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Quantum fields on space-time

In this chapter we describe the most important examples of (non-interacting)
relativistic quantum fields. We will use extensively the formalism developed in
Chap. 18.

Most textbook presentations of this subject start from the discussion of repre-
sentations of the Poincaré group. They stress that the most fundamental quan-
tum fields are covariant with respect to this group. In our presentation the
Poincaré covariance is a secondary property. The property that we emphasize
more is the Einstein causality of fields. In the mathematical language this is
expressed by the fact that observables belonging to causally separated subsets
of space-time commute with one another. This property can be true even when
there is no Poincaré covariance, e.g. due to the presence of an external (vector)
potential in a curved space-time.

The chapter is naturally divided in two parts. In the first part we consider
the flat Minkowski space and in the second an arbitrary globally hyperbolic man-
ifold. In both cases we discuss the influence of an external (classical) potential
and a variable mass. In the Minkowski case, we discuss separately the Poincaré
covariance, which holds if the potential is zero and mass is constant.

The quantization consists of two stages. In the first stage one introduces the
CCR or CAR algebra describing the observables of the system. The underlying
phase space is the space of solutions of the corresponding equation defined on
the space-time. This space is equipped with a bilinear or sesquilinear form, which
leads to the appropriate CCR or CAR.

In the second stage one chooses a representation of the algebra of observ-
ables on a Hilbert space. In order to determine this representation one usually
assumes that the generator of the time evolution of the classical system is time-
independent. Then one can apply the formalism described in Chap. 18. In the
case of the Klein–Gordon and Dirac equations on Minkowski space this means
that the external potential and the mass do not depend on time.

Sects. 19.5, resp. 19.6 are generalizations of Sects. 19.2, resp. 19.3 to a curved
space-time. We limit our discussion to the algebraic quantization of Klein–
Gordon and Dirac equations on a globally hyperbolic manifold. As a result we
obtain a net of CCR, resp. CAR algebras satisfying the Einstein causality.

Our presentation is limited to the most basic elements of the theory of quan-
tum fields on curved space-time. One of the topics that we leave out, which
however is easy to figure out mimicking the discussion in Sects. 19.2, resp. 19.3,
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19.1 Minkowski space and the Poincaré group 513

is the positive energy quantization of time-independent equations on a station-
ary space-time; see e.g. Kay (1978). The subject that is more difficult is how
to choose representations of quantum fields in the case of non-stationary curved
space-times, where there is no preferred vacuum state. There has been signifi-
cant progress in our understanding of this question. It is believed that one should
choose representations generated by states whose correlation functions satisfy a
certain natural microlocal condition, the so-called Hadamard states. One can
find more about this subject in the literature; see Brunetti–Fredenhagen–Köhler
(1996) and Brunetti–Fredenhagen–Verch (2003).

19.1 Minkowski space and the Poincaré group

19.1.1 Minkowski space

Consider the Minkowski space R1,d . Recall that it is the vector space R1+d

equipped with a pseudo-Euclidean form of signature (1, d); see Sect. 15.3. In
the coordinates x = (xμ), μ = 0, 1, . . . , d, the pseudo-Euclidean quadratic form
will be denoted

〈x|x〉 = −(x0)2 +
d∑

i=1

(xi)2 .

Definition 19.1 A non-zero vector x ∈ R1,d is called

time-like if 〈x|x〉 < 0,

causal if 〈x|x〉 ≤ 0,

light-like if 〈x|x〉 = 0,

space-like if 〈x|x〉 > 0.

The set of causal, resp. time-like vectors is denoted J , resp. I. A causal vector
x is called

future oriented if x0 > 0,

past oriented if x0 < 0.

The set of future, resp. past oriented causal vectors is denoted J±. The set of
future, resp. past oriented time-like vectors is denoted I±.

Clearly, I± is the interior of J±.

Definition 19.2 For U ⊂ R1,d , we set J(U) := J + U and J±(U) := J± + U .
J(U) is called the causal shadow of U and J±(U) the causal future, resp. past of
U . A function on R1,d is called space-compact if there exists a compact U ⊂ R1,d

such that supp f ⊂ J(U). It is called future, resp. past space-compact if there
exists a compact U ⊂ R1,d such that supp f ⊂ J±(U).
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514 Quantum fields on space-time

The set of space-compact smooth functions will be denoted C∞
sc (R1,d). The set

of future, resp. past space-compact smooth functions will be denoted C∞
±sc(R1,d).

Definition 19.3 Let U1 ,U2 ⊂ R1,d . We say that U1 and U2 are causally sepa-
rated if J(U1) ∩ U2 = ∅, or equivalently if U1 ∩ J(U2) = ∅.

Definition 19.4 The operator

� := ∂μ∂μ = −(∂0)2 +
d∑

i=1

(∂i)2

is called the d’Alembertian.

19.1.2 The Lorentz group

Definition 19.5 The pseudo-Euclidean group O(R1,d) � O(Rd,1) is called the
Lorentz group in 1 + d dimensions.

Let r ∈ O(R1,d). We will say that r is space-time even if det r = 1 and space-
time odd if det r = −1.

Note that r(J+) = J+ or r(J+) = J−. In the former case we say that r is
orthochronous and in the latter case we say that r is anti-orthochronous.

Thus O(R1,d) has four connected components:

(1) the space-time even orthochronous component O↑
+(R1,d),

(2) the space-time even anti-orthochronous component O↓
+(R1,d),

(3) the space-time odd orthochronous component O↑
−(R1,d),

(4) the space-time odd anti-orthochronous component O↓
−(R1,d).

Clearly, O↑
+(R1,d), also denoted SO↑(R1,d), is a normal subgroup and we have

an exact sequence

1 → SO↑(R1,d) → O(R1,d) → Z2 × Z2 → 1. (19.1)

We have three subgroups of O(R1,d) of index 2:

O↑(R1,d) = O↑
+(R1,d) ∪O↑

−(R1,d),

O+(R1,d) = O↑
+(R1,d) ∪O↓

+(R1,d),

SO(R1,d) = O↑
+(R1,d) ∪O↓

−(R1,d).

Definition 19.6 The temporal parity is the homomorphism

O(R1,d) � L �→ ρL ∈ {1,−1}
that equals 1 on an orthochronous and −1 on an anti-orthochronous L.

Definition 19.7 The affine extension of the Lorentz group

AO(R1,d) = R1+d � O(R1,d)

is called the Poincaré group in 1 + d dimensions.

We refer to Def. 1.100 for the definition of the affine extension.
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19.1.3 Pin groups for the Lorentzian signature

In the case of the Lorentz group we have the following refinement of Diagram
(14.18):

1 1
↓ ↓

1 → Z2 → Z2 → 1
↓ ↓ ↓

1 → Spin↑(R1,d) → Pin(R1,d) → Z2 × Z2 → 1
↓ ↓ ↓

1 → SO↑(R1,d) → O(R1,d) → Z2 × Z2 → 1
↓ ↓ ↓
1 1 1

(19.2)

Pin(R1,d) has four connected components

Pin↑
+(R1,d),

P in↓
+(R1,d),

P in↑
−(R1,d),

P in↓
−(R1,d),

which cover the corresponding connected components of O(R1,d) listed in Sub-
sect. 19.1.2.

If we replace R1,d with Rd,1 , then all the entries of the above diagram remain
the same except for Pin(R1,d) replaced with Pin(Rd,1), which are not isomorphic
to one another. Both have four connected components, with the obvious nota-
tion. Note that we can identify Spin(R1,d) � Spin(Rd,1), hence we can identify
Pin↑

+(R1,d), resp. Pin↓
−(R1,d), with Pin↑

+(Rd,1), resp. Pin↓
−(Rd,1).

We will also use the affine extensions of the Pin groups

APin(R1,d) = R1,d � Pin(R1,d),

AP in(Rd,1) = Rd,1 � Pin(Rd,1),

which are two-fold coverings of the Poincaré group.

19.1.4 Positive energy representations of Clifford relations

Let V be a pseudo-unitary vector space equipped with a Hermitian form β. As
in Subsect. 15.3.5, we denote by A† the adjoint of A w.r.t. this form.

Definition 19.8 We say that a representation of Clifford relations

R1,d � y �→ γ(y) ∈ L(V) (19.3)

https://doi.org/10.1017/9781009290876.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.020


516 Quantum fields on space-time

is a positive energy representation if γ(y) = −γ(y)†, y ∈ Y, and

iv · βγ(y0)v > 0, v ∈ V, v �= 0,

for some time-like future oriented y0 ∈ R1,d .

Lemma 19.9 iβγ(y0) is positive definite for some time-like future oriented y0

iff iβγ(y) is positive definite for all time-like future oriented y.

Proof Let y1 , y2 be two future oriented vectors. We may assume that 〈y1 |y1〉 =
〈y2 |y2〉. There exists r ∈ SO↑(R1,d) such that y2 = ry1 . By Thm. 15.28, there
exists U ∈ Spin↑(R1,d) implementing r and such that UU† = 1l. Spin↑ is con-
nected, hence UU† = 1l, i.e. U is pseudo-unitary. Therefore,

v·βγ(y2)v = v·βUγ(y1)U†v = U†v·βγ(y1)U†v.

Hence, iβγ(y1) is positive definite iff iβγ(y2) is positive definite. �

Positive energy representations act on a pseudo-unitary space. After fixing a
future oriented time-like vector y0 , their representation space can be equipped
with the positive definite scalar product

iv1 · βγ(y0)v2 , v1 , v2 ∈ V.

19.2 Quantization of the Klein–Gordon equation

The homogeneous Klein–Gordon equation has the form

(−� + m2)ζ(x) = 0, (19.4)

where R1,d � x �→ ζ(x) is a function on the Minkowski space. This equation is
Poincaré invariant. That means, elements of the Poincaré group transform solu-
tions of (19.4) into solutions of (19.4).

Besides (19.4), we will consider the Klein–Gordon equation with an external
potential and a variable mass,(− (∂μ + iAμ(x)) (∂μ + iAμ(x)) + m2(x)

)
ζ(x) = 0. (19.5)

It is Poincaré covariant. That means solutions of (19.5) are transformed by
elements of the Poincaré group into solutions of (19.5) with the transformed
external potential and mass.

The equation (19.5) has several interesting properties. First of all, its solutions
do not propagate faster than the speed of light. In other words, solutions of the
Cauchy problem are supported in the causal shadow of the support of its initial
conditions. Secondly, the space of real, resp. complex, space-compact solutions
(19.5), denoted Y, has a natural symplectic, resp. charged symplectic form given
by a local expression. As a consequence, two solutions of (19.5) with the Cauchy
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19.2 Quantization of the Klein–Gordon equation 517

data supported in disjoint regions are orthogonal w.r.t. this symplectic, resp.
charged symplectic form.

Let us associate with Y the corresponding CCR algebra. It will satisfy the
Einstein causality (a property also known by the name locality). This means
that observables associated with the Cauchy data with disjoint supports will
commute. This property is one of the basic postulates of quantum field theory.
It is incorporated in the standard sets of axioms of quantum field theory: the
Wightman axioms (see Streater–Wightman (1964)) and the Haag–Kastler axioms
(see Haag–Kastler (1964) and Haag (1992)).

The space Y is equipped with a natural symplectic, resp. charged symplec-
tic dynamics. If the external potential and the mass do not depend on time,
this dynamics is generated by a time-independent classical Hamiltonian. If
this Hamiltonian is positive, we can apply the positive energy quantization, as
described in Subsects. 18.1.1, resp. 18.2.1. We obtain a one-particle Hilbert space
Z and a positive Hamiltonian implementing the dynamics acting on the bosonic
Fock space Γs(Z).

