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Abstract

We give a simple and direct treatment of insensitivity in stochastic networks which is quite
general and provides probabilistic insight into the phenomenon. In the case of multi-class
networks, our results generalise those of Bonald and Proutière (2002), (2003).
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1. Introduction

It is well known that many stochastic networks – notably queueing and loss networks – have
stationary distributions of their level of occupancy which depend on certain input distributions
only through the means of the latter. This phenomenon of insensitivity has been studied by
various authors over an extended period of time, in varying degrees of generality and abstraction,
and using a variety of techniques.

In the present paper we revisit this topic to develop an insight of Pechinkin (1983), (1987)
which gives a very simple and direct treatment of insensitivity. In particular, our approach
avoids those based on brute-force calculations, the consideration of phase-type distributions (see
Schassberger (1978), Whittle (1985), and Bonald and Proutière (2002), (2003)), or the use of
quite complex machinery for handling generalised semi-Markov processes (see Burman (1981)
and Schassberger (1986)) – although such processes are implicit in the current approach. It
further avoids assumptions about, for example, continuity of distributions, which are necessary
for some of the above approaches, and also explicitly identifies the entire stationary distribu-
tions of the networks concerned, showing that, where insensitivity obtains, these stationary
distributions have a particularly simple and natural form. Pechinkin used his insight, which
involved what is in effect a coupling argument together with induction, to give probabilistic
proofs of the insensitivity of a number of single-class loss systems with state-dependent arrival
rates – results originally proved analytically by Sevast´yanov (1957). He also indicated the
wider applicability of the approach in the single-class case. In the present paper we give a
substantial reformulation of the underlying idea, under more general conditions and showing
that its most natural expression is in terms of balance equations. This considerably simplifies
its application to single-class systems; notably, the quite complex coupling constructions are no
longer needed. It further makes possible the extension of the idea to the multi-class networks
considered in Section 3. The main aim is to provide probabilistic insight, notably for multi-
class networks. Indeed it is shown that insensitivity is simply a by-product, under appropriate
conditions, of probabilistic independence.
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Insensitivity in stochastic networks 239

We study networks in which individuals arrive at various classes at rates which may depend
on the state of the entire system, bringing workloads which are independent and identically
distributed within classes and which have finite means. Within each class workloads are reduced
at rates which may again be state-dependent (when the rate is constant workloads may be
identified with lifetimes in classes), and on completion of its workload an individual moves to a
different class or leaves the system, with probabilities which may yet again be state-dependent.

In order to obtain insensitivity we typically require that an individual joining a class is
immediately served, i.e. has its workload reduced, at a rate which is the same as that of an
individual immediately prior to leaving the class (where in each of these cases the number
of individuals in each class of the system is the same); more generally, the service discipline
should define a network which is symmetric in the sense of Kelly (1979). The most common
example is that of processor-sharing networks, but other possibilities are well known, for
example ‘last-in–first-out preemptive-resume’ networks. We shall concentrate on a very broad
class of processor-sharing networks, introduced by Bonald and Proutière (2002) and including,
for example, traditional loss networks and processor-sharing Whittle and Jackson networks
as special cases. We shall also indicate the simple modifications required to deal with other
possibilities.

For the above class of processor-sharing networks, Bonald and Proutière (2002) used phase-
type arguments to show that, under conditions which correspond to the satisfaction of the
appropriate partial balance equations, the stationary distribution of the number of individuals
in each class is insensitive to the workload distributions, subject to the means of the latter
being fixed and to the distributions themselves being drawn from the broad class of Cox-type
distributions (dense in the class of all distributions on R+). In the present paper we formally
consider all workload distributions on R+ with finite means, and also identify the stationary
residual workload distributions. However, as stated above, our main aim is to give a direct
and probabilistically natural treatment. It turns out (and is in many cases well known) that,
when the appropriate partial balance equations are satisfied for such a network, the stationary
distribution of the entire system, including the specification of residual workloads, is such that
departures from each class are exactly balanced by arrivals to that class (in a sense to be made
precise below). Indeed, for single-class systems, this is the essence of Pechinkin’s insight.
What is of interest is that the same idea can be extended to establish insensitivity for the very
much more general networks considered here, and indeed appears also to establish insensitivity
in more abstract settings such as that considered by Whittle (1985), though we do not formally
consider this more abstract environment here.

