).

We have already pointed out that the identities (1.4) allow one to avoid the whole
machinery of [8] and compute the boundary coefficients f and F directly. Indeed,
the method developed in [8] consists of first reducing the given spectral data to the
spectral data of a boundary value problem with constant boundary coefficients, then
reconstructing the latter problem by using the Gelfand–Levitan integral equation, and
finally determining the coefficients of a problem of the form (1.1)–(1.2) by applying
Darboux-type transformations defined in that paper. But if one is only interested in
finding the boundary coefficients, then the coefficients of the polynomials ω f and
ωF – and thus the boundary coefficients of (1.1)–(1.2) – can be determined just by
solving the system (1.4) and their analog for the right endpoint. This idea also applies
to two-spectra inverse problems, as they are usually solved by reduction to the above-
mentioned inverse problem by eigenvalues and norming constants.

The result of this paper can also be useful in the so-called incomplete inverse
problems. To determine the boundary value problem (1.1)–(1.2) completely, one needs
to know all of the eigenvalues and the norming constants. But if we have some
extra information about the coefficients of this boundary value problem, a part of
this spectral data can be omitted (see, e.g., [8, Section 4.6], [22], and the references
therein). In particular, if the boundary coefficients f and F are known and some of
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the eigenvalues and the norming constants are missing, with the number of missing
ones not exceeding ind f + ind F + 2, then the identities (1.4) (and their counterparts
for the right endpoint, mentioned in Remark 3) give us algebraic equations for these
missing ones.

2 Proof

Before turning to the proof, we need some more definitions and preliminary results.
Let φ(x , λ) and ψ(x , λ) be the solutions of (1.1) satisfying the initial conditions

φ(0, λ) = f↓(λ), φ′(0, λ) = − f↑(λ), ψ(π, λ) = F↓(λ), ψ′(π, λ) = F↑(λ).
(2.1)

Then the eigenvalues of the boundary value problem (1.1)–(1.2) coincide with the zeros
of the characteristic function

χ(λ) ∶= F↑(λ)φ(π, λ) − F↓(λ)φ′(π, λ) = f↓(λ)ψ′(0, λ) + f↑(λ)ψ(0, λ),

and for each eigenvalue λn there exists a unique number βn ≠ 0 such that

ψ(x , λn) = βn φ(x , λn).(2.2)

We define the norming constants as

γn ∶= ∫
π

0
φ2(x , λn)dx + f ′(λn)φ2(0, λn) + F′(λn)φ2(π, λn),(2.3)

where the second (respectively, the third) summand on the right-hand side is omitted
if λn coincides with one of the poles of the function f (respectively, F). The three
sequences {λn}n≥0, {βn}n≥0, and {γn}n≥0 are related by the identity ([8, Lemma 2.1])

χ′(λn) = βnγn .(2.4)

The solution ψ and its first derivative with respect to x satisfy the asymptotic
estimates

ψ(0, λ) = λind F/2 cos(
√

λ + ind F
2

) π

+ ( 1
2 ∫

π

0
q(x)dx + Ω1) λ(ind F−1)/2 sin(

√
λ + ind F

2
) π

+ o (λ(ind F−1)/2e∣ Im
√

λπ∣)

and

ψ′(0, λ) = λ(ind F+1)/2 sin(
√

λ + ind F
2

) π

− ( 1
2 ∫

π

0
q(x)dx + Ω1) λind F/2 cos(

√
λ + ind F

2
) π

+ o (λind F/2e∣ Im
√

λπ∣) ,
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which in turn imply the asymptotic formula

χ(λ) = λL+1/2 sin(
√

λ + L) π

− ( 1
2 ∫

π

0
q(x)dx + ω1 + Ω1) λL cos(

√
λ + L) π + o (λL e∣ Im

√
λπ∣) ,

for the characteristic function. These estimates can be obtained by expressing ψ as a
linear combination of the cosine- and sine-type solutions and using the well-known
estimates for them (cf. the proof of [8, Lemma 2.2]). Another possible way to obtain
these formulas is to observe that they all are (up to a change in sign) the characteristic
functions of problems of the form (1.1)–(1.2) (with the Dirichlet condition at the left
endpoint in the case of ψ(0, λ) and the Neumann condition in the case of ψ′(0, λ))
and then apply a lemma of Marchenko and Ostrovskii (see [18, Lemma 3.4.2]) to their
infinite product representations (cf. [9, Appendix A]).

