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Abstract

A variety of approaches have been developed for the detection of features such as edges,
lines, and corners in images. Many techniques presuppose the feature type, such as a step
edge, and use the differential properties of the luminance function to detect the location of
such features. The local energy model provides an alternative approach, detecting a variety
of feature types in a single pass by analysing order in the phase components of the Fourier
transform of the image. The local energy model is usually implemented by calculating the
envelope of the analytic signal associated with the image function. Here we analyse the
accuracy of such an implementation, and show that in certain cases the feature location
is only approximately given by the local energy model. Orientation selectivity is another
aspect of the local energy model, and we show that a feature is only correctly located at a
peak of the local energy function when local energy has a zero gradient in two orthogonal
directions at the peak point.

1. Introduction

Images are spatial data patterns, normally represented as bounded and sampled lumi-
nance values over a bounded and sampled two-dimensional spatial domain. One of
the major problems in image analysis is the detection of image features such as edge
and corner points, since it is well-accepted that such features contain much of the
information in the image, and occur on a set of small measure. Many approaches have
been developed for the detection and localisation of features, including differential
techniques [5,10,19], surface-fitting techniques [7,8], morphological approaches [14]
and others [21].

Accurate feature detection is essential for many of the problems currently facing
researchers in the field of active vision, especially with regards to stereo, motion
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analysis, and hand-eye coordination in robotics. Moreover, Oppenheim and Lim [15]
showed in 1981 that phase information is crucial to our perception of features, and
Fleet and Jepson [6] have used phase information to extract motion in images.

Morrone and Owens (1987) approach the problem of feature detection by consid-
ering how features are built up in an image instead of the differential properties in the
luminance function. They proposed the phase congruency model for feature detection.
In their approach an image is decomposed into its frequency components. A feature
point is marked at the spatial location where the phases of frequency components in
a particular direction are maximally congruent in a local neighbourhood. They also
hypothesize that feature points located by the phase congruency criterion coincide
with those perceived by the human visual system [11,12], including some illusory
features like Mach bands [13].

The concept of maximal congruency in phase entails the minimisation of some
measure of error. Various error functions can be used. However, instead of using
an error function, Morrone and Owens implement phase-congruency by defining a
local energy function. Features are said to be found at points where the local energy
function peaks. The local energy function is defined as the norm of an energy vector
whose two bases are the image itself and its Hilbert transform. To tie in with the
original idea of localizing features at points of maximal phase congruency, they define
a "phase-congruency" function as the scaled version of the local energy function, the
scaling factor being the sum of the amplitudes of all frequency components. By such
definitions, the maximisation of the local energy function naturally maximises the
phase-congruency function. In this paper, a weighted least-square error function (as
one of the many possible ways to measure "congruency") is defined for the deviation
in component phase angles and must be minimised to mean phase-congruency. It
is shown in Section 4 that the local energy model is a Taylor approximation of the
weighted least-square method in implementing phase congruency.

In this paper we will restrict the analysis of the model to one-dimensional image
signals. However, the local energy model has been implemented for the analysis of
two-dimensional images [22]. The implementation involves convolving the image sig-
nal with quadrature pairs of filters, one of which is rotationally symmetric and the other
orientationally selective. The phase congruency model has also been implemented
using banks of wavelet filters [9] and extended for the detection of two-dimensional
features such as corners and junctions [20]. Some of the mathematical properties of
the model have been detailed in our previous work [1-4,11,12,16-18,23], but this
paper represents the first detailed analysis of the model's accuracy.

The orientation invariance property of the phase congruency and the local energy
models is also examined. Features in an image can exist in any direction. In the
event of 1-D feature points forming a curve, the ideal implementation of a feature
detector should be operating in a direction normal to the feature curve at each point.
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Indeed, this is how Canny's operator detects step edges. However, many feature
detectors, including early versions of the local energy model, are one-dimensional if
implementation is to be simple and efficient [22]. The outputs of the feature detector in
two orthogonal directions are often summed to represent a two-dimensional detection.
Although it has been empirically demonstrated that reasonable results can be obtained
in such a manner by the local energy model [22], a mathematical analysis has not been
provided. This paper provides the proof that the location of the peaks of local energy,
or locations of minimal weighted least-square phase error, remain invariant regardless
of the chosen directions of the two bases of operation, provided some conditions are
met. These are discussed in Section 6.