In order to fix ideas, it is convenient to consider first, in Section 2, single-class networks.
Here the extension of previous ideas is not too difficult. Nevertheless, it is desirable to give
a careful treatment of this case, avoiding notational complexity while preserving rigour, so as
both to establish the underlying principle and also to set the scene for the multi-class networks
which we consider in Section 3.

2. Single-class networks

Consider an open system with a single class of individual (customer, call, or job). Individuals
arrive as a Poisson process with state-dependent rate α(n), where n is the number of individuals
currently in the system. Arriving individuals have workloads which are independent of each
other and of the arrivals process with a common distribution µ on R+ which we assume to
have a finite mean m(µ). While there are n individuals in the system, their total workload is
reduced at a rate β(n) ≥ 0, where we assume that β(n) > 0 if and only if n > 0; an individual
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departs the system when its workload is reduced to zero. By suitably redefining the rates β(n)

if necessary, we may, and do, assume without loss of generality that the mean workload m(µ)

is equal to 1.
We first consider the processor-sharing case. Here, when there are n > 0 individuals in the

system, the workload of each is simultaneously reduced at a rate β(n)/n, and the setup described
above becomes a fairly general description of a single-class processor-sharing system. A special
case is the simple Erlang loss system, in which, for some α, β > 0, we have α(n) = α 1{n<C}
for some capacity C ≤ ∞ (where 1{·} is the indicator function) and β(n) = nβ for all n ≥ 0.
Here individuals are typically referred to as calls, and workloads correspond to call durations
(since β(n)/n is independent of n). A further special case is the M/GI/m/∞ processor-sharing
queue, in which, again for some α, β > 0, we have α(n) = α for all n and β(n) = min(n, m)β

for all n and some fixed m.
We represent the system as a Markov process (X(t))t≥0 by defining its state at any time t to

be the number n of individuals then in the system together with their residual workloads at that
time. (An alternative is to record, for each individual, the workload completed at time t .) For a
given n > 0 these workloads form an (unordered) set, and may be regarded as taking values in
the quotient space Sn obtained from R

n+ by identifying points which may be obtained from each
other under permutation of their coordinates. The σ -algebra B(Sn) on Sn is similarly formed
in the obvious manner from the Borel σ -algebra on R

n+. The state space S for the process
(X(t))t≥0 is then the union of the Sn, n ≥ 0, where the set S0 is taken to consist of a single
point, and its associated σ -algebra B(S) consists of those sets which are countable unions
of sets in the σ -algebras B(Sn). The process (X(t))t≥0 is thus an instance of a piecewise-
deterministic Markov process (see Davis (1984), (1993)). However, we avoid the need for
most of the general machinery for handling such processes.

We define the probability distribution µ̄ on R+ to be the stationary residual life distribution
of the renewal process with interevent distribution µ, that is, if µ has distribution function F

then µ̄ has distribution function G given by

G(x) = 1 −
∫ ∞

x

(1 − F(y)) dy

(recall that m(µ) = 1). Note that the ‘residual life’ here should be thought of as a residual
workload rather than a time. For each n ≥ 1, define also the probability distribution µ̄n on
Sn to be the product of n copies of the distribution µ̄, again with the above identification of
points in R

n+ (more formally, µ̄n(A) = µ̄n(θ−1(A)), A ∈ B(Sn), where µ̄n is the product of n

copies of the distribution µ̄ and θ is the projection from R
n+ into the quotient space Sn). Thus,

µ̄n represents the joint distribution of the residual lives at any time in a set of n independent
stationary renewal processes each with interevent distribution µ; we also define µ̄0 to be the
probability distribution concentrated on the single-point set S0. For each n, we also regard µ̄n

as a distribution on S, assigning its total mass of one to the set Sn. Finally, for any distribution
π on Z+, define the distribution µ̄π on S by

µ̄π =
∑
n∈Z+

π(n)µ̄n.