The discussion of the quantization of the Klein–Gordon equation with an
external potential and a variable mass gives a good illustration of the difference
between the dual phase space Y and the one-particle space Z. This difference
is visible in particular in our discussion of the Poincaré covariance. In partic-
ular, we will describe the charge, parity and time reversal covariance on the
level of the classical equation, its algebraic quantization and its Hilbert space
quantization.

19.2.1 Klein–Gordon operator

Definition 19.10 Let m2 ∈ R. The Klein–Gordon operator with squared mass
m2 is the operator on R1,d given by

�(m2) := −∂μ∂μ + m2 . (19.6)

Definition 19.11 Let

R1,d � x �→ m2(x) ∈ R,

R1,d � x �→ A(x) =
(
Aμ(x)

) ∈ R1,d

be smooth functions. The Klein–Gordon operator with squared mass m2 and
external potential A is defined as

�(m2 , A) := −(∂μ + iAμ(x)
)(

∂μ + iAμ(x)
)

+ m2(x). (19.7)

Note that in the real case the external potential has to be zero, because of the
imaginary unit in front of it. In what follows, for definiteness, we will consider
mostly the complex-valued case.
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518 Quantum fields on space-time

19.2.2 Lagrangian of the Klein–Gordon equation

In our presentation we avoid using the Lagrangian formalism. Nevertheless, it is
worth mentioning that (19.5) can be obtained as the Euler–Lagrange equations
of a variational problem. The Lagrangian can be taken as

L(ζ, ∂ζ) = −1
2
∂μζ∂μζ − 1

2
m2ζ2 , in the real case,

L(ζ, ζ, ∂ζ, ∂ζ) = −(∂μ + iAμ)ζ(∂μ + iAμ)ζ −m2ζζ, in the complex case.

In the real case the Euler–Lagrange equations

∂ζ L− ∂μ
∂L

∂(∂μζ)
= 0 (19.8)

yield �(m2 , 0)ζ = 0. (Recall that in the real case we do not consider the external
potential.)

In the complex case we have two sets of Euler–Lagrange equations. (19.8)
yields �(m2 , A)ζ = 0. It should be supplemented by

∂ζ L− ∂μ
∂L

∂(∂μζ)
= 0, (19.9)

which yields �(m2 ,−A)ζ(x) = 0.

19.2.3 Green’s functions

The following theorem describes advanced and retarded Green’s functions of the
inhomogeneous Klein–Gordon equation.

Theorem 19.12 Write � = �(m2 , A). For any f ∈ C∞
c (R1,d) there exist unique

functions ζ± ∈ C∞
±sc(R1,d), solutions of

�ζ± = f.

Moreover,

ζ±(x) = (G±f)(x) =
ˆ

R1 , d

G±(x, y)f(y)dy,

where G± = G±(m2 , A) ∈ D′(R1,d × R1,d) satisfy

�G± = G±� = 1l,

suppG± ⊂ {(x, y) : x ∈ J±(y)
}
,

G±(x, y) = G∓(y, x).

The proof of Thm. 19.12 can be found e.g. in Bär–Ginoux–Pfäffle (2007).

Definition 19.13 G± is called the retarded, resp. advanced Green’s function.

Note that by duality G± can be applied to distributions of compact support.
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19.2 Quantization of the Klein–Gordon equation 519

Definition 19.14 The Pauli–Jordan or commutator function is defined as

G(x, y) := G+(x, y)−G−(x, y).

Note that

�G = G� = 0,

suppG ⊂ {(x, y) : x ∈ J(y)
}
,

G(x, y) = −G(y, x).

19.2.4 Cauchy problem

Let us introduce a non-covariant notation. We will write t for x0 and x for
(x1 , . . . , xd). The dot will denote the derivative w.r.t. t. We will also write V for
A0 and A for (A1 , . . . , Ad). Thus, the free Klein–Gordon operator becomes

�(m2) = ∂2
t −Δx + m2 , (19.10)

and the Klein–Gordon operator with an external potential and a variable squared
mass becomes

�(m2 , V,A) =
(
∂t − iV (t, x)

)2 − d∑
i=1

(
∂xi + iAi(t, x)

)2 + m2(t, x). (19.11)

The Pauli–Jordan function G can be used to describe the solution of the
Cauchy problem of the Klein–Gordon equation.

Theorem 19.15 Let ϑ, ς ∈ C∞
c (Rd). Then there exists a unique ζ ∈ C∞

sc (R1,d)
that solves

�(m,V,A)ζ = 0 (19.12)

with initial conditions

ζ(0, x) = ς(x), ζ̇(0, x) = ϑ(x)− iV (0, x)ς(x).

It satisfies supp ζ ⊂ J(supp ς ∪ suppϑ) and is given by

ζ(t, x) = −
ˆ

Rd

(
∂sG(t, x; 0, y)− iG(t, x; 0, y)V (0, y)

)
ς(y)dy

+
ˆ

Rd

G(t, x; 0, y)ϑ(y)dy.

19.2.5 Symplectic form on the space of solutions

Definition 19.16 Let Y(m2 , A) (also denoted for brevity Y) be the space
of smooth space-compact solutions of the Klein–Gordon equation, that is, ζ ∈
C∞

sc (R1,d) satisfying (19.5).
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520 Quantum fields on space-time

Definition 19.17 Let ζ1 , ζ2 ∈ C∞(X ). We define

jμ(ζ1 , ζ2 , x) := ∂μζ1(x)ζ2(x)− ζ1(x)∂μζ2(x)− 2iAμ(x)ζ1(x)ζ2(x).

(In the real case the definition is the same except that we do not need the
complex conjugation and the term involving the potential is absent.) We easily
check that

∂μjμ(x) = −�ζ1(x)ζ2(x) + ζ1(x)�ζ2(x),

where � = �(m2 , A). Therefore, if ζ1 , ζ2 ∈ Y(m2 , A), then

∂μjμ(x) = 0,

and in such a case the flux of jμ across a space-like subspace S of co-dimension
1 does not depend on its choice.

If the space-like hyper-subspace S is given by the parametrization

S = {(a + b · x, x) : x ∈ Rd}, (19.13)

for some a ∈ R and b ∈ Rd with |b| < 1, then the flux of jμ across S

ζ1 ·ωζ2 =
ˆ

Rd

(1− |b|2) (j0 − b · j) (ζ1 , ζ2 , a + b · x, x)dx

defines a (charged) symplectic form on Y(m2 , A).
Note that the (charged) symplectic form ω is defined covariantly under the

group AO↑(R1,d) (it does not depend on the choice of coordinates that preserves
the time direction). This is true even if A and m2 are variable. Under the change
of coordinates in AO↓(R1,d) the (charged) symplectic form changes its sign.

For ζ1 , ζ2 ∈ Y(m2 , V,A), the (charged) symplectic form is

ζ1 ·ωζ2 =
ˆ

Rd

(
ζ̇1(0, x)ζ2(0, x)− ζ1(0, x)ζ̇2(0, x)− 2iV (0, x)ζ1(0, x)ζ2(0, x)

)
dx

=
ˆ

Rd

(
ϑ1(x)ς2(x)− ς1(x)ϑ2(x)

)
dx. (19.14)

19.2.6 Solutions parametrized by test functions

The Pauli–Jordan function G can be used to construct solutions of the Klein–
Gordon equation, which are especially useful in the axiomatic formulation of
quantum field theory.

Theorem 19.18 (1) For any f ∈ C∞
c (R1,d), Gf ∈ Y.

(2) Every element of Y is of this form.
(3) Gf1 ·ωGf2 =

´
f1(x)G(x, y)f2(y)dxdy.

For an open set O ⊂ R1,d we set

Y(O) = Y(O,m2 , A) :=
{
Gf : f ∈ C∞

c (O)
}
.
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Theorem 19.19 (1) Y = Y(R1,d).
(2) O1 ⊂ O2 implies Y(O1) ⊂ Y(O2).
(3) If O1 and O2 are causally separated and ζi ∈ Y(Oi), i = 1, 2, then

ζ1 ·ωζ2 = 0.

19.2.7 Algebraic quantization

In the neutral case, starting from symplectic space (Y, ω), we define the C∗-
algebra

A = A(m2 , A) := CCRWeyl (Y) .

More generally, we have a similar definition for any open set O ⊂ R1,d :

A(O) = A(O,m2 , A) := CCRWeyl (Y(O)) .

In the charged case, we replace the algebra CCRWeyl with CCRreg
gi , as explained

in Subsect. 18.2.1.

Theorem 19.20 (1) A = A(R1,d).
(2) O1 ⊂ O2 implies A(O1) ⊂ A(O2).
(3) If O1 and O2 are causally separated, and Bi ∈ A(Oi), then

B1B2 = B2B1 .

19.2.8 Fock quantization

Assume that A and m2 do not depend on t. For ζ ∈ Y(m2 , A), set

rtζ(s, x) := ζ(s− t, x).

Clearly,

rt : Y(m2 , A) → Y(m2 , A),

r̂t : A(m2 , A) → A(m2 , A)

are one-parameter groups. (Recall that r̂t denotes the Bogoliubov automorphism
associated with rt .)

Assume in addition that m2(x) ≥ 0. The Klein–Gordon equation is then a
special case of what we called the abstract Klein–Gordon equation in an external
potential considered in Subsect. 18.3.6 with

ε =
(
−

d∑
i=1

(
∂xi + iAi(x)

)2 + m2(x)
) 1

2
.

Assuming that V 2(x) < ε2 , we can apply the formalism of the positive energy
quantization to the space Y(m2 , A), described in Subsect. 18.3.6. If A(x) ≡ 0, we
can apply Subsect. 18.3.2 in the neutral case or Subsect. 18.3.5 in the charged
case.
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First we obtain the one-particle Hilbert space Z(m2 , A) together with a self-
adjoint operator h. Then we obtain a (neutral or charged) CCR representation
over Y(m2 , A) in Γs(Z(m2 , A)). We also obtain a positive Hamiltonian H =
dΓ(h) that acts on Γs(Z(m2 , A)), so that

r̂t(B) = eitH Be−itH , B ∈ A.

19.2.9 Charge symmetry and charge reversal

Let us consider the complex case. We then have the action of the U(1) group
on each Y(O,m2 , A), and hence the corresponding group of automorphisms
{êiθ}θ∈U (1) on each A(O,m2 , A).

We also have the charge reversal operator χ, defined as χζ = ζ. Clearly, we
obtain the isomorphisms

χ : Y(O,m2 , A) → Y(O,m2 ,−A),

χ̂ : A(O,m2 , A) → A(O,m2 ,−A).

If m2 , A do not depend on time, then we obtain the unitary operator
χZ : Z(m2 , A) → Z(m2 ,−A) such that

χ̂(B) = Γ(χZ)BΓ(χZ)−1 , B ∈ A.

19.2.10 Covariance under the Poincaré group

An element Λ = (a, L) ∈ AO(R1,d) acts on R1,d by Λx = Lx + a. It also acts on
ζ ∈ C∞(R1,d) by

uΛζ(x) := ζ(Λ−1x),

or uΛζ = ζ ◦ Λ−1 , and on A ∈ C∞(R1,d , R1,d) by

uΛA(x) = LA(Λ−1x),

or uΛA = LA ◦ Λ−1 . Clearly, uΛ preserves C∞
sc (R1,d). We obtain the isomor-

phisms

uΛ : Y(O,m2 , A) → Y(ΛO, uΛm2 , uΛA). (19.15)

(19.15) preserves the (charged) symplectic form ω for Λ ∈ AO↑(R1,d) and changes
its sign for Λ ∈ AO↓(R1,d).