2. The local energy model

The following discussion will be restricted to one-dimensional analog signals f(x).
The image, / , that such a signal represents is the two-dimensional array of points
[I(x, y) = f(x), where x and y are in some interval}. That is, f(x) represents a
horizontal slice through the image I(x, y) and such slices are identical, regardless of
the choice of y. One can imagine a simple step edge image, with a black panel on the
left-hand side, and a white panel on the right.

Let a one-dimensional zero-dc luminance function f(x) be defined in terms of its
Fourier frequency components as

f(x) = 2j2ancos(na)x + <pn), (2.1)
n>0

where an and (/>„ are the amplitude and phase of the /1th frequency component respec-
tively.

Let the Hilbert Transform of f(x) be h(x). Then, by definition of the Hilbert
transform,

h(x) = - 2 ^ an s\n(ncox + </>„). (2.2)
n>0

An energy vector can be defined as

e(x) = ^[

I" I (2.3)
= ^ a n cos(na>x + <j>n), ^an sin(ncvx + <pn) \.

\_n>0 n>0 J

The local energy function [22], E, is defined as the norm of the vector e(x):

E(x) = [^2 an cos(ncox + <pn) + ^ an sm(na>x
n>0 _ |_n>0

I
(2.4)
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Alternatively, E(x) can be expressed as

E(x) = l^an cos(neox + </>„- 9e), (2.5)

where

( J2 an sin(nwx + (f>n) \

2_, «« cos(na«: + </>„) /

n>0 /

Equation (2.5) is derived by summing the dot-products of all frequency component
vectors with a unit vector along e(x). The value E (2.4) is the norm of the resultant
vector e of all the components using the Cartesian coordinates, where ncox + <\>n = 0
is the ;c-axis (and n/2 is the y-axis). But if the component vectors are summed using
other Cartesian coordinates where ncox + 4>n — 0e = 0 is the jc-axis (and n/2 is the
y-axis), that is, using the e direction as the x-axis, then the same e should be obtained
as before (because the vector sum is independent of the coordinate system used) and
the e in the latter coordinate system is real (zero imaginary part) giving E directly
(2.5).

Alternately, the identity of (2.4) and (2.5) can also be proven as follows.
The norm (E) of a vector (e) is the dot product of the vector (e) with its unit vector

(I) along the same direction:

E = e •£

an cos(ti(ox
n>0 n>0 J L ^ e' J

= ^an cos(ncox + </>„) cos(^) + ^an sin(n&>;t + <pn) sin(6e)
n>0 n>0

= Y2a" COS(na)X +<Pn~ 0e).
n>0

Next, that E is maximised at 6e given any x before finding peaks of E with respect
to x will be ascertained.

THEOREM 1. The value of 6 in the function

p(x, 6) = Y^,a" cos(ncox + </>„- 6)

must be equal to 6e (2.6) if p is to be maximised at any given x.
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PROOF. We have

- £ = V an sin(ncox + <f>n - 9), (2.7)

— = - 2_^an cos(na>x + cpn - 9) = -p.
n>0

Since p is non-negative (being the norm of a vector (see equation (2.5)), extrema of
p (with respect to 9, not x), if any, must be maxima, not minima. To find 9 at maxima
of p given x, set |g (2.7) to zero. Then

an sininoox + (/>„— 9) = 0,
n>0

>x + (f>n) cos(0) - cos(ncox + (j>n) sin(0)] = 0,
n>0

cos(0) ^2,an sin(n<wx + </>„) = sin(#) cos(ncox + 4>n),
n>0

9 = tan I -= I = 0,,.
2 j c o s ( + <f>n)

By Theorem 1, it is known that the local energy E, at a given spatial location x, is
maximised at the phase angle 9e of the energy vector e, which is computed by standard
vector algebra (2.6). This is to be contrasted with the statement [22] that says E is
maximised at the weighted average of the component phases Yl o.n(n(ox + 4>n)/^2an.

n>0 n>0
(It will be shown that this is a Taylor's Series approximation.)