Thus, µ̄π assigns probability π(n) to the event that there are n individuals in the system and,
conditional on this event, assigns the distribution µ̄n to their residual workloads.
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Theorem 1. Suppose that the distribution π on Z+ is the solution of the balance equations

π(n + 1)β(n + 1) = π(n)α(n), n ≥ 0, (1)

and that ∑
n≥0

π(n)α(n) < ∞. (2)

Then the distribution µ̄π on S is stationary for the process (X(t))t≥0 and, in particular, the
distribution π is stationary for the associated number of individuals in the system.

Remark 1. The condition (2) ensures that, under stationarity, individuals arrive at the system
at a finite rate.

Proof of Theorem 1. In order to exclude pathological behaviour in the argument below, we
make the one additional assumption that the distribution µ has no atom of probability at zero.
This is without loss of generality: in the case that µ does have such an atom, the evolution of
the system may clearly be equivalently described by redefining α, β, and µ so as to remove it,
and the result of the theorem is easily obtained via this reparametrisation.

Analogously to the definition of µ̄n, for each n ≥ 1, define the probability distribution µ̂n on
Sn to be the product of n−1 copies of the distribution µ̄ and a single copy of the distribution µ,
yet again with the above identification of points in R

n+. (More formally, µ̂n(A) = µ̂(n)(θ−1(A)),
A ∈ B(Sn), where µ̂(n) = µ̄n−1 × µ and θ is again the projection from R

n+ into the quotient
space Sn.) We again regard µ̂n as a distribution on S, assigning mass one to the set Sn.

Consider now the modified process (X̂(t))t≥0 on S describing the system in which the
workload distribution is again µ and in which, when there are n ≥ 1 individuals in the system,
individual workloads are again reduced at rate β(n)/n. However, for the modified system,
an individual departing on completion of its workload is immediately replaced by another
bringing an independent workload with distribution µ, and external arrivals to the system are
not accepted. Thus, for the modified system, the number of individuals remains constant, and,
conditional on this being n, the system behaves as a set of n independent renewal processes,
each of which has stationary residual workload distribution µ̄. Hence, for any distribution π ′
on Z+, the distribution µ̄

π ′ on S is stationary for the process (X̂(t))t≥0.

Let (Pt )t≥0 and (P̂t )t≥0 be the semigroups of transition kernels associated respectively with
the processes (X(t))t≥0 and (X̂(t))t≥0. For any a > 0, let Da be the class of functions f on S

taking values in [0, 1] and satisfying the continuity condition

|Ptf (x) − f (x)| ≤ at, for all x ∈ S and t > 0, (3)

where Ptf (x) = ∫
S

Pt (x, dy)f (y). For any such f and for any distribution ν on S, define also
νf = ∫

S
f (x)ν(dx) and, for any t > 0, define νPtf = ν(Ptf ) (so that νPtf is the expectation

of f (X(t)) when (X(t))t≥0 is given initial distribution ν); similarly define νP̂tf .

Now compare the behaviour of the processes (X(t))t≥0 and (X̂(t))t≥0, each started with
the distribution µ̄π ; so as to simplify the description below we couple these two processes so
that they agree until the time of the first arrival or workload completion. We then find (see the
further explanation below) that, with this common initial distribution, for any a > 0, f ∈ Da ,
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and h > 0,

µ̄πPhf − µ̄π P̂hf = E(f (X(h)) − f (X̂(h)))

= h
∑
n≥0

π(n)[α(n)(µ̂n+1f − µ̄nf ) + β(n)(µ̄n−1f − µ̂nf )] + o(h) (4)