Actually, the standard choice for the action of the Poincaré group is

wΛ :=

{
uΛ , for orthochronous Λ,

χuΛ , for anti-orthochronous Λ.
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We have

wΛ : Y(O,m2 , A) → Y(ΛO, uΛm2 , ρΛuΛA), (19.16)

ŵΛ : A(O,m2 , A) → A(ΛO, uΛm2 , ρΛuΛA), (19.17)

where we recall that ρΛ denotes the temporal parity of Λ. Equations (19.16) and
(19.17) are linear for Λ orthochronous, and anti-linear otherwise.

Assume now that m2(x) and A(x) do not depend on time. Consider an element
of the Poincaré group Λ = (a, L) such that wΛm2 and wΛA do not depend on
time as well. In particular, this is the case when Λ or TΛ belongs to R1,d � O(Rd),
where T denotes the time reversal. Under this assumption, we can introduce

wΛ ,Z : Z(m2 , V,A) → Z(m2 ◦ Λ−1 , V ◦ Λ−1 , LA ◦ Λ−1),

so that the automorphism ŵΛ is implemented by a unitary or anti-unitary oper-
ator:

ŵΛ(B) = Γ(wΛ ,Z)BΓ(wΛ ,Z)−1 , B ∈ A.

If V = 0, A = 0, then the whole group AO↑(R1,d) acts by unitary transforma-
tions on the quantum level, and AO↓(R1,d) acts by anti-unitary transformations.
Thus we obtain the action of the whole Poincaré group. In the complex case it
should be supplemented by the action of the charge symmetry and the charge
reversal.

19.2.11 Parity reversal

An important special element of the Poincaré group is the parity reversal. It is
defined as P = diag(1,−1, . . . ,−1). For π := wP we have

π : Y(O,m2 , V,A) → Y(PO,m2 ◦ P, V ◦ P,−A ◦ P),

π̂ : A(O,m2 , V,A) → A(PO,m2 ◦ P, V ◦ P,−A ◦ P).

If in addition m2 , A do not depend on time, then we have the unitary operator

πZ : Z(m2 , V,A) → Z(m2 ◦ P, V ◦ P,−A ◦ P)

such that

π̂(B) = Γ(πZ)BΓ(πZ)−1 , B ∈ A.

19.2.12 Time reversal

Let T = diag(−1, 1, . . . , 1) be the time reversal as an element of the Poincaré
group. The standard choice for the time reversal (Wigner’s time reversal) is
τ := wT = χuT. We have

τ : Y(O,m2 , V,A) → Y(TO,m2 ◦ T, V ◦ T,−A ◦ T),

τ̂ : A(O,m2 , V,A) → A(TO,m2 ◦ T, V ◦ T,−A ◦ T).
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If in addition m2 , A do not depend on time, then we obtain the anti-unitary
operator

τZ : Z(m2 , V,A) → Z(m2 , V,−A)

such that

τ̂(B) = Γ(τZ)BΓ(τZ)−1 , B ∈ A.

19.2.13 Klein–Gordon equation in the momentum representation

In this subsection we assume that A = (V,A) = 0 (the external potential van-
ishes).

We denote by ξ = (τ, k) ∈ R1,d the variables dual to (t, x) ∈ R1,d , paired by
the Lorentz metric:

〈ξ|x〉 = −τ · t + k · x.

If ς ∈ S(Rd), ς̂ will denote the usual unitary Fourier transform of ς, and if f ∈
S(R1+d), we set

f̂(ξ) = (2π)−
1
2 (1+d)

ˆ
e−i〈ξ |x〉f(x)dx.

Note that

ûΛζ(ξ) = e−i〈a|ξ〉ζ̂(L−1ξ), Λ = (a, L). (19.18)

Definition 19.21 Define the mass hyperboloid

Cm :=
{
ξ ∈ R1,d : 〈ξ|ξ〉+ m2 = 0

}
,

which splits into the two connected components C±
m = Cm ∩ {±τ > 0}.

Note that

δ
(〈ξ|ξ〉+ m2) (19.19)

is a measure supported on Cm invariant w.r.t. O(R1,d). (We refer to Subsect.
4.1.2 for the notation used in (19.19).)

Set ε(k) := (k2 + m2)
1
2 . (19.19) has a decomposition

δ
(〈ξ|ξ〉+ m2) =

δ
(
τ − ε(k)

)
2ε(k)

+
δ
(
τ + ε(k)

)
2ε(k)

into the sum of measures supported on C+
m and C−

m , invariant w.r.t. O↑(R1,d).
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Proposition 19.22 Let ζ be the solution of (19.4) with initial data (ς, ϑ) at
t = 0, that is,

�ζ = 0,

ζ(0, x) = ς(x), ζ̇(0, x) = ϑ(x).

Define a function f on Cm by

f(τ, k) = ε(k)ς̂(k) + i sgn(τ)ϑ̂(k), (τ, k) ∈ Cm .

Then,

ζ̂(ξ) = (2π)
1
2 f(ξ)δ

(〈ξ|ξ〉+ m2), (19.20)

ζ1 ·ωζ2 =
1
2π

Im
ˆ

f2(ξ) sgn(τ)f1(ξ)δ
(〈ξ|ξ〉+ m2)dξ, (19.21)

ĵζ(ξ) = −i sgn(τ)ζ̂(ξ).

Proof Using (18.26), we get that

ζ̂(τ, k)

= 2−1(2π)
1
2

((
δ(τ − ε(k)

)(
ς̂(k) + i

ϑ̂(k)
ε(k)

)
+ δ
(
τ + ε(k)

)(
ς̂(k)− i

ϑ̂(k)
ε(k)

))
= (2π)

1
2

(
i sgn(τ)ϑ̂(k) + ε(k)ς̂(k)

)
δ
(〈ξ|ξ〉+ m2),

which yields (19.20). To see (19.21) we use the expression of ω in terms of the
Cauchy data given in Subsect. 18.3.5 and

ς̂(k) =
1

2ε(k)
(
f(ε(k), k) + f(−ε(k), k)

)
,

ϑ̂(k) =
1
2i
(
f(ε(k), k)− f(−ε(k), k)

)
.

�

Using that δ
(〈ξ|ξ〉+ m2

)
is invariant under the Lorentz group, we see that the

action of the Poincaré group becomes

wΛf(ξ) =

{
e−i〈a|ξ〉f(L−1ξ), (a, L) ∈ AO↑(R1,d),

e−i〈a|ξ〉f(−L−1ξ), (a, L) ∈ AO↓(R1,d).

This is another way to see that wΛ is symplectic and commutes with j, resp.
anti-symplectic and anti-commutes with j, for all Λ ∈ AO↑(R1,d), resp. Λ ∈
AO↓(R1,d). Therefore, all elements of AO↑(R1,d), resp. AO↓(R1,d) can be imple-
mented by the unitaries, resp. anti-unitaries Γ(wΛ) in the Fock representation.

19.3 Quantization of the Dirac equation

The homogeneous Dirac equation has the form

(γμ∂μ −m)ζ(x) = 0. (19.22)
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Here, R1,d � x �→ ζ(x) is a function on the Minkowski space with values in
Dirac spinors and γμ are the Dirac matrices. Equation (19.22) is invariant w.r.t.
APin(R1,d), the covering of the Poincaré group.

Besides (19.22) we will consider the Dirac equation with an external potential
and a variable mass, (

γμ(∂μ + iAμ(x))−m(x)
)
ζ(x) = 0. (19.23)

It is covariant w.r.t. the group APin(R1,d).
The Dirac equation has a number of similarities with the Klein–Gordon equa-

tion. First of all, solutions of (19.23) do not propagate faster than the speed of
light. Secondly, on the space of space-compact solutions of (19.23), denoted by
Y, there exists a locally defined sesquilinear form. Recall that in the case of the
Klein–Gordon equation this form was symplectic or charged symplectic. In the
case of the Dirac equation, this form is a positive definite scalar product given by
a local expression. As a consequence, two solutions of (19.23) with the Cauchy
data supported in disjoint regions are orthogonal.

In the case of a positive definite scalar product, it is natural to use the fermionic
quantization. Thus, let us associate with Y the corresponding CAR algebra.
It will satisfy the fermionic version of the Einstein causality. This means that
fields associated with the Cauchy data with disjoint supports will anti-commute.
Consequently, even observables associated with data with disjoint supports will
commute.

The space Y has a natural unitary dynamics. If the external potential and the
mass do not depend on time, this dynamics has a time invariant generator. If
the dynamics is non-degenerate, we can apply the positive energy quantization,
as described in Subsect. 18.2.2. We obtain a one-particle Hilbert space Z and a
positive Hamiltonian implementing the dynamics acting on the fermionic Fock
space Γa(Z).

The discussion of the Poincaré invariance and covariance of the Dirac equation,
which we give at the end of this section, is more complicated than in the case of
the Klein–Gordon equation. In particular, to discuss the charge and time reversal
we need some properties of Clifford algebras obtained in Subsect. 15.3.2.

19.3.1 Dirac operator

Let (V, β) be a finite-dimensional pseudo-unitary space. Let

R1,d � y �→ γ(y) ∈ L(V)

be a positive energy representation of Cliff(R1,d). We fix a future oriented unit
vector e in R1,d . Without loss of generality we may assume that e = e0 , where
e0 , . . . , ed is the canonical basis of R1,d . We set γμ = γ(eμ), μ = 0, . . . , d, and
equip V with the scalar product

v1 · v2 := iv1 · βγ0v2 .
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Using this scalar product, we can identify the Hermitian form β with iγ0 . There-
fore in the rest of this section, β will denote the operator iγ0 . The adjoint of A

w.r.t. the above scalar product will be denoted as usual by A∗.
As seen in Subsect. 19.1.4, we have

(γ0)2 = −1l, (γi)2 = 1l, i = 1, . . . , d;

γμγν + γν γμ = 0, 0 ≤ μ < ν ≤ d;

(γ0)∗ = −γ0 , (γi)∗ = γi, i = 1, . . . , d.

Definition 19.23 Let m ∈ R. The Dirac operator of mass m is the operator on
C∞(R1,d ,V) given by

D(m) := γμ∂μ −m.

Definition 19.24 Let

R1,d � x �→ m(x) ∈ R,

R1,d � x �→ A(x) =
(
Aμ(x)

) ∈ R1,d

be smooth functions. The Dirac operator with mass m and external potential A

is defined as

D(m,A) := γμ
(
∂μ + iAμ(x)

)−m(x).

19.3.2 Lagrangian of the Dirac equation

The Dirac equation D(m,A)ζ = 0 can be obtained as the Euler–Lagrange equa-
tion of the following Lagrangian:

L1(ζ, ζ, ∂ζ, ∂ζ) := ζ · β(γμ(∂μ + iAμ)−m
)
ζ. (19.24)

It is also the Euler–Lagrange equation of the following more symmetric
Lagrangian:

L(ζ, ζ, ∂ζ, ∂ζ)

:=
1
2
(ζ · βγμ∂μζ − γμ∂μζ · βζ) + iζ · βγμAμζ −mζ · βζ. (19.25)

It is easy to see that (19.24) and (19.25) differ by a full derivative.

Remark 19.25 In our notation ζ will always denote the complex conjugate of
ζ (to be consistent with the usage of ζ elsewhere in our work and in most of the
literature). In a large part of the physics literature, in the context of the Dirac
equation, ζ has a special meaning: in our notation it means βζ.

19.3.3 Green’s functions

Note the identity

− D(−m,A)D(m,A) = −(∂μ + iAμ(x)
)(

∂μ + iAμ(x)
)

+γμν Fμν (x) + γμGμ(x) + m(x)2 , (19.26)
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where

γμν :=
1
2i

[γμ , γν ],

Fμν (x) := ∂μAν (x)− ∂ν Aμ(x),

Gμ(x) := ∂μm(x).

(19.26) is a Klein–Gordon operator with a matrix-valued mass. It has a Green’s
function, which can be used to express the Green’s function of D(m,A). In fact,
let G±(x, y) be the retarded, resp. advanced Green’s function of (19.26).