At 9e, it is now desired to find xe (the spatial location where E(x, 9) is maximised).
To maximise E is to maximise the square of E (since E is non-negative). Thus, using
(2.4), a function Z(x) is defined as

Z(x) = \Y^an cos(ncox + <pn)\ + ^ a n <MY(TI(OX + (j>tt) \ . (2.8)

| J | Jn>0

^ a n <MY(TI(OX + (j>tt) \ .

|_n>0 J

Because of the identity of the expressions in (2.4) and (2.5), it is implicit that 9 —9e

when Z(x) is defined as in (2.8). We have

— = -2
dx

<£„) V * anna> sin(ncox + <pn)
J [7Zo J
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^ a n sin(ncox + <t>n)\\ ^2anncocos(ncox + (f>n)
|_n>0 J Ln > 0

= 2 ^^ {m — ri)aman sin(m<wx + <j>m) cos(ncox + </>„).
m,n>Q

Setting dZ/dx = 0 gives

^ (m - n)aman sin(mcoxe + <pm) cos(ncoxe + <j>n) = 0. (2.9)
m,«>0

Equation (2.9) can be solved for xe by numerical methods. For each xe found,
the usual second derivative test (d2Z/dx2 < 0 for maxima) can be carried out. In
summary, E(x) peaks at the spatial location x = xe (2.9) with a phase angle 9 = 9e

(2.6).

3. Phase congruency via phase deviation

Next, the notion of phase-congruency will be studied. As a convenient example,
a weighted least-square error function is defined to measure 'phase-congruency'. Let
r(x, 6), a phase deviation function (rather than a 'phase-congruency' function [22]),
be defined as

an (ncox + </>„- 9)2

(3.1)

n>0

where ncox + cj>n — 9 assumes values in the principal range (—n, TT].
The value of r will be in the closed interval [0.0, 1.0]. Maximum phase congruency

means minimum phase deviation. Also note that by shifting cox + <j>n — 9 into the
principal range of (—n, n], mod (2n) computation is performed in (3.1).

As before, it is desired to find 9 that minimises r at any given x before considering
minimising r with respect to x.

THEOREM 2. The value of 9 in the function

52 #n (ncox + <}>„ ~ 9)2

r(x, 9) = — ^Ty~a
71 >0

must be equal to the weighted average phase

J2 an (ncox + «/>„)
0r = ^——

n>0

ifr is to be minimised at any given x.
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dr
39

Phase congruency in 1

-2 y^

n>0

d2r 2

103

n>0

Since d2r/d02 > 0, any extrema of r must be minima.
Setting dr/80 = 0 (to find 9r) gives

+ <Pn ~ Or) = 0,
n>0

nCOX + C(>n) — 2_. an®r = 0 ,
n>0 n>0

n>0

Note that the expression for 9r in Theorem 2 is identical to the weighted average
phase mentioned by Venkatesh [22]. What this means is that at 9r, the local energy
does not peak in general; instead, the phase deviation function is minimised.

Also note that special care must be taken when computing 6r in mod (2n). One
way is to separate (ncox + <pn) into two groups: (0, n] and (—n, 0]; compute a
sub-weighted-average value in each group, and then combine the two sub-weighted-
average values using the smaller angle of difference between them.

By Theorem 2, it is known that at the weighted average phase angle 6r, the phases
of the fourier components have weighted least square error (with respect to 0). Next,
we compute the spatial location xr where r(x, 6) is minimised. This is done by setting
dr/dx to 0 at 6 = 9r(x). We have

J2 On (nCOX +(j>n- 9r)
2

r(x, 9r) = — r-= ,

n>0

n>0

From Theorem 2,

53 an (ncox + <f>n)

(t>"- °r) (nco - 7 T VI • (32)

N,

n>0
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where

M = 2_jann/2^ian, N =
n>0 n>0 n>0 rt>0

and dOr/dx = coM.
Therefore,

' [an(ncox +<pn — coMx — N)(nco — coM)).

n>0

Setting dr/dx = 0 (to find xr) gives

[an(ncoxr + </>„- coMx - N)(nco - coM)] = 0. (3.3)
n>0

Equation (3.3) is implicit with respect to xr, and the expression (ncox +<pn —coMx —
N) cannot be separated to give

Zlan(n - M)(N - <l>n)]

xr = ">0 ^ . . — (3.4)
w £ k ( « - M)]

n>0

because for every xr and n, (ncox + (/>„ — coMx — N) must undergo mod (2JT)
arithmetic to assume values in {—n, n]. Numerical methods can be used to solve for
xr in (3.3) by looking for the zero-crossings.