= h
∑
n≥0

[π(n)α(n) − π(n + 1)β(n + 1)](µ̂n+1f − µ̄nf ) + o(h)

= o(h) (5)

as h → 0 (recall in (4) that β(0) = 0). Furthermore, the above convergence as h → 0 is
uniform over f ∈ Da in the sense that (5) may be written as

sup
f ∈Da

|µ̄πPhf − µ̄π P̂hf | = o(h) as h → 0 (6)

(again see below). To show that (4) holds, note first that, from the above coupling and for any
h > 0, we have f (X(h)) = f (X̂(h)) except where there is either at least one external arrival or
at least one workload completion in [0, h]. It follows from the definition of µ̄π that, conditional
on the number of individuals initially being n, the probability of an external arrival in [0, h] is
α(n)h + o(h) as h → 0, and that an arriving individual finding the distribution of the system
to be µ̄n changes this to µ̂n+1 in the case of the process (X(t))t≥0 and leaves it unchanged in
the case of the process (X̂(t))t≥0. Similarly, again conditional on the number of individuals
initially being n (and recalling that m(µ) = 1), the probability of a workload completion in a
time interval [0, h] is β(n)h + o(h) as h → 0, and, under the distribution µ̄n, conditional on
such a completion taking place, the residual workload distribution becomes µ̄n−1 in the case
of the process (X(t))t≥0 and µ̂n in the case of the process (X̂(t))t≥0. Furthermore, it follows
from (1) and (2) that, under the initial distribution µ̄π , the probability of two or more arrivals
or workload completions in [0, h] is o(h) as h → 0. That the relation (4) now holds as h → 0
with the uniformity over f ∈ Da required for (6) follows easily from these results and from the
definition of Da . To see this note that, since f ∈ Da implies that f takes values in [0, 1], the
contribution to the error term in (4) resulting from the neglect of the possibility of two or more
arrivals or workload completions in [0, h] is uniformly o(h) as h → 0, as required. Similarly,
the terms µ̂n+1f − µ̄nf and µ̄n−1f − µ̂nf in (4) are obtained by treating the precise time of
the first arrival or workload completion within [0, h] as if it were time h; recalling that terms
of type µ̂n+1 are probability measures, it follows from (3) that the consequent error in each of
the above two terms is bounded by 2ah, so that the further contribution to the error term in (4)
is O(h2) as h → 0, again with uniformity over f ∈ Da . The relations (5) and, hence, (6) are
now immediate from the balance equations (1). Since the distribution µ̄π is stationary for the
process (X̂(t))t≥0, it now follows from (6) that, again for any a > 0 and h > 0,

sup
f ∈Da

|µ̄πPhf − µ̄πf | = o(h) as h → 0.

Furthermore, it is straightforward that if f ∈ Da then Ptf ∈ Da for any t > 0. Standard
manipulations using the semigroup structure of (Pt )t≥0, for example the consideration of
increasingly refined partitions of the interval [0, t], now give, for all a > 0, f ∈ Da , and
t ≥ 0,

µ̄πPtf = µ̄πf. (7)
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Insensitivity in stochastic networks 243

Finally, we show that it follows from (7) that µ̄πPt = µ̄π , for all t > 0, so that µ̄π is stationary
for (X(t))t≥0, as required. It is sufficient to show that, for any n ≥ 1 and any set A ∈ B(Sn)

whose inverse image in R
n+ under the mapping θ defined above is a product of intervals in R+,

we have
µ̄πPt 1A = µ̄π 1A . (8)

It follows from the piecewise-deterministic form of the process (X(t))t≥0 that we may choose
a sequence of functions (fk, k ≥ 1) such that, for each k,

(i) fk ∈ Da for some a > 0,

(ii) fk and 1A agree except on a set whose Lebesgue measure (under θ−1) in R
n+ tends to

zero as k → ∞.

Since µ̄π and, so, µ̄πPt are nonatomic distributions, (8) now follows by using (7) with f = fk

and letting k → ∞.