We are now going to obtain the identities (1.4) as a consequence of a well-known
result from complex analysis: if g is a meromorphic function satisfying the estimate

sup
∣λ∣=RN

∣g(λ)∣ = o ( 1
RN

)

with

RN ∶= (N − L − 1
2
)

2
,

then the sum of the residues of this function, defined as 1
2πi limN→∞ ∫∣λ∣=RN

g(λ)dλ,
is zero [21, Lemma 3.2].

It is convenient to consider the cases of odd and even ind f separately. However,
since the arguments are very similar in both cases, we give the details only for the for-
mer case. Taking g(λ) = λ jψ(0, λ)/χ(λ) and g(λ) = λ jψ′(0, λ)/χ(λ), respectively,
in the above result for j = 0, 1, . . . , d − 1 and using (2.4), we obtain

∞
∑
n=0

λ j
n f↓(λn)

γn
=
∞
∑
n=0

λ j
n βn f↓(λn)

χ′(λn)
=
∞
∑
n=0

Resλ=λn

λ jψ(0, λ)
χ(λ) = 0

and

∞
∑
n=0

λ j
n f↑(λn)

γn
=
∞
∑
n=0

λ j
n βn f↑(λn)

χ′(λn)
= −

∞
∑
n=0

Resλ=λn

λ jψ′(0, λ)
χ(λ) = 0,

which are exactly the identities (1.4) for k = 2, 3, . . . , ind f . To obtain the case k = 1,
we take

g(λ) = λd ψ(0, λ)
χ(λ) − (−1)d

λ
.
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Finally, the case k = 0 is obtained by taking

g(λ) = (−λ)dψ′(0, λ)
χ(λ) + λ−1/2 cot(

√
λ + L) π

+ ( 1
2 ∫

π

0
q(x)dx + ω1 + Ω1) λ−1 cot2 (

√
λ + L) π

+ ( 1
2 ∫

π

0
q(x)dx + Ω1) λ−1

and using the above asymptotic formulas for ψ, ψ′, and χ together with the obvious
equalities

Resλ=(n−L)2 λ−1/2 cot(
√

λ + L) π =
⎧⎪⎪⎨⎪⎪⎩

2
π , n > L,
1
π , n = L

and

Resλ=(n−L)2 λ−1 cot2 (
√

λ + L) π =
⎧⎪⎪⎨⎪⎪⎩

− 2
π2(n−L)2 , n > L,

− 2
3 , n = L.

We now turn to uniqueness. When ωs are treated as variables, taking into account
the fact that all the equations of the system (1.4) except the one with k = 0 contain
only ωs with indices of the same parity, this system can be solved in two steps: one
first determines ωk with k of the same parity as ind f (i.e., those coming from f↓) and
then finds the remaining ones. More precisely, if ind f = 2d + 1, then the subsystem
of (1.4) consisting of the equations with odd k is a system of linear equations with
respect to ω1, ω3, . . . , ω2d+1 whose matrix is a strictly positive definite Hankel matrix
and is thus uniquely solvable (see the proof of [9, Lemma 2.1] for details). Now it
only remains to observe that the matrix of the subsystem of (1.4) with even k is the
same strictly positive definite Hankel matrix as above. Similarly, if ind f = 2d, then
ω2, ω4, . . . , ω2d are uniquely determined from the subsystem of (1.4) consisting of
the equations with nonzero even k, ω1 is then found from the equation with k = 0,
and finally the remaining ωs are determined from the equations with odd k.

Finally, when σs are treated as variables, the determinant of the system (1.4) is
simply equal to the resultant of the polynomials f↓ and f↑, up to a possible change in
sign. As these two polynomials have no common roots, their resultant is nonzero.
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