In summary, phases of the harmonics are maximally congruent at location xr with
a phase angle value 6r (3.3).

4. Phase congruency approximated by local energy peaks

We have shown that the local energy peaks at location xe with phase value 6e but
phases of harmonics are maximally congruent at location xr with phase value 9r (in
a weighted least-square sense). To say that local energy peaks at maximum phase
congruency would mean xe = xr and 0e = 9r. This happens only when all harmonics'
phases (ncox + </>„) are equal to 0e. In vectorial terms, all the vectors representing
each harmonic of the image at xe will have to point in the same direction as the energy
vector e does. The closer the harmonics' phases are to 0e, the better the approximation
of (xr, 0r) by (xe, 0e). This approximation is also known as the Taylor approximation.
Proofs are provided below as Theorem 3 and 4.

THEOREM 3. The energy phase value 6e is approximately equal to the weighted phase
value 0r if all harmonics' phases (ncox + <pn) are close to 0e. (That is, Qe « 0r if
ncox + (pn-0e^ 0.)
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PROOF. From (2.5),

E(x) = y ^ a n cos(ncox + <t>n — 9e),
n>0

dE v ^
— - = > an sin(ncox + 4>n - 9e)

a" (ncox + <t>n — &e) if ncox + <pn — 6e % 0 by Taylor 's theorem.

Setting dE/dOe = 0 (to find 0e) gives

<t>n - 0e) * 0,

n>0

%(nCOX + (j)n) — 2_^ arfie ^ 0>
n>0 n>0

Y^, an(ncox + 4>n)
9e sa — = 9r.

n>0

THEOREM 4. T/ie local energy peak location xe is approximately equal to the least

phase deviation location xr if all harmonics' phases (ncox + </>„) are close to 9e. (That

is, xe «« xr if ncox + </>„— 9e % 0J

PROOF. From (2.5),

E(x) = ̂ 2 an cos(ncox + <pn - 9e)
n>0

R» ̂  an cos(ncox + <j)n — 9r) if ncox + 4>n — 9e « 0 by Theorem 3.
n>0

Hence

T - % V an sin(/i<yjc + 0n - 0r)(na; - —-)
3JC ^ L « J

x-> r d9r 1
% 2 ^ an(nra + cpn - 9r)(nco - —) if/IWJ: + 0n - 9r « 0.

Setting 3 £ / 3 J : = 0 (to find xe) gives

an(ncoxe + <pn- 9r)(nco - -—) « 0.

n>o L 9^ J

https://doi.org/10.1017/S0334270000012406 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012406


106 Y. K. Aw, Robyn Owens and John Ross [10]

But from (3.2) and (3.3)

} ^ an(ncoxr + </>„- 9r)(nco - — ) = 0.

Therefore xe

5. Numerical examples

Some numerical examples are given below to illustrate the similarities and the
differences in feature locations (xe and xr) and phase angles (0e and 6r) calculated
using the local energy model and the weighted least-square method.

A generalised trapezoidal waveform is used. The waveform has zero dc and a peak
to peak amplitude value 0.25. This value of peak-peak amplitude is chosen so that
the curves of the luminance function (/(*)), the local energy (E(x)) and the phase
deviation function (r(x)) can be plotted with clear details on the same scale. The
waveform occupies one periodic cycle (0 to 2n) within the given frame of 257-pixels
wide, and the gradient of the ramp is determined by a ratio R which is equal to the
width of the ramp over the width of the plateau.

In Case 1, R = 1. The locations and phase angles of a feature near the point
where the plateau meets the ramp are measured. The illusory features observed at the
location are also known as Mach bands [13].

In Case 2, R « 0, and the slope of the ramp portion is near infinity. The feature
points at the two ends of a ramp merge into a step feature, also called an edge.