Remark 2. Suppose that (1) is multiplied by the signed measure µ̂n+1 − µ̄n to give

π(n)α(n)(µ̂n+1 − µ̄n) = π(n + 1)β(n + 1)(µ̂n+1 − µ̄n), n ≥ 0.

These equations have an obvious interpretation as representing, under the distribution µ̄π and
for each n ≥ 0, a detailed balance of flux between Sn and Sn+1, not just with regard to the
total probability assigned to each of these spaces, but also with regard to the distribution of the
residual workload sizes. This is the intuition underlying the derivation of (5) (which is also
that of Pechinkin’s coupling approach), i.e. under µ̄π , an arrival finding n individuals in the
system transforms the residual workload distribution from µ̄n to µ̂n+1, while a departure from
the system when it contains n + 1 individuals transforms the residual workload distribution
from what would have been µ̂n+1, if the individual had remained in the system with a renewed
workload, to the distribution µ̄n.

In the case where we do not have processor sharing, i.e. in which it is no longer the case
that at any time all workloads are being reduced at the same rate, it is necessary at any time to
distinguish the individuals in the system. Thus, each Sn is replaced by R

n+ and the state space S

is replaced by S∗ = ⋃
n≥0 R

n+. We consider as an example the case of the single-server queue
with ‘last-in–first-out preemptive-resume’ discipline, in which at any time all service effort is
devoted to the last individual to arrive at the system. If at any time there are n individuals in
the system, we may index these by i = 1, . . . , n in the order of their arrival, and no individual
changes index during its time in the system; as usual arrivals occur as a Poisson process with
rate α(n), and the workload of individual n is now being reduced at rate β(n), while that of
the remaining individuals is being reduced at rate zero. As previously, define the probability
distribution µ̄ on R+ to be the stationary residual life distribution of the renewal process with
interevent distribution µ and, for each n ≥ 0, let the distribution µ̄n on R

n+ now be the (ordered)
product of n copies of µ̄. For each n ≥ 1, let the distribution µ̂n on R

n+ be the (ordered) product
ofn−1 copies of the distribution µ̄ and a single copy of the distributionµ, with the latter assigned
to the nth coordinate of R

n+. Finally, for any distribution π on Z+, define the distribution µ̄π on
S by µ̄π = ∑

n∈Z+ π(n)µ̄n, as before. With these (re)definitions, both Theorem 1 and its proof
remain unchanged as stated. Again the underlying reason is as given in Remark 2, i.e. under the
distribution µ̄π , and relative to the modified process considered in the proof of Theorem 1, an
arrival finding n individuals in the system transforms the residual workload distribution from
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µ̄n to µ̂n+1, while a departure from the system when it contains n + 1 individuals transforms
the residual workload distribution from µ̂n+1 to µ̄n. Note that this balance does not obtain in
the case of, for example, a ‘first-in–first-out’ discipline, and here, as is again well known, we
do not have the above insensitivity.

3. Multi-class networks

Now consider a multi-class network. We concentrate on the processor-sharing case –
adaptations to other disciplines may be made as in the single-class case. Let � = {1, . . . , N}
denote the set of classes and let n = (ni, i ∈ � ), where ni is the number of individuals in
each class i. An individual entering class i acquires a workload which has distribution µi with
nonzero finite mean m(µi); we again assume without loss of generality that m(µi) = 1. The
workload of each individual in class i is reduced at a state-dependent rate φi(n)/ni , where
φi(n) > 0 if and only if ni > 0. Individuals arrive at each class i from outside the network
as a Poisson process with state-dependent rate φ0i (n); on completion of its workload in any
class i an individual moves to class j with state-dependent probability φij (n)/φi(n) or leaves
the network with probability φi0(n)/φi(n), where

∑
j∈�

φij (n) + φi0(n) = φi(n) (9)

(there are no problems in allowing the possibility φii(n) > 0). The workloads, arrival processes,
and routeing decisions are all independent.