Definition 19.26 S±(x, y) := −D(−m,A)G±(x, y) is called the retarded, resp.
advanced Green’s function of the Dirac equation.

Theorem 19.27 Write D for D(m,A). For any f ∈ C∞
c (R1,d ,V) there exist

unique functions ζ± ∈ C∞
±sc(R1,d ,V) that solve

Dζ± = f. (19.27)

Moreover,

ζ±(x) = (S±f)(x) =
ˆ

R1 , d

S±(x, y)f(y)dy,

where S± is a distribution in D′(R1,d × R1,d , L(V)
)
, which satisfies

DS± = S±D = 1l,

suppS± ⊂ {(x, y) : x ∈ J±(y)
}
,

S±(x, y)∗ = S∓(y, x).

Definition 19.28 We set S(x, y) = S+(x, y)− S−(x, y).

We have

DS = 0,

suppS ⊂ {(x, y) : x ∈ J(y)
}
,

S(x, y)∗ = −S(y, x).

19.3.4 Cauchy problem

We will use the non-covariant notation introduced in Subsect. 19.2.4. We also
set αi := −γ0γi , i = 1, . . . , d, obtaining a representation of CAR β, α1 , . . . , αd ,
that is,

β2 = 1l, (αi)2 = 1l, i = 1, . . . , d;

βαi + αiβ = 0, αiαj + αjαi = 0, 1 ≤ i < j ≤ d;

β∗ = β, α∗
i = αi, i = 1, . . . , d.
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We can rewrite the Dirac equation in the Hamiltonian form

∂tϑt = ib(t)ϑt, (19.28)

b(t) := −αi
(
Di −Ai(t, x)

)
+ V (t, x) + m(t, x)β,

where ϑt(x) = ζ(t, x).

Theorem 19.29 Let ϑ ∈ C∞
c (Rd ,V). Then there exists a unique ζ ∈

C∞
sc (R1,d ,V) that solves {

D(m,A)ζ(x) = 0,
ζ(0, x) = ϑ(x).

It satisfies suppζ ⊂ J(suppϑ) and is given by

ζ(t, x) = −
ˆ

Rd

S(t, x; 0, y)γ0ϑ(y)dy.

Moreover, S(t, x; 0, y)γ0 is the integral kernel of the operator

Texp
(

i
ˆ t

0
b(s)ds

)
.

19.3.5 Scalar product in the space of solutions

Definition 19.30 Let Y(m,A) be the space of smooth space-compact solutions
of the Dirac equation, that is, ζ ∈ C∞

sc (R1,d ,V) satisfying (19.23).

Definition 19.31 Let ζ1 , ζ2 ∈ C∞(R1,d ,V). Set

jμ(ζ1 , ζ2 , x) := iζ1(x) · βγμζ2(x).

We easily check that

∂μjμ(x) = iDζ1(x) · βζ2(x) + iζ1(x) · βDζ2(x),

where D = D(m,A). Therefore, if ζ1 , ζ2 ∈ Y(m,A), then

∂μjμ(x) = 0,

and in such a case the flux of jμ across a space-like hyper-subspace does not
depend on its choice. This choice defines a scalar product on Y(m,A). For
instance, if we consider the hyper-subspace (19.13), then we obtain the following
expression for this scalar product:

ζ1 · ζ2 =
ˆ

Rd

(1− |b|2) (j0 − b · j) (ζ1 , ζ2 , a + b · x, x)dx.

In terms of the Cauchy data we have

ζ1 · ζ2 =
ˆ

Rd

ζ1(0, x) · ζ2(0, x)dx.
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19.3.6 Solutions parametrized by test functions

Similarly as in the case of the Klein–Gordon equation, solutions of the Dirac
equation can be parametrized by space-time functions:

Theorem 19.32 (1) For any f ∈ C∞
c (R1,d ,V), Sf ∈ Y.

(2) Every element of Y is of this form.
(3) Sf1 · Sf2 = i

´
R1 , d

´
R1 , d f1(x)βS(x, y)f2(y)dxdy.

For an open set O ⊂ R1,d we put

Y(O) = Y(O,m,A) :=
{
Sf : f ∈ C∞

c (O,V)
}
.

Theorem 19.33 (1) Y = Y(R1,d).
(2) O1 ⊂ O2 implies Y(O1) ⊂ Y(O2).
(3) If O1 and O2 are causally separated and ζi ∈ Y(Oi), i = 1, 2, then

ζ1 · ζ2 = 0.

19.3.7 Algebraic quantization

Let

ζ1 ·νζ2 :=
1
2
Re ζ1 · ζ2 , ζ1 , ζ2 ∈ Y.

As explained in Subsect. 18.2.2, the Euclidean space (YR, ν) is used to define the
field algebra of the fermionic system, the C∗-algebra

A = A(m,A) := CARC ∗
(YR) .

More generally, we have a similar definition for any open set O ⊂ R1,d :

A(O) = A(O,m,A) := CARC ∗
(Y(O)R) .

As explained in Subsect. 18.2.2, for the observable algebra we take CARC ∗
gi (Y).

Theorem 19.34 (1) A = A(R1,d).
(2) O1 ⊂ O2 implies A(O1) ⊂ A(O2).
(3) If O1 and O2 are causally separated, and Bi ∈ A(Oi) are elements of pure

parity, then

B1B2 = (−1)|B1 ||B2 |B2B1 .

19.3.8 Fock quantization

Assume that A and m do not depend on t. For ζ ∈ Y(m,A), set

rtζ(s, x) := ζ(s− t, x).
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Clearly,

rt : Y(m,A) → Y(m,A),

r̂t : A(m,A) → A(m,A)

are one-parameter groups.
Write the Dirac equation in the Hamiltonian form (19.28), where now b does

not depend on time. If Ker b = {0}, we can apply the formalism of the positive
energy quantization to the space Y(m,A), described in Subsect. 18.1.2 in the
neutral case and in Subsect. 18.2.2 in the charged case. This construction leads
to the Kähler anti-involution j, the one-particle space Z(m,A) and the positive
one-particle Hamiltonian h on Z(m,A). We obtain a representation of A(m,A)
on Γa

(Z(m,A)
)

such that the dynamics r̂t is implemented by the Hamiltonian
H := dΓ(h):

r̂t(B) = eitH Be−itH , B ∈ A(m,A).

19.3.9 Charge symmetry

We have the action of the U(1) group

eiθ : Y(O,m,A) → Y(O,m,A),

êiθ : A(O,m,A) → A(O,m,A).

If m, A do not depend on time, then we can define the charge operator Q :=
dΓ(qZ), and we have

êiθ (B) = eiθQBe−iθQ , B ∈ A(m,A).

19.3.10 Charge reversal

Recall that in Subsect. 15.3.2 we studied the existence of charge reversal in the
context of Clifford relations. They are anti-linear operators on V, denoted χ+ or
χ−, defined by the following conditions:

(1) χ+ is called a real charge reversal if

χ+γ(y)χ−1
+ = γ(y), χ2

+ = 1l;

(2) χ+ is called a quaternionic charge reversal if

χ+γ(y)χ−1
+ = γ(y), χ2

+ = −1l;

(3) χ− is called a pseudo-real charge reversal if

χ−γ(y)χ−1
− = −γ(y), χ2

− = 1l;
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(4) χ− is called a pseudo-quaternionic charge reversal if

χ−γ(y)χ−1
− = −γ(y), χ2

− = −1l.

χ± can be lifted in an obvious way to the dual phase space Y, and then to the
algebra A. We obtain the operators

χ± : Y(O,m,A) → Y(O,±m,−A), (19.29)

χ̂± : A(O,m,A) → A(O,±m,−A). (19.30)

Note that (19.29) is anti-unitary and (19.30) is a (linear) ∗-homomorphism.
Recall from Subsect. 15.3.2 that in the case of an irreducible representation of

Clifford relations, the existence and properties of χ± can be summarized with
the following table:

Table 19.1

d(mod 8) χ2
+ χ2

−

0 — 1l
1 1l 1l
2 1l —
3 1l −1l
4 — −1l
5 −1l −1l
6 −1l —
7 −1l 1l

If m,A do not depend on time, then we can introduce the unitary operator

χ±,Z : Z(m,A) → Z(±m,−A)

such that

χ̂±(B) = Γ(χ±,Z)BΓ(χ±,Z)−1 , B ∈ A(m,A).

19.3.11 Inversion of the sign in front of the mass

Suppose that η is a unitary operator on V such that ηγμ = −γμη. In the case of
an irreducible representation, such an operator exists only if d is odd. It is then
proportional to ω, whose definition (15.10) we recall:

ω := γ0γ1 · · · γd.

If d is even, such operators exist only in reducible representations. Note that

η : Y(O,m,A) → Y(O,−m,A),

η̂ : A(O,m,A) → A(O,−m,A).
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If m,A do not depend on time, we can introduce the unitary operator

ηZ : Z(m,A) → Z(−m,A)

such that

η̂(B) = Γ(ηZ)BΓ(ηZ)−1 , B ∈ A(m,A).

19.3.12 Covariance under the Poincaré group

Recall that in the case of spinors the role of the Poincaré group is played by its
double cover, APin(R1,d). We first describe its representations on spinor-valued
functions that may seem the most natural from the mathematical point of view.
It is not, however, the standard choice in quantum field theory. Then we describe
another representation, which is preferred in standard textbooks.

Recall that in Subsect. 19.2.10 for Λ = (a, L) ∈ AO(R1,d) we defined an oper-
ator uΛ acting on C∞(R1,d). Let us define the analog of uΛ for spinor-valued
functions.

The group Pin(R1,d) will be treated as a subgroup of L(V) by the Pin rep-
resentation. Let Λ̃ = (a, L̃) ∈ APin(R1,d). Let Λ = (a, L) be the corresponding
element of the Poincaré group AO(R1,d). Λ̃ acts on ζ ∈ C∞(R1,d ,V) by

uΛ̃ζ(x) := L̃ζ(Λ−1x),

or uΛ̃ζ = L̃ζ ◦ Λ−1 . We obtain the unitary map

uΛ̃ : Y(O,m,A) → Y(ΛO,det LuΛm,uΛA). (19.31)

Actually, the standard choice for the action of the Poincaré group is different.
It involves additionally the charge reversal operator χ+ and the operator η that
inverts the sign of the mass. We set

wΛ̃ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uΛ̃ , for even orthochronous Λ,

ηuΛ̃ , for odd orthochronous Λ,

χ+uΛ̃ , for even anti-orthochronous Λ,

ηχ+uΛ̃ , for odd anti-orthochronous Λ.

We obtain the transformations

wΛ̃ : Y(O,m,A) → Y(ΛO, uΛm, ρΛuΛA), (19.32)

ŵΛ̃ : A(O,m,A) → A(ΛO, uΛm, ρΛuΛA). (19.33)
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(Recall that ρΛ denotes the temporal parity of Λ.) (19.32) is unitary and (19.33) is
a linear ∗-homomorphism for orthochronous Λ. (19.32) is anti-unitary and (19.33)
is an anti-linear ∗-homomorphism for anti-orthochronous Λ. In irreducible repre-
sentations the operator χ+ exists only if d �= 0 (mod 4), and the operator η exists
only if d is odd (one can then choose η = ω). Thus in irreducible representations
the definition of wΛ̃ is possible if d ≡ 1, 3 (mod 4), which includes the physical
case d = 3.

Assume now that m(x) and A(x) do not depend on time, so that one can con-
sider the Fock quantization. Consider an element Λ = (a, L) such that uΛm and
uΛA do not depend on time as well. As before, this is the case if Λ or TΛ belong to
R1,d � O(Rd). Note that O±(Rd) ⊂ O↑

±(R1,d) and TO±(Rd) ⊂ O↓
∓(R1,d), where

T is the time reversal. From this we deduce the existence of operators

wΛ ,Z : Z(m,V,A) → Z(m ◦ Λ−1 , V ◦ Λ−1 , ρΛLA ◦ Λ−1)

satisfying

ŵΛ(A) = Γ(wΛ ,Z)AΓ(wΛ ,Z)−1 .