In Case 3, R « oo. The upper and lower plateau portions of a trapezoid are reduced
to zero width, and the result is a sawtooth waveform where the feature points at the
two ends of a plateau are merged together.

In Case 4, R is set to 1, but only the lowest nine positive and lowest nine negative
frequency components of the luminance function are retained. What is being examined
is a smoothed trapezoid.

As a last example (Case 5), a waveform of the least number of frequency compo-
nents that exhibits a difference in 9e and 9r is used. Three frequency components are
needed. (However, not every three-component waveform has a difference in 0e and
0r.)

Only the first global peak of the local energy function and the first global phase
deviation minimum from the left of the waveform are tabulated and marked on the
graphs as illustrations. (More peaks and minima exist at symmetrical locations towards
the right of the marked points.)
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Case 1:
Suppose we are given a spatially generated trapezoidal waveform with unit R (the

ramp width to plateau width ratio).
The spatially generated waveform is fast-Fourier transformed to get the necessary

an and <f>n (co = 2n). The results are shown below in Table 1, and illustrated in
Figure 1.

TABLE 1. Comparison between (*,, 0e) and (xr, 9r)

Local energy
location <oxe

phase angle 0e

energy E at coxe

energy E at coxe — 1°
energy E at coxe + 1°

23.08°
39.04°

0.156984
0.156034
0.156798

Weighted least-square
location u>xr

phase angle 0r

least-square r at (oxr

least-square r at coxr — 1°
least-square r at coxr + 1°

22.98°
36.00°

0.026213
0.028207
0.027189

Note: xe ^ xr and 9e =£9r. Components' phases are only maximally (not perfectly)
congruent at*,..

•
V

• t

^

\ y'

"local_energy_peak^_-^

•image".
• l oca l energy-"

"phase_deviatictfi"

A
1 / \ \

/

45 90 135 180 225 270 315
spatial location (degrees per picture width)

FIGURE 1. Example: a trapezoidal waveform

At this juncture, it is worth mentioning an interesting observation: at the 'smoothest'
parts of the luminance function (at the middle of the ramp and the middle of the
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plateau), the local energy is minimum and the phase deviation function is maximum.
This is the duality of feature definition: if the maximum of the local energy is defined
as a feature point, then the minimum of the same should indicate a featureless point.
A similar behaviour can be observed in the phase deviation function.
Case 2:

Suppose we are given a spatially generated square waveform by setting R to ^ .
The spatially generated waveform is fast-fourier transformed to get the necessary

an and <pn (a> = 2n). The results are shown below in Table 2 and illustrated in Figure 2.

TABLE 2. Comparison between (xe, 9e) and (*,, 6r)

Local energy
location coxe

phase angle 6e

energy E at coxe

energy E at coxe — 1°
energy E at ooxe + 1°

90.00°
90.00°

0.451270
0.418383
0.418383

Weighted least-square
location coxr

phase angle 9r

least-square r at coxr

least-square r at coxr — 1°
least-square r at coxr + 1°

90.00°
90.00°

0.000000
0.016245
0.016245

Note: All component phases are perfectly congruent at xr (can be seen from
r = 0.000000 at xr) results in xe = xr and 6e = 6r.

•local_energy_peak
"minimum_phase_deviation

i "image
"lf>cal_energy

"phas|2_cteviation

45 90 135 180 225 270 315 360
spat ia l location (degrees per picture width)

FIGURE 2. Example: a square waveform
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Case 3:
Suppose we are given a spatially generated sawtooth waveform by setting R to a

large number, say 999999. The spatially generated waveform is fast-fourier trans-
formed to get the necessary an and <pn (co = 2n). The results are shown below in
Table 3 and illustrated in Figure 3.

TABLE 3. Comparison between (xe, 9e) and (xr, 6r)

Local energy
location coxe

phase angle 9e

energy E at a>xe

energy E at toxe — 1°
energy E at coxe + 1°

90.00°
180.00°

0.125000
0.123061
0.123061

Weighted least-square
location a>xr

phase angle 6r

least-square r at coxr

least-square r at coxr — 1°
least-square r at tax, + 1°

90.00°
180.00°

0.000000
0.003714
0.003714

Note: All component phases are perfectly congruent at xr (can be seen from
r = 0.000000 at xr) resulting in xe = xr and 0e = 6r.