As in the single-class case, we represent the system as a Markov process (X(t))t≥0 by
defining its state at any time to be the vector n introduced above together with the residual
workloads at that time of the set of individuals in each class. For given n, these workloads
take values in the space Sn, which is the ordered product of the spaces Sni

, i ∈ � , where, as
previously, each Sni

is formed from R
ni+ by identifying points within the latter space which may

be obtained from each other under permutation of their coordinates (and where again the set
S0 contains a single point). The state space S for the system is the union of all the possible Sn,
and the spaces Sn and S are endowed with the obvious σ -algebras B(Sn) and B(S).

Analogously to the single-class case, for each i ∈ � define the probability distribution µ̄i

on R+ to be the stationary residual life distribution of the renewal process with interevent
distribution µi (as previously, the residual life should be interpreted as a residual workload).
For each i ∈ � and for each ni ≥ 1, define as previously the distribution µ̄i

ni
on Sni

to be the
product of ni copies of the distribution µ̄i (again with the above identification of points in R

ni+ )
– representing the joint distribution of the residual lives in a set of ni independent stationary
renewal processes each with interevent distribution µi . Also, define µ̄i

0 to be the probability
distribution concentrated on the single-point set S0. For each n ∈ Z

N+ , define the distribution
µ̄n on Sn to be the (ordered) product distribution which, for each i ∈ � , assigns the distribution
µ̄i

ni
to Sni

. We again regard the distribution µ̄n as a distribution on S, assigning its total mass
of one to the set Sn. For any positive distribution π on Z

N+ , we define the distribution µ̄π on S

by µ̄π = ∑
n∈Z

N+ π(n)µ̄n.
It is notationally convenient to expand the set � to � ′ = {0} ∪ � , treating 0 as an extra

class feeding external arrivals to, and receiving departures from, the network. (However, the
components of the statenof the network remain indexed in the original set� .) For completeness,
we define φ00(n) = 0, for all n, and φij (n) = 0, for all i ∈ � , j ∈ � ′, and n such that ni = 0
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(so that (9) also remains valid for such n). For each i ∈ � , let ei be the N -dimensional vector
whose ith component is 1 and whose other components are 0, and let e0 be the N -dimensional
vector all of whose components are 0. For each n and each i, j ∈ � ′, define the vectors
T

j
i n = n − ei + ej , Tin = T 0

i n = n − ei , and T jn = T
j

0 n = n + ej .

Theorem 2. Suppose that the distribution π on Z
N+ satisfies the partial balance equations

π(n)
∑
j∈� ′

φij (n) =
∑
j∈� ′

π(T
j
i n)φji(T

j
i n), n ∈ Z

N+ , i ∈ � ′, (10)

where, for n and i ∈ � such that ni = 0, we interpret the right-hand side of (10) as zero (recall
that when ni = 0 we have φij (n) = 0 for all j ∈ � ′, so that (10) is automatically satisfied in
this case). Suppose also that

∑
n∈Z

N+

π(n)
∑
i∈�

φ0i (n) < ∞. (11)

Then µ̄π is stationary for the process (X(t))t≥0 and, in particular, π is stationary for the
associated numbers of individuals in the system. Conversely, if a distribution π on Z

N+ is
stationary for the numbers of individuals in the system for all µ = (µi, i ∈ � ) such that
m(µi) = 1 for all i ∈ � , then π satisfies (10).

Proof. Suppose first that π satisfies (10). As in the proof of Theorem 1, we again assume
without loss of generality that each distribution µi has no atom of probability at zero.

For each n and for each i such that ni ≥ 1, also define the residual workload distribution µ̂i
n

on Sn by

µ̂i
n = µ̂i

ni

∏
j 	=i

µ̄
j
nj

,

where µ̂i
ni

is defined as in the proof of Theorem 1. Thus, µ̂i
n corresponds to each individual

in each class j independently having the stationary residual workload distribution µ̄j , except
only that a single individual in the class i is given the workload distribution µi . For each n,
also define µ̂0

n = µ̄n.