The operator wΛ ,Z is unitary for orthochronous Λ; otherwise it is anti-unitary.

19.3.13 Parity reversal

Consider the parity reversal operator P := diag(1,−1, . . . ,−1). This operator is
even if d is even and odd if d is odd. Let P̃ be an element of Pin(R1,d) or
Pin(Rd,1) covering P (which equals ±γ1 · · · γd).

The standard operator implementing the parity reversal (which works in any
dimension) is π := wP̃ = ηuP̃ . We have

π : Y(O,m, V,A) → Y(PO,m ◦ P, V ◦ P,−A ◦ P),

π̂ : A(O,m, V,A) → A(PO,m ◦ P, V ◦ P,−A ◦ P).

Therefore, if V ◦ P = V , A ◦ P = −A and m ◦ P = m, then the system is invari-
ant w.r.t. π. Note that π2 = −1l.

If m,A do not depend on time, then we can introduce the unitary operator

πZ : Z(m,V,A) → Z(m ◦ P, V ◦ P,−A ◦ P)

such that

π̂(B) = Γ(πZ)BΓ(πZ)−1 , B ∈ A(m,A).

19.3.14 Time reversal

Recall that T := diag(−1, 1, . . . , 1) denotes the time reversal operator. It is an
odd anti-orthochronous operator. Let T̃ be an element of L̃ covering T (which
equals ±γ0).
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The operator uT is the so-called Racah time reversal (see Subsect. 18.2.4).
The Wigner time reversal, which is the standard choice, is τ := w̃T = ηχ+ ũT .
We have

τ : Y(O,m, V,A) → Y(TO,m ◦ T, V ◦ T,−A ◦ T), (19.34)

τ̂ : A(O,m, V,A) → A(TO,m ◦ T, V ◦ T,−A ◦ T). (19.35)

(19.34) is anti-unitary and (19.35) is an anti-linear ∗-homomorphism.
If m,A do not depend on time, then we can introduce the anti-unitary operator

τZ : Z(m,V,A) → Z(m,V,−A)

such that

τ̂(B) = Γ(τZ)BΓ(τZ)−1 , B ∈ A(m,V,A).

Note the identity

πχ+τ = ±uPT .

We thus obtain the unitary operator

±uPT : Y(m,A) → Y(m ◦ PT,−A ◦ PT),

which is an important ingredient of the famous PCT theorem.

19.3.15 Dirac equation in the momentum representation

Let us assume that m is constant and A = 0. The Dirac equation can be written
as

(γμ∂μ −m)ζ = 0. (19.36)

If ζ is a solution, then

(−� + m2)ζ = 0.

Therefore,

ζ̂(τ, k) = (2π)
1
2

(
f+(k)

δ
(
τ − ε(k)

)
2ε(k)

+ f−(k)
δ
(
τ + ε(k)

)
2ε(k)

)
defines invariantly the functions f∓ on the lower and upper hyperboloid of mass
m.

If we introduce ϑt(x) = ζ(t, x), then (19.36) can be rewritten in the Hamilto-
nian form

∂tϑt = ibϑt , for b := −α ·D + βm. (19.37)

b is self-adjoint on L2(Rd ,V).
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Proposition 19.35 Let ζi, i = 1, 2, be two solutions of (19.36). Then we have

ζ1 · ζ2

=
1

2m

ˆ (
f+

1 (k) · βf+
2 (k)

δ
(
τ − ε(k)

)
2ε(k)

− f−
1 (k) · βf−

2 (k)
δ
(
τ + ε(k)

)
2ε(k)

)
dτdk,

̂sgn(b)ζ(τ, k) = (2π)
1
2

(
f+(k)

δ
(
τ − ε(k)

)
2ε(k)

− f−(k)
δ
(
τ + ε(k)

)
2ε(k)

)
.

Proof Set b(k) = γ0γ · k− imγ0 , so that b̂ϑ(k) = b(k)ϑ̂(k). Note that b(k) is
self-adjoint on

(V, (·|·)) and b(k)2 = ε2(k). Hence,

1l = P+(k) + P−(k)

for P±(k) = 1l{∓ε(k)}(b(k)).
If ϑt is a solution of (19.36) with the initial condition ϑ, then

ϑ̂t(k) = eitb(k) ϑ̂(k).

Taking the Fourier transform we obtain

ζ̂(τ, k) = (2π)
1
2

(
δ
(
τ − ε(k)

)
P+(k) + δ

(
τ + ε(k)

)
P−(k)

)
ϑ̂(k).

Therefore,

f±(k) = 2ε(k)P±(k)ϑ̂(k). (19.38)

We clearly have γ0b(k) + b(k)γ0 = 2im, which implies that

P±(k) = ±im−1ε(k)P±(k)γ0P±(k). (19.39)

Recall that β = iγ0 . Hence, setting ϑ±(k) := P±(k)ϑ(k),

i
2m

ˆ
f+

1 (k) · γ0f+
2 (k)

δ
(
τ − ε(k)

)
2ε(k)

dτdk− i
2m

f−
1 (k) · γ0f−

2 (k)
δ
(
τ + ε(k)

)
2ε(k)

dτdk

=
i

2m

ˆ
Rd

2ε(k)ϑ̂+
1 (k) · γ0 ϑ̂+

2 (k)dk− i
2m

ˆ
Rd

2ε(k)ϑ̂−
1 (k) · γ0 ϑ̂−

2 (k)dk

=
ˆ

Rd

ϑ̂+
1 (k) · ϑ̂+

2 (k)dk +
ˆ

Rd

ϑ̂−
1 (k) · ϑ̂−

2 (k)dk

=
ˆ

Rd

ϑ̂1(k) · ϑ̂2(k)dk =
ˆ

Rd

ϑ1(x) · ϑ2(x)dx = ζ1 · ζ2 .

�
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19.4 Partial differential equations on manifolds

In this section we introduce basic notation and terminology for the analy-
sis of partial differential equations on manifolds. We will be mostly interested
in Lorentzian manifolds, especially the so-called globally hyperbolic manifolds,
which serve as models for curved space-times. The material introduced in this
section will be needed in Sects. 19.5 and 19.6, where we describe quantization of
the algebraic Klein–Gordon and Dirac equations on curved space-times.

19.4.1 Manifolds

Let X be a manifold of dimension d. We will denote by C∞
c (X ) the space of

compactly supported smooth functions on X and by D′(X ) its dual space – the
space of distributions on X .

TX , resp. T#X denote the tangent, resp. cotangent bundle over X with fibers
TxX , resp. T#

xX equal to the tangent, resp. cotangent space to X at x ∈ X .
Smooth sections of TX , resp. T#X are called vector fields, resp. differential 1-
forms on X .

Suppose that (an open subset of) X is parametrized by local coordinates
x = (x1 , . . . , xd) from (an open subset of) Rd . Then we have a natural local
frame in TX , traditionally denoted (∂x1 , . . . , ∂xd ). Its dual frame is denoted
(dx1 , . . . ,dxd). We will use the coordinate-dependent notation, tacitly identify-
ing X (or its open subset) with Rd (or its open subset). We will use the Einstein
summation convention.

By a (parametrized) curve in X we will mean a continuous piecewise C1 map
from an interval in R into X . A curve is called inextensible if none of its piecewise
C1 reparametrizations can be continuously extended beyond its endpoints.

Let V be a finite-dimensional vector space. In the rest of the section we will
discuss differential operators acting on C∞(X ,V) – the space of smooth func-
tions X → V. Of course, our discussion can be easily generalized to differential
operators on smooth sections of a vector bundle (E,X ) with base X and fibers
isomorphic to V. Using local trivializations of E, one can locally reduce the
analysis to the trivial bundle X × V considered here. All the objects introduced
below have natural definitions covariant under change of coordinates and of local
frames, which a reader with a little familiarity with vector bundles can easily
guess.

19.4.2 Integration on pseudo-Riemannian manifolds

A manifold X is called pseudo-Riemannian if it is equipped with a smooth
pseudo-Euclidean form, called the metric tensor X � x �→ g(x) = [gμν (x)] ∈
⊗2

s T
#
xX . It equips TxX with a scalar product, so that gμν = (∂xμ |∂xν ). We will

set |g|(x) := |det[gμν (x)]|.
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The inverse of [gμν (x)] will be denoted by [gμν (x)]. Clearly, it induces the dual
scalar product in T#

xX : (dxμ |dxν ) = gμν .
Let dx denote the Lebesgue measure on Rd transported by a local chart to the

manifold X . dv will denote the measure |g| 12 dx on X . It does not depend on the
coordinates. Thus if f is a function on X , its integral over X is denoted

´
fdv.

We equip Cc(X ) with the scalar product

(f |g) :=
ˆ

fgdv. (19.40)

Let S be a smooth hypersurface of X (that is, a sub-manifold of co-dimension
1). We can find local coordinates such that

S = {(x1 , . . . , xd) : xd = 0}. (19.41)

We define a measure on S by ds := |h| 12 dx1 . . . dxd−1 , where |h| = det[hij ] and
[hij ] is obtained from [gij ] by discarding the last column and the last line (so
that i, j = 1, . . . , d− 1). The measure ds does not depend on the coordinates. If
f is a smooth function on S, then we write

´
S fds for its integral over S.

We say that S has an external orientation if for any x ∈ S a unit normal
vector has been chosen, which depends continuously on x. A hypersurface given
by (19.41) has a natural external orientation: in the direction of the coordinate
xd . The co-vector |gdd |− 1

2 dxd restricted to S is called the normal co-vector. It
will be denoted nμ . In the coordinates that we use we have

nμ =

{
0, μ = 1, . . . , d− 1,

|gdd |− 1
2 , μ = d.

Note that |g| = |h||gdd |−1 .

If x �→ [fμ(x)] is a vector field, then we define its flux across S asˆ
fμnμds. (19.42)

Again, (19.42) does not depend on coordinates. To shorten the notation, we will
write dsμ instead of nμds.

The Stokes theorem says that if Ω is an open subset of X with a sufficiently
regular boundary ∂Ω, thenˆ

Ω
|g|− 1

2 ∇μ |g| 12 fμdv =
ˆ

∂Ω
fμdsμ , (19.43)

where ∇μ = ∂xμ is the μth partial derivative.

19.4.3 Lorentzian manifolds

We will use the terminology for vectors in the Minkowski space introduced in
Def. 19.1.
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Definition 19.36 A pseudo-Riemannian manifold X is called Lorentzian if the
signature of its metric tensor is (−1, 1, . . . , 1).

We say that X is time-orientable if there exists a global continuous time-
like vector field on X . If v is such a vector field and x ∈ X , a time-like vector
v′ ∈ TxX is future, resp. past oriented if ±v(x) · g(x)v′ > 0. The manifold X
equipped with such a continuous choice of future/past directions is called time-
oriented.

In the remaining part of this subsection, X is a time-oriented Lorentzian man-
ifold.

Definition 19.37 A curve in X is called time-like, causal, resp. light-like if all
its tangent vectors are such and all pairs of tangent vectors at break points are in
the same causal cone. A curve in X is called space-like if all its tangent vectors
are such.

Definition 19.38 Let x ∈ X . The causal, resp. time-like future, resp. past of
x is the set of all y ∈ X that can be reached from x by a causal, resp. time-like
future-, resp. past-directed curve, and is denoted J±(x), resp. I±(x). For U ⊂ X ,
its causal, resp. time-like future, resp. past is defined as

J±(U) =
⋃
x∈U

J±(x), I±(U) =
⋃
x∈U

I±(x).