0 . 1

0.05

0

-0 .05

- 0 . 1

-n 1S

\. ^ ^S ,

/ \ /
\ i

'i ••

/ \

•local_energy_peak"
^ "minimum_phase_dGviation"

\ /*'' ""*\ ~ /'' "K

'• ' '•• \

•'" '•• \

V . \ . \

k
\ •

-

-

-

45 90 135 180 225 270 315 360
spatial location (degrees per picture width)

FIGURE 3. Example: a sawtooth waveform

Case 4:

This waveform consists of the lowest nine positive and lowest nine negative fre-
quency components of a trapezoid of R = 1. The result is a smoothed trapezoid.
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Given

f(x) =

a2

a3

a4

a5

a6

ai

a%
\a9

* i \

02
03
04
05
06
07
08
09/

n=\

=

V

„ cos(no)A:

0.071703
0.000000
0.008018
0.000000
0.002924
0.000000
0.001521
0.000000
0.000944

+ (/>„), co = 2TT,

-23.198163° >
0.000000°

110.405516°
0.000000°

64.009190°
0.000000°

-162.387166°
0.000000°

151.216522° I

and note that an = a_n, 0n = — 0_n. The results are shown below in Table 4 and
illustrated in Figure 4.

TABLE 4. Comparison between (xe, 9e) and (xr, 9r)

Local energy
location coxe

phase angle 0e

energy E at coxe

energy E at coxe —
energy E at coxe +

1°
1°

80.15°
53.52°

0.156817
0.156791
0.156793

Weighted least-square
location coxr

phase angle 9r

least-square r at coxr

least-square r at coxr — 1°
least-square r at a)xr + 1°

78.83°
51.09°

0.017876
0.017938
0.017938

Note that xe ^ xr and 0e ^ 6r. Components' phases are only maximally (not
perfectly) congruent at xr.
Case 5:

In this case, a waveform that has no perfect phase congruency (that is, r ^ 0 at xr)
will be examined. Such a waveform must consist of at least three harmonics.

Given

f(x) = 0.25 cos(cox) - 0.25 cos(3cox) - 0.25 cos(5<wx)

3

where

n=\

ft) = 2n,

a, = 0.125, a2 = 0.000, a3 = 0.125, a4 = 0.000, a5 = 0.125,

0. = 0°, 02 = 0°, 03 = 180°, 04 = 0°, 05 = 180°.
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FIGURE 4. Example: a waveform synthesized from the first 9 positive and negative harmonics of a
trapezoid

The results are illustrated below.

TABLE 5. Comparison between (xt, 0e) and (xr, 6r)

Local energy
location coxe

phase angle 9e

energy E at coxe

energy E at (oxe — 1°
energy E at coxe + 1°

45.00°
18.43°

0.279509
0.279372
0.279372

Weighted least-square
location coxr

phase angle 9r

least-square r at u>xr

least-square r at a>xr — 1°
least-square r at coxr + 1°

45.00°
15.00°

0.055556
0.055638
0.055638

Note that xe = xr but 9e ^ 6r. Components' phases are only maximally (not
perfectly) congruent at xr.

6. Orientation invariance

In this section, the hypothesis that the location of the local maxima of local energy
is invariant to the orientation of the orthogonal bases of operation with respect to
the image is examined. In common practice, the set of peaks detected from one
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FIGURE 5. Example: a 3-harmonic waveform having no perfect phase congruency

direction is simply united (that is, logical OR operation) with those found in the other
orthogonal direction to form a so-called two-dimensional feature map of an image.
In the following paragraphs, it will be shown that in order to obtain invariance in the
detected locations with respect to the orientation of the applied operator, there is a
necessary condition of zero-gradient in the local energy in both directions at a peak
point (§6.1). That is, peak detection in one direction cannot be carried out regardless
of the local energy gradient found in the other direction. (Usual second derivative tests
can be carried out but are omitted in this paper for simplicity.) The same necessary
condition applies to feature point detection using the weighted least-square criterion,
in which case a minimum in one direction must be matched with a zero gradient in
the other direction (§6.2).