Again, as in the proof of Theorem 1, define the process (X̂(t))t≥0 on S to be that appropriate
to the modified system in which there are no arrivals, departures, or transfers between classes;
rather each individual in each class i, on completion of its workload, acquires a new independent
workload with distribution µi . Thus, the occupancy of the system remains constant; conditional
on this being n, individual workloads in any class i such that ni > 1 are again reduced at rate
φi(n)/ni and the system behaves as a set of independent renewal processes. Furthermore, for
any distribution π ′ on Z

N+ , the distribution µ̄
π ′ on S is stationary for (X̂(t))t≥0.

Again, let (Pt )t≥0 and (P̂t )t≥0 be the semigroups of transition kernels associated, respec-
tively, with the processes (X(t))t≥0 and (X̂(t))t≥0 and, for any a > 0, let Da be the class
of functions f on S taking values in [0, 1] and satisfying the earlier continuity condition (3).
Comparison of the behaviours of the processes (X(t))t≥0 and (X̂(t))t≥0, each started with the
distribution µ̄π and coupled as in the earlier proof until the time of the first external arrival or

https://doi.org/10.1239/jap/1175267175 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1175267175


246 S. ZACHARY

workload completion, now gives, for any a > 0, f ∈ Da , and h > 0,

µ̄πPhf − µ̄π P̂hf

= E(f (X(h)) − f (X̂(h)))

= h
∑

n∈Z
N+

π(n)
∑
i∈� ′

∑
j∈� ′

φij (n)(µ̂
j

T
j
i n

f − µ̂i
nf ) + o(h) (12)

= h
∑

n∈Z
N+

(∑
i∈� ′

∑
j∈� ′

π(n)φji(n)µ̂i

T i
j n

f −
∑
i∈� ′

∑
j∈� ′

π(n)φij (n)µ̂i
nf

)
+ o(h)

= h
∑

n∈Z
N+

(∑
i∈� ′

∑
j∈� ′

π(T
j
i n)φji(T

j
i n)µ̂i

nf −
∑
i∈� ′

∑
j∈� ′

π(n)φij (n)µ̂i
nf

)
+ o(h)

= h
∑

n∈Z
N+

∑
i∈� ′

(∑
j∈� ′

π(T
j
i n)φji(T

j
i n) −

∑
j∈� ′

π(n)φij (n)

)
µ̂i

nf + o(h)

= o(h) (13)

as h → 0, with uniformity of convergence over all f ∈ Da . We may therefore write

sup
f ∈Da

|µ̄πPhf − µ̄π P̂hf | = o(h) as h → 0 (14)

(recall again that φij (n) = 0 whenever ni = 0, so that there is no difficulty with the lack
of a formal definition of µ̂i

n in this case). The identity (14) is simply the multi-class version
of the identity (6) in the proof of Theorem 1, and is similarly obtained, albeit with a slightly
more compact notation. In particular, conditional on the common initial distribution of the
two processes being given by µ̄n, in the time interval [0, h] (where h is small), a transition
from i to j in the original system – where either i or j may be zero – occurs with probability
φij (n)h + o(h) as h → 0, and in this case the distribution of the process (X(t))t≥0 becomes
µ̂

j

T
j
i n

while that of the process (X̂(t))t≥0 becomes µ̂i
n. It follows that (12) now holds (with the

required uniformity of convergence), also using (11), as in the earlier proof; finally the results
(13) and, so, (14) follow from the partial balance equations (10). Since the distribution µ̄π is
stationary for the process (X̂(t))t≥0, it now follows from (14) that, again for any a > 0 and
h > 0,

sup
f ∈Da

|µ̄πPhf − µ̄πf | = o(h) as h → 0.