We define also the causal, resp. time-like shadow:

J(U) = J+(U) ∪ J−(U), I(U) = I+(U) ∪ I−(U).

Definition 19.39 A Cauchy hypersurface is a hypersurface S ⊂ X such that
each inextensible time-like curve intersects S at exactly one point.

If S is a smooth space-like Cauchy hypersurface, it will always be equipped
with the external orientation given by the future directed normal vector at each
point of S.

Let us quote the following result from the theory of Lorentzian manifolds:

Theorem 19.40 Let X be a connected Lorentzian manifold. The following are
equivalent:

(1) The following two conditions hold:
(1a) for any x, y ∈ X , J+(x) ∩ J−(y) is compact,
(1b) (causality condition) there are no closed causal curves.

(2) There exists a Cauchy hypersurface.
(3) X is isometric to R× S with metric −βdt2 + gt , where β is a smooth positive

function, gt is a Riemannian metric on S depending smoothly on t ∈ R, and
each {t} × S is a smooth space-like Cauchy hypersurface in X .
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The above theorem is quoted from Bär–Ginoux–Pfäffle (2007) except for (1b),
where in this reference the so-called strong causality condition is given. The fact
that the strong causality condition can be replaced by the causality condition is
a recent result of Bernal–Sanchez (2007).

Definition 19.41 A connected Lorentzian manifold satisfying the equivalent
conditions of the above theorem is called globally hyperbolic.

We recall that a Riemannian manifold (S, h) is geodesically complete if all its
geodesics can be infinitely extended. By the Hopf–Rinow theorem, this condition
is equivalent to the condition that S, equipped with the Riemannian distance, is
complete as a metric space; see Sakai (1996).

Example 19.42 Let (S, h) be a Riemannian manifold and I ⊂ R an open inter-
val. Let f : I →]0,∞[ be a smooth function. Then X = I × S with the metric
−dt2 + f(t)2h is globally hyperbolic iff (S, h) is geodesically complete.

Example 19.43 Let (S, h) be a Riemannian manifold and τ : S →]0,+∞[ a
smooth function, v ∈ T #S a smooth 1-form. Then X = R× S, equipped with the
Lorentzian metric −τ(x)

(
dt− vj (x

)
dxj )2 + hjk (x)dxjdxk , is called a stationary

space-time. If v = 0 it is called static. It is called uniformly static if there exists
c > 0 such that c ≤ τ(x) ≤ c−1 . A uniformly static space-time is globally hyper-
bolic iff (S, h) is geodesically complete; see Fulling (1989) .

It is straightforward to generalize the notion of space-compact functions from
the Minkowski space (see Def. 19.2) to a Lorentzian manifold.

Definition 19.44 A function f ∈ C(X ) is called space-compact iff there exists
a compact K ⊂ X such that supp f ⊂ J(K). It is called future, resp. past space-
compact iff there exists a compact K ⊂ X such that supp f ⊂ J±(K).

The set of smooth space-compact functions will be denoted C∞
sc (X ). The set of

smooth future, resp. past space-compact functions will be denoted C∞
±sc(X ).

Finally, let us give the definition of the causal dependence.

Definition 19.45 Let X be globally hyperbolic and O ⊂ X . We say that x ∈ X
is causally dependent on O if there exists a neighborhood U of x and a smooth
Cauchy surface S such that every causal curve starting from U intersects S
in O.

If O1 ,O2 ⊂ X we say that O1 is causally dependent on O2 , if every x ∈ O1 is
causally dependent on O2 .

19.4.4 First-order partial differential equations

We assume that the manifold X is equipped with a measure, which in local
coordinates equals |g| 12 (x)dx. (In this subsection, |g| 12 does not have to come
from a metric tensor.)
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Let V be a finite-dimensional vector space over K = R or C. To simplify nota-
tion we will assume that K = C. The formulas in the real case are obtained from
the complex case by dropping the bars and replacing the Hermitian conjugation
∗ with the transposition # .

In this subsection we study first-order differential equations for functions with
values in V. With a large class of such equations we will associate a locally defined
vector-valued sesquilinear form Jμ whose divergence vanishes. In physics Jμ is
often called a conserved current.

This construction has a special importance for hyperbolic equations on hyper-
bolic manifolds, where it leads to an invariantly defined bilinear or sesquilinear
form on the space of solutions. In the case of the Klein–Gordon equation (which,
of course, can be reduced to a first-order equation) this form is symplectic for
K = R and charged symplectic for K = C. The Klein–Gordon equation on curved
space-times will be considered in Sect. 19.5. In the case of the generalized Dirac
equation, which on a curved space-time we will consider in Sect. 19.6, this form is
a positive definite scalar product. In both cases these forms play a fundamental
role in the quantization of the classical equation.

In many textbooks on quantum field theory the conserved current Jμ is derived
from the Lagrangian by the Noether theorem using the invariance w.r.t. the
charge symmetry ζ �→ eiθ ζ, θ ∈ U(1). In the derivation that we give, complex
numbers do not enter at all.

Let us consider a first-order linear equation for ζ ∈ C∞(X ,V). Every such
equation can be written in the form

αμ(x)∇μζ(x) +
1
2
(|g|− 1

2 (x)∇μ |g| 12 (x)αμ(x)
)
ζ(x) + θ(x)ζ(x) = 0, (19.44)

where X � x �→ αμ(x), θ(x) ∈ L(V,V∗), and μ enumerates the coordinates of X .
The following theorem describes conditions that guarantee the existence of a
conserved current for (19.44).

Theorem 19.46 Suppose that either Condition (19.45) or Condition (19.46) is
satisfied:

αμ(x)∗ = αμ(x), θ(x)∗ = −θ(x), (19.45)

or αμ(x)∗ = −αμ(x), θ(x)∗ = θ(x). (19.46)

Define
Jμ(ζ1 , ζ2 , x) := ζ1(x)·αμ(x)ζ2(x).

Let ζ1 , ζ2 be solutions of (19.44). Then

∇μ |g| 12 (x)Jμ(ζ1 , ζ2 , x) = 0. (19.47)

Proof

|g|− 1
2 ∇μ |g| 12 Jμ =

(
αμ∗∇μ +

1
2
(|g|− 1

2 ∇μ |g| 12 αμ
)∗ − θ∗

)
ζ1 · ζ2

+ζ1 ·
(
αμ∇μ +

1
2
(|g|− 1

2 ∇μ |g| 12 αμ
)

+ θ
)
ζ2 = 0. �
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Note that in the complex case one can pass from Condition (19.45) to (19.46)
by multiplying αμ and θ by i.

19.5 Generalized Klein–Gordon equation on curved space-time

Throughout this section we assume that X � x �→ g(x) = [gμν (x)] is the metric
tensor on a pseudo-Riemannian manifold X . In the first two subsections only we
allow X to be an arbitrary pseudo-Riemannian manifold. Starting with Subsect.
19.5.3, we will assume that X is globally hyperbolic.
V will be a real or complex finite-dimensional vector space. For simplicity, most

formulas will be given for the complex case. We will consider a vector bundle
with a base X and fiber V. For simplicity, we will always assume that the bundle
is trivial and trivialized to X × V.

In this section we describe algebraic quantization of a large class of second-
order equations on X with values in V. We will always assume that the principal
term of these equations is given by the metric tensor. In the case of Lorentzian
manifolds, such equations will be called generalized Klein–Gordon equations.
Solutions of these equations propagate causally.

Generalized Klein–Gordon equations possess a conserved current, which is
symplectic in the real case and charged symplectic in the complex case. Therefore,
it is natural to quantize these equations using the CCR. The bosonic algebraic
quantization leads to a net of algebras satisfying the Einstein causality.

This section is to a large extent a generalization of Sect. 19.2 to a curved space-
time. Unlike in Sect. 19.2, we limit our discussion to the algebraic quantization.
We do not discuss the positive energy quantization on a bosonic Fock space,
which is possible for the Klein–Gordon equation on a stationary space-time; see
Kay (1978).

19.5.1 Klein–Gordon operators

Let X � x �→ Γμ(x) ∈ L(V), μ = 0, 1, . . . , d, be smooth functions.

Definition 19.47

∇Γ
μζ := (∇μ + Γμ)ζ, ζ ∈ C∞(X ,V),

is called the covariant derivative of ζ with the connection Γ.

Let X � x �→ ρ(x) ∈ L(V) be a smooth function.

Definition 19.48 The operator

� = �(Γ, ρ) := −|g|− 1
2 ∇Γ

μ |g|
1
2 gμν∇Γ

ν + ρ, (19.48)

acting on C∞(X ,V), will be called the generalized Klein–Gordon operator with
the connection Γ and the mass-squared term ρ.
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We will study the equation

�ζ = 0. (19.49)

Remark 19.49 The name Klein–Gordon equation is usually associated with
the Lorentz signature. Its analog for the Euclidean signature has the traditional
name of the Helmholtz equation.

Let us fix a smooth map X � x �→ λ(x) ∈ L(V,V∗) with values in positive
definite forms on V. One can then introduce a scalar product on C∞(X ,V) by

ζ1 · ζ2 :=
ˆ
X

ζ1(x)·λ(x)ζ2(x)dv(x). (19.50)

Remark 19.50 In the literature, a complex vector bundle X × V → X equipped
with a scalar product λ(x) is often called a Hermitian bundle, which is not quite
correct, since it is equipped with a positive definite Hermitian form. A connection
satisfying (19.51) is also called Hermitian.

We will assume the following conditions:

∇μλ = Γ∗
μλ + λΓμ , λρ = ρ∗λ. (19.51)

If (19.51) holds, for any smooth open set Ω ⊂ X , Green’s formula is valid:ˆ
Ω

(
ζ1(x)·λ(x)�ζ2(x)−�ζ1(x)·λ(x)ζ2(x)

)
dv(x) (19.52)

= −
ˆ

∂Ω
gμ,ν (x)

(
ζ1(x)·λ(x)∇Γ

μζ2(x)−∇Γ
μζ1(x)·λ(x)ζ2(x)

)
dsν (x).

This formula follows easily from (19.43).
In the following theorem we describe a conserved current associated with equa-

tion (19.49):

Theorem 19.51 Assume (19.51). Let ζ1 , ζ2 be solutions of (19.49). Then

Jμ(ζ1 , ζ2 , x)

:= ζ1(x)·λ(x)gμν (x)∇Γ
ν ζ2(x)−∇Γ

ν ζ1(x)·λ(x)gμν (x)ζ2(x)

satisfies

∇μ |g| 12 (x)Jμ(ζ1 , ζ2 , x) = 0. (19.53)

Before we prove the above theorem let us remark that we can always assume
that λ(x) does not depend on x. Then we can drop λ(x) from our notation
altogether and replace the condition (19.51) with

Γμ are anti-self-adjoint and ρ is self-adjoint. (19.54)
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In fact let us first fix a scalar product (·|·) on V so that λ(x) > 0 becomes a
self-adjoint operator on V. We have

∇Γ
μζ = λ− 1

2 ∇Γ̃
μλ

1
2 ζ, for Γ̃μ = λ

1
2 Γμλ− 1

2 −
(
∇μλ

1
2

)
λ− 1

2 .

From (19.51), we obtain that Γ̃μ is anti-self-adjoint for (·|·). In fact, we can
rewrite (19.51) as

(∇μλ
1
2 )λ

1
2 + λ

1
2 ∇μλ

1
2 = Γ∗

μλ + λΓμ ,

which gives Γ̃∗
μ = −Γ̃μ . Moreover, ρ̃ = λ

1
2 ρλ− 1

2 is self-adjoint for (·|·). Consider-
ing the function ζ̃ = λ

1
2 ζ, we obtain (19.54).

Proof of Thm. 19.51. The theorem follows by direct computation. However, it
is perhaps instructive to give a proof that reduces it to a special case of Thm.
19.46.

As remarked above, we can assume (19.54). Let us now introduce ζ ′μ := ∇Γ
μζ.

The equation (19.49) yields(
gμν∇μ +

1
2
|g|− 1

2
(∇μ |g| 12 gμν

))
ζ ′ν = ρζ +

(
−|g|− 1

2
1
2
(∇μ |g| 12 gμν

)− gμν Γμ

)
ζ ′ν ,

−
(
gμν∇ν + |g|− 1

2
1
2
(∇ν |g| 12 gμν

))
ζ =
(
−|g|− 1

2
1
2
(∇ν |g| 12 gμν

)
+ gμν Γν

)
ζ − gν,μζ ′ν .

This can be rewritten as

αμ∇μ

[
ζ

ζ ′

]
+

1
2
|g|− 1

2 (∇μ |g| 12 αμ)
[

ζ

ζ ′

]
+ θ

[
ζ

ζ ′

]
= 0, (19.55)

for

θ =

[
−ρ |g|− 1

2 1
2 (∇μ |g| 12 gμν ) + gμν Γμ

|g|− 1
2 1

2 (∇ν |g| 12 gμν )− gμν Γν gμν

]
,

αμ =
[

0 gμν

−gμν 0

]
.

Identifying V with V∗ using the scalar product (·|·), we obtain an equation of the
form (19.44) with V replaced by V ⊕ Vd . Clearly, θ∗ = θ and αμ∗ = −αμ . Thus
(19.55) satisfies the condition (19.46). Hence,

Jμ =
[

ζ1

ζ ′1

]
αμ

[
ζ2

ζ ′2

]
= ζ1g

μν ζ ′2ν − ζ ′1ν gμν ζ2

is a conserved current. �
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19.5.2 Lagrangian of the Klein–Gordon equation

The equation (19.49) can be obtained as an Euler–Lagrange equation, where the
Lagrangian is

L(ζ, ∂ζ) := −1
2
(∂μ + Γμ)ζ·gμν |g| 12 (∂μ + Γμ)ζ − 1

2
ζ·|g| 12 ρζ, in the real case,

L(ζ, ζ, ∂ζ, ∂ζ) :=−(∂μ +Γμ)ζ·gμν |g| 12 (∂μ + Γμ)ζ − ζ·|g| 12 ρζ, in the complex case.

(For simplicity, we have assumed that λ does not depend on x and that (19.54)
holds.)

19.5.3 Green’s functions of hyperbolic Klein–Gordon equations

From here until the end of the section we assume that X is globally hyperbolic.
The following theorem is a classic result from the theory of hyperbolic equa-

tions. Its proof can be found e.g. in Bär–Ginoux–Pfäffle (2007).

Theorem 19.52 For any f ∈ C∞
c (X ,V), there exist unique functions ζ± ∈

C∞
±sc(X ,V) that solve

�ζ± = f.

Moreover,

ζ±(x) = (G±f)(x) :=
ˆ

G±(x, y)f(y)dv(y),

where G± ∈ D′(X × X , L(V)) satisfy

�G± = G±� = 1l, suppG± ⊂ {(x, y) : x ∈ J±(y)
}
.

If in addition (19.51) holds, then G±∗ = G∓.

Note that by duality G± can be applied to distributions of compact support.

Definition 19.53 G+ , resp. G− is called the retarded, resp. advanced Green’s
function.

G := G+ −G−

is called the Pauli–Jordan function.

In what follows, until the end of the section, we assume (19.51). Note that
G∗ = −G or, in other words,

v1 ·λ(x)G(x, y)v2 = −G(y, x)v1 ·λ(y)v2 , v1 , v2 ∈ V.
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19.5.4 Cauchy problem

Theorem 19.54 Let S be a smooth Cauchy hypersurface. Let ς, ϑ ∈ C∞
c (S,V).

Then there exists a unique ζ ∈ C∞
sc (X ,V) that solves

�ζ = 0 (19.56)

with initial conditions ζ
∣∣
S = ς, nμ∇Γ

μζ
∣∣
S = ϑ.

It satisfies supp ζ ⊂ J(supp ς ∪ suppϑ) and is given by

ζ(x) = −
ˆ
S

(∇yμ G(x, y)−G(x, y)Γμ(y)
)
ς(y)gμν (y)dsν (y)

+
ˆ
S

G(x, y)ϑ(y)ds(y). (19.57)

Proof The existence and uniqueness of solutions are well known. Let us prove
(19.57). We apply Green’s formula (19.52) to ζ2 = ζ and to ζ1 = G∓f , f ∈
C∞

c (X ,V), Ω = J±(S). We obtain
ˆ

J + (S)
f · λζdv =

ˆ
S

gμν
(
G−f · λ∇Γ

μζ −∇Γ
μG−f · λζ

)
dsν , (19.58)

ˆ
J−(S)

f · λζdv =
ˆ
S

gμν
(
−G+f · λ∇Γ

μζ +∇Γ
μG+f · λζ

)
dsν . (19.59)

Adding (19.58) and (19.59) we get

ˆ
X

f · λζdv =
ˆ
S

gμν
(
−Gf · λ∇Γ

μζ +∇Γ
μGf · λζ

)
dsν .

This can be rewritten as
ˆ
X

f(x) · λ(x)ζ(x)dv(x)

= −
ˆ
X

dv(x)
ˆ
S

G(y, x)f(x) · λ(y)∇Γ
μζ(y)gμν (y)dsν (y)

+
ˆ
X

dv(x)
ˆ
S
∇Γ

yμ
G(y, x)f(x) · λ(y)ζ(y)gμν (y)dsν (y)

=
ˆ
X

f(x) · λ(x)dv(x)
ˆ
S

G(x, y)∇Γ
μζ(y)gμν (y)dsν (y)

−
ˆ
X

f(x) · λ(x)dv(x)
ˆ
S

(∇yμ G(x, y)−G(x, y)Γμ(y)) ζ(y)gμν (y)dsν (y),

where in the last line we use G∗ = −G. Thus (19.57) is true. �
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19.5.5 Symplectic space of solutions of the

Klein–Gordon equation

Let Y = Y(Γ, ρ) denote the set of solutions of (19.56) in C∞
sc (X ,V).

Theorem 19.55 Let ζ1 , ζ2 ∈ Y. Define Jμ(ζ1 , ζ2 , x) as in Thm. 19.51. Then

ζ1 ·ωζ2 :=
ˆ
S

Jμ(ζ1 , ζ2 , x)dsμ(x) (19.60)

does not depend on the choice of a Cauchy hypersurface S and defines a charged
symplectic form on Y.

Proof Let S1 , S2 be two Cauchy hypersurfaces. We can find a third Cauchy
hypersurface S0 that lies in the future of supp ζi ∩ Sj , i = 1, 2, j = 1, 2. Applying
the Stokes theorem and (19.53) to the domain between S0 and S1 , we show that
the integrals (19.60) on S0 and S1 coincide. By the same argument, the integrals
(19.60) on S0 and S2 coincide. �

Note that in terms of the Cauchy data we have

ζ1 ·ωζ2 =
ˆ
S

(
ϑ1 ·λς2 − ς1 ·λϑ2

)
ds.

19.5.6 Solutions parametrized by test functions

Theorem 19.56 (1) For any f ∈ C∞
c (X ,V), Gf ∈ Y.

(2) Every element of Y is of this form.
(3) Gf1 ·ωGf2 =

´
f1(x)·λ(x)G(x, y)f2(y)dv(x)dv(y).

Proof Gf is a solution of (19.56), since G is a solution of (19.56) in its first
variable. The fact that Gf is space-compact follows from the support properties
of G±. Hence, (1) is true.

Now let ζ ∈ Y. Since ζ is space-compact, we can find cutoff functions χ± ∈
C∞

±sc(X ) such that χ+ + χ− = 1 on supp ζ. Moreover, it follows from Condition
(1a) of Thm. 19.40 that supp∇χ± ∩ supp ζ is compact. Setting

ζ± := χ±ζ, f := �ζ+ = −�ζ−,

we see that f ∈ C∞
c (X ). Hence, by Thm. 19.52, ζ± = ±G±f, and ζ = Gf . This

proves (2).
Let f1 , f2 ∈ C∞

c (X ,V). In a sufficiently far future we have Gfi = G+fi , i =
1, 2. Hence, for a Cauchy surface S in a far future we have

Gf1ωGf2 =
ˆ
S

gμν
(
∇Γ

μG+f1 ·λG+f2 −G+f1 ·λ∇Γ
μG+f2

)
dsν

=
ˆ

J−(S)

(
�G+f1 ·λG+f2 −G+f1 ·λ�G+f2

)
dv

=
ˆ
X

(
f1 ·λG+f2 −G+f1 ·λf2

)
dv

=
ˆ
X

(
f1 ·λG+f2 − f1 ·λG−f2

)
dv.
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In the first line we use the definition of ω, in the second Green’s formula, in
the third the fact that fi are compactly supported, and in the last the fact that
G+∗ = G−. �

Let O be an open subset of X . We define

Y(O) :=
{
Gf : f ∈ C∞

c (O,V)
}
.

Theorem 19.57 (1) Y(X ) = Y.
(2) O1 ⊂ O2 implies Y(O1) ⊂ Y(O2).
(3) If O1 and O2 are causally separated and ζi ∈ Y(Oi), i = 1, 2, then

ζ1 ·ωζ2 = 0.

(4) If O1 is causally dependent on O2 , then Y(O1) ⊂ Y(O2).
(5) ω is non-degenerate on Y.

Proof (1) follows from Thm. 19.56 (2). (2) is obvious. (3) follows from the defini-
tion of ω and the support properties of G± in Thm. 19.52. To prove (4), it suffices
to show that if ζ = Gf for f ∈ C∞

c (O1), then ζ = Gg for g ∈ C∞
c (O2). Using a

partition of unity of O1 , we can assume that there exists a Cauchy hypersurface
S such that any causal curve starting from O1 intersects S in O2 . If ζ = Gf for
f ∈ C∞

c (O1), we set ς = ζ
∣∣
S , ϑ = nμ∇Γ

μζ
∣∣
S . By Thm. 19.52, the Cauchy data

(ϑ, ς) are supported in a compact set N ⊂ S, and by Thm. 19.54 we obtain
that supp ζ ⊂ J+(N) ∪ J−(N) ⊂ O+

2 ∪ O−
2 , where O±

2 = O2 ∪ S± and S± are
the future, resp. past of S. Hence, we can find cutoff functions χ± supported in
O±

2 such that ζ = χ+ζ + χ−ζ =: ζ+ + ζ−. Setting

g := �ζ+ = −�ζ−,

we obtain that supp g ⊂ O+
2 ∩ O−

2 = O2 . Moreover, since ζ± is past, resp. future
space-compact, we see by Thm. 19.52 that ζ± = ±G±g. Hence, ζ = Gg. This
completes the proof of the theorem. �

19.5.7 Algebraic quantization

Let A := CCRWeyl(Y). More generally, if O is an open bounded subset in X , let
A(O) be the sub-algebra of A generated by W (Gf + Gf), where f ∈ C∞

c (O). In
other words, A(O) = CCRWeyl(Y(O)

)
.

The family of algebras A(O) satisfies the following properties, which express
the Einstein causality:

Theorem 19.58 (1) A(X ) = A.
(2) O1 ⊂ O2 implies A(O1) ⊂ A(O2).
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(3) If O1 and O2 are space-like separated and Bi ∈ A(Oi), i = 1, 2, then

B1B2 = B2B1 .

(4) If O1 is causally dependent on O2 , then A(O1) ⊂ A(O2).