It now follows that µ̄π is stationary for (X(t))t≥0, as in the proof of Theorem 1.
Now suppose that a distribution π on Z

N+ is stationary for the numbers of individuals in the
system for all µ = (µi, i ∈ � ) with m(µi) = 1 for all i ∈ � . A proof that π then necessarily
satisfies the partial balance equations (10) was given by Bonald and Proutière (2002), (2003).
In summary, consider the case in which in every class the workload distribution is exponential
with mean one and, for any fixed class i, compare this with the case in which, for some λ,
0 < λ < 1, the workload distribution in class i is replaced by a mixture of two distributions,
obtained by choosing with probability λ an exponential distribution with mean λ−1 and with
probability 1−λ the distribution concentrated on zero. Both these models may be (re)formulated
as simple Markov jump processes; in the latter case the transition rates into and out of the class
i are reduced by a factor λ. Since π is stationary in both cases, comparison of the (full) balance
equations for stationarity yields the partial balance equations (10).
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Example 1. (Processor-sharingWhittle networks.) Suppose that, for some ν ≥ 0, some strictly
positive function 	 on Z

N+ , and some stochastic matrix P = (pij , i ∈ � ′, j ∈ � ′) such that
p00 = 0, we have, for each n,

φ0j (n) = νp0j , j ∈ � ′,

φij (n) = 	(Tin)

	(n)
pij , i ∈ � , j ∈ � ′,

where we again use the convention that 	(Tin) = 0 whenever ni = 0. Then it is readily
checked that the partial balance equations (10) are satisfied by

π(n) = a	(n)
∏
i∈�

ρ
ni

i , (15)

for any a > 0 and positive solution ρ = (ρi, i ∈ � ) of the equations

ν =
∑
j∈�

ρjpj0,

ρi =
∑
j∈�

ρjpji + νp0i , i ∈ � .

Thus, in particular, the stationary distribution π given by (15) for the number of individuals
of each type in the system is insensitive to the µi (recall our assumption that m(µi) = 1
for all i). For the case where P is irreducible and ν > 0, the above equations for ρ have
a unique solution. Now, when P is irreducible and when ν = 0 (corresponding to a closed
network), π remains uniquely determined, up to a multiplicative constant, by (15). The case
where 	(n) = ∏

i∈� λ
ni

i for positive constants (λi, i ∈ � ) characterises processor-sharing
Jackson networks. Further discussion of Whittle networks was given by Serfozo (1999) and,
for processor-sharing networks, by Bonald and Proutière (2002), (2003).

Example 2. (Networks with no internal transitions.) Suppose that φij (n) = 0 for all i, j ∈ �
and for all n ∈ Z

N+ , so that no transitions are possible between the classes in � . The partial
balance equations (10) then reduce to the detailed balance equations

π(n)φi0(n) = π(Tin)φ0i (Tin), n ∈ Z
N+ , ni ≥ 1, i ∈ � . (16)

(In the case of a single class, these equations further reduce to (1).) An example is given
by a traditional (uncontrolled) loss network; see, for example, Kelly (1986). This is naturally
processor-sharing. Here, workloads are identified with call durations and, for some set A ⊂ Z

N+
such that n ∈ A implies that Tin ∈ A for all n and i such that ni ≥ 1 (A is typically defined
by capacity constraints), we have

φ0i (n) = νi 1{T in∈A},
φi0(n) = σini,

for some vectors (νi, i ∈ � ) and (σi, i ∈ � ) of strictly positive parameters. The equations
(16) are then satisfied by

π(n) = a
∏
i∈�

κ
ni

i

ni ! ,
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where κi = νi/σi for each i, and where a is naturally chosen to be a normalising constant.
As was originally shown by Burman et al. (1984), we therefore again have insensitivity of
the occupancy distribution π of the network. The stationary distribution of the residual call
durations is as identified by Theorem 2.

Other examples of processor-sharing networks with no internal transitions are given by
those used to model connections in communications networks with simultaneous resource
requirements and variable bandwidth requirements; see, for example, Bonald and Massoulié
(2001) and De Veciana et al. (2001). Here it is far from automatic that the detailed balance
equations (16) are satisfied.
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