19.6 Generalized Dirac equation on curved space-time

The setting of this section is similar to that of Sect. 19.5. Again, we assume that
X is a pseudo-Riemannian manifold. Starting with Subsect. 19.6.3, we assume
in addition that X is globally hyperbolic.

Similarly, as in the previous section we consider also a finite-dimensional space
V and the vector bundle X × V → X .

The goal of this section is to describe the algebraic quantization of a large class
of first-order equations on a curved space-time. We will always assume that the
principal term of this equation is of the form γμ(x)∂μ , where γμ(x) satisfy the
Clifford relations given by the metric tensor [gμν (x)]. Such an equation will be
called a generalized Dirac equation. In the case of Lorentzian manifolds, solutions
of this equation have causal propagation.

We will see that generalized Dirac equations possess a conserved current. In
the case of globally hyperbolic manifolds, this current defines a scalar product
on the space of solutions. Therefore, it is natural to quantize this equation using
the CAR. Its algebraic quantization leads to a net of algebras satisfying the
fermionic version of the Einstein causality.

This section is to a large extent a generalization of Sect. 19.3 to a curved space-
time. Unlike in Sect. 19.3, we limit our discussion to the algebraic quantization.
We do not discuss the positive energy quantization on a fermionic Fock space,
which is possible for the Dirac equation on a stationary space-time.

19.6.1 Dirac operators

Recall that X is a pseudo-Riemannian manifold. V can be a real or complex
space. For simplicity, we will consider only the complex case.

Definition 19.59 A map X � x �→ γμ(x) ∈ L(V) satisfying

[γμ(x), γν (x)]+ = 2gμν (x) (19.61)

is called a spinor structure on X .

Definition 19.60 Let X � x �→ θ(x) ∈ L(V). The operator on C∞(X ,V)

D = D(θ) := γμ(x)∇μ + θ(x) (19.62)

is called a generalized Dirac operator.
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We will study the equation

Dζ = 0. (19.63)

Let us fix a smooth map X � x �→ λ(x) ∈ L(V,V∗) such that λ(x) is non-
degenerate for all x ∈ X . We will often assume that

λ(x)γμ(x) is self-adjoint, (19.64)

λ(x)θ(x)− 1
2
|g|− 1

2 (x)∇μ |g| 12 (x)λ(x)γμ(x) is anti-self-adjoint. (19.65)

Using Thm. 19.46 and the Stokes theorem, we obtain the following version of
Green’s formula:ˆ

Ω

(
ζ1(x)·λ(x)Dζ2(x)− Dζ1(x)·λ(x)∗ζ2(x)

)
dv(x)

=
ˆ

∂Ω
ζ1(x)·λ(x)γμ(x)ζ2(x)dsμ(x). (19.66)

For ζ1 , ζ2 ∈ C∞(X ,V), we define

Jμ(ζ1 , ζ2 , x) = ζ1(x)·λ(x)γμ(x)ζ2(x). (19.67)

If ζ1 , ζ2 are solutions of the Dirac equation, by Thm. 19.46, we have

∇μ |g| 12 (x)Jμ(ζ1 , ζ2 , x) = 0. (19.68)

Note also that if we have another Dirac operator D1 := γμ(x)∇μ + θ1(x), then

� := DD1

is a second-order operator of the form considered in Subsect. 19.5.1.

19.6.2 Lagrangian of the Dirac equation

(19.63) can be obtained as the Euler–Lagrange equation for the following
Lagrangians:

L1(ζ, ζ, ∂ζ, ∂ζ) := −|g| 12 ζ·λ(γμ∂μ + θ)ζ, or

L(ζ, ζ, ∂ζ, ∂ζ) := −1
2
|g| 12 (ζ·λγμ∂μζ + ∂μζ·λγμζ

)
−ζ·(|g| 12 λθ − 1

2
(∂μ |g| 12 λγμ)

)
ζ.

19.6.3 Green’s functions of hyperbolic Dirac equations

Until the end of the section we assume that X is globally hyperbolic and D is a
generalized Dirac operator on X .
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Theorem 19.61 For any f ∈ C∞
c (X ,V), there exist unique functions ζ± ∈

C∞
±sc(X ,V) that solve

Dζ± = f. (19.69)

Moreover

ζ±(x) = (S±f)(x) :=
ˆ

S±(x, y)f(y)dv(y), (19.70)

where S± ∈ D′(X × X , L(V)
)

satisfy

DS± = S±D = 1l, suppS± ⊂ {(x, y) : x ∈ J±(y)
}
. (19.71)

If in addition (19.64) and (19.65) hold, then

λ(x)∗S+(x, y) = −S−(x, y)∗λ(y). (19.72)

Proof By the remark in Subsect. 19.6.1, D2 is a generalized Klein–Gordon oper-
ator. Let G± be the retarded, resp. advanced Green’s functions of D2 . Clearly,
ζ± = DG±f are solutions of (19.69). To prove the uniqueness, we note that if
Dζ± = 0 and supp ζ± ⊂ J±(K) for some compact K, then D2ζ± = 0. Hence,
ζ± = 0 by Thm. 19.52. We set then S± = DG±. This proves (19.70) and (19.71).
Let us prove (19.72). We need to show thatˆ

f 2 ·λ∗S+f1dv = −
ˆ

f 2 ·S+∗λf1dv. (19.73)

It is enough to set fi = Dζi for ζi = S+fi . Now, λD is anti-Hermitian for the
scalar product (19.40), henceˆ

Dζ2 ·λ∗S+Dζ1dv =
ˆ

λDζ2 ·S+Dζ1dv

= −
ˆ

ζ2 ·λDS+Dζ1dv = −
ˆ

ζ2 ·λDζ1dv

= −
ˆ

S+Dζ2 ·λDζ1dv = −
ˆ

Dζ2 ·S+∗λDζ1dv.
�

Note that by duality S± can be applied to distributions of compact support.

Definition 19.62 S+ , resp. S− is called the retarded, resp. advanced Green’s
function. We also set

S := S+ − S−.

Note that

λ(x)∗S(x, y) = S(x, y)∗λ(x). (19.74)

19.6.4 Cauchy problem

Until the end of the section we assume that X � x �→ λ(x) has been chosen so
that (19.64) and (19.65) hold. We also assume that λ(x) is non-degenerate for
any x ∈ X .
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Theorem 19.63 Let S be a smooth Cauchy surface. Let ϑ ∈ C∞
c (S,V). Then

there exists a unique ζ ∈ C∞
sc (X ,V) that solves

Dζ = 0 (19.75)

with initial conditions ζ
∣∣
S = ϑ. It satisfies supp ζ ⊂ J(suppϑ) and is given by

ζ(x) = −
ˆ
S

S(x, y)γμ(y)ϑ(y)dsμ(y). (19.76)

Proof The existence and uniqueness is well known. Let us prove (19.76).
We apply Green’s Formula (19.66) to ζ2 = ζ and ζ1 = S∓f , f ∈ C∞

c (X ), Ω =
J±(S), obtaining ˆ

J + (S)
f ·λ∗ζdv =

ˆ
S

S−f ·λγμζdsμ , (19.77)
ˆ

J−(S)
f ·λ∗ζdv = −

ˆ
S

S+f ·λγμζdsμ . (19.78)

Adding (19.77) and (19.78), we getˆ
X

f ·λ∗ζdv = −
ˆ
S

Sf ·λγμζdsμ .

This can be rewritten asˆ
X

f(x)·λ(x)∗ζ(x)dv(x) = −
ˆ
X

dv(x)
ˆ
S

S(y, x)f(x)·λ(y)γμζ(y)dsμ(y)

= −
ˆ
X

f(x)·λ(x)∗dv(x)
ˆ
S

S(x, y)γμ(y)ζ(y)dsμ(y),

where in the last line we use (19.74). �

19.6.5 Unitary space of solutions of the Dirac equation

Let Y denote the set of solutions of the Dirac equation in C∞
sc (X ,V). To equip Y

with a scalar product an additional positivity condition is required. We assume
that for all x ∈ X

λ(x)γμ(x)vμ > 0, if v ∈ TxX is time-like and future directed. (19.79)

By Lemma 19.9, it suffices to assume that there exists a time-like future directed
vector field v such that

λ(x)γμ(x)vμ(x) > 0, x ∈ X .

Theorem 19.64 Let ζ1 , ζ2 ∈ Y. Define Jμ(ζ1 , ζ2 , x) as in (19.67). Then

ζ1 · ζ2 :=
ˆ
S

Jμ(ζ1 , ζ2 , x)dsμ(x)

does not depend on the choice of a Cauchy hypersurface S and defines a positive
definite Hermitian form on Y.
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Proof To show that ζ1 · ζ2 is independent of S we apply the Stokes theorem as
in Thm. 19.55, using (19.68). The fact that it is positive definite follows from
the positivity condition (19.79). �

19.6.6 Solutions parametrized by test functions

Theorem 19.65 (1) For any f ∈ C∞
c (X ,V), Sf ∈ Y.

(2) Every element of Y is of this form.
(3) Sf1 · Sf2 =

´
f1(x) · λ(x)∗S(x, y)f2(y)dv(x)dv(y).

Proof (1) follows from the fact that S solves (19.75) in its first coordinate.
(2). Let ζ ∈ Y. We can write ζ = ζ+ + ζ−, where ζ+ ∈ C∞

±sc . Set

f := Dζ+ = −Dζ−.

Then f ∈ C∞
c (X ,V), ζ± = ±S±f, and hence ζ = Sf .

(3). Let f1 , f2 ∈ C∞
c (X ,V). In a sufficiently far future we have Sfi = S+fi ,

i = 1, 2. Hence, for a late Cauchy surface S,

Sf1 · Sf2 =
ˆ
S

S+f1 · λγμS+f2dsμ

=
ˆ

J−(S)

(
DS+f1 · λ∗S+f2 − S+f1 · λDS+f2

)
dv

=
ˆ
X

(
f1 · λ∗S+f2 − S+f1 · λf2

)
dv

=
ˆ
X

(
f1 · λ∗S+f2 − f1 · λ∗S−f2

)
dv.

�

Let O be an open subset of X . We define

Y(O) :=
{
Sf : f ∈ C∞

c (O,V)
}
.

Theorem 19.66 (1) Y(X ) = Y.
(2) O1 ⊂ O2 implies Y(O1) ⊂ Y(O2).
(3) If O1 and O2 are space-like separated and ζi ∈ Y(Oi), i = 1, 2, then

ζ1 · ζ2 = 0.

(4) If O1 is causally dependent on O2 , then Y(O1) ⊂ Y(O2).

19.6.7 Algebraic quantization

Set A := CARC ∗
(Y). Note that it is a graded algebra. More generally, if O is an

open bounded subset in X , let A(O) be the C∗-sub-algebra of A generated by
ψ(Sf), where f ∈ C∞

c (O). In other words, A(O) = CARC ∗
(Y(O)). The family

of algebras A(O) satisfies the following properties:
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Theorem 19.67 (1) A(X ) = A.
(2) O1 ⊂ O2 implies A(O1) ⊂ A(O2).
(3) If O1 and O2 are causally separated, and Bi ∈ A(Oi) are elements of parity

|Bi |, then

B1B2 = (−1)|B1 ||B2 |B2B1 .

(4) If O1 is causally dependent on O2 , then A(O1) ⊂ A(O2).

19.7 Notes

The material of the first three sections is discussed in essentially all textbooks on
quantum field theory, such as Jauch–Röhrlich (1976), Schweber (1962), Weinberg
(1995) and Srednicki (2007).

Mathematical aspects of quantum field theory on curved space-time were stud-
ied by Dimock (1980, 1982). A review of this subject can be found in monographs
by Wald (1994) and Fulling (1989).

A short and readable monograph on wave equations on Lorentzian manifolds
is Bär–Ginoux–Pfäffle (2007).
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