6.1. Consistency in peak point in the local energy model. Assume that a peak is
present in a two-dimensional zero-dc image. Since the Hilbert transform does not
exist for a general two-dimensional image, without loss of generality, one can further
restrict the image to be one of positive frequency components only. Then, using the
horizontal and vertical directions of the image as the axes for x and v, and centering
the origin of the coordinates at the said peak, the image can be expressed as

fix, y) = ^ amn cos(ma)xx + ncoyy + </>„,,„), (6.1)
m,n>0
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and the Hilbert transform of the image is

h(x, y) = -^2 am,n sin(ma)xx + ncoyy + 4>m,n). (6.2)
m,/i>0

The local energy function of the image (ignoring the scaling factor of j in (2.3)) is

X + noyy
_m,n>0

r -|
|_m,n>0 J

(6.3)

Let the square of E(x, y)beZ(x, y). In usual peak searching, Z(x, y) is maximised
in the horizontal and the vertical directions separately (by setting dZ/dx and dZ/dy
separately to zero together with second derivative tests), and the union taken the set
of peak locations found in the two directions. We have

Z(x, y) =

+

so that

amn cos(mcoxx + ncoyy + 4>m,nn)

J

[^ am,n sin(mcoxx + ncoyy + 0m,n) , (6.4)

m,n>0 J

s\n(.mcoxx + ncoyy + 4>m,n)
_m,n>0 J

2 \Y1 a">» sin(mw,JC + nwyy + <t>m,
J

and

x J Z a<nnm(]}*cos(mcoxx + ncoyy + <pm,n) (6.5)
[_m,n>0 J

dZ J \-̂
— = - 2 > amncos(m^j: + ncoyy
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x y . ^m,nna}y s\n{mcoxx + nwyy
I m,n>0

+ 2 ncoyy + #m,n)
m,n>0

am,nno)y cos(mooxx + ncoyy + </)m,n (6.6)
_m.n>0

At the origin (x, y) = (0, 0),

—
OX (jr,y)=(O,O)

+ 2

am,n cos(</>m,J
m,n>0 m,n>0

,nmaj, cos(0m,n)
m,n>0 (6.7)

and

U.y)=(0,0) m,n>0

«m,« sin(</>m,n)
m,n>0

am,nna)y

m,n>0

m,n>0 (6.8)

Next, consider an anti-clockwise rotation of axes about the origin by an angle 9.
Let the units of measurement along the rotated axes be u and v. By simple geometry

x = u cos(0) — v sin(0)

and

y ~ u sin(0) + v cos(0).

Substituting (6.9) and (6.10) into (6.4) gives

(6.9)

(6.10)

, y) =
m,n>0

— vsinfl)

+ ncoy(u sin 9 + v cos 9) + <pm,n]
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+ I ^^ °m,n sin [mcox (u cos 9 - v sin 9)
\ m,n>0

| 2

+ ncoy(u sin 9 + v cos 9) + <j>m „] | ,
I (6.11)

dZ [ |
— = — 2 | Y^ amjlcos[ma)x(ucos9 — usin^) +ncoy(usin9 + vcos9) + </»„,,„] >
3M I ^—' ' I

lm,n>0 I

x | / ] flm,n (jna>x cos 9 + ncoy sin 9)
\ m,n>0

sin[mcox(ucos9 — vsinfl) + ncoy(u si

2 | > J amnsin[mo)x(MCOS0 — vsinfl) + ncoy(usin9 + vcos9)
\m,n>0

x I / | amn{mcox

— usinfl)
(6.12)

3Z
— = - 2

x < 2_\ am,n(ncoy cos9 — ma>x si
\ m,n>0

ncoy(u sin9 + vcos9) + </>m,n] \

+ 2 < ^2 amnsin[mcox(ucos9 — vsin^) + na)y(usin9 + vcos9) + </>m,
lm,n>0

x < y ^ am,n(no)ycos9 — mcox sin9)
\ m,n>0

cos[ma)x(ucos9 — vsin9) + ncoy(u sin9 + vcos9) + <f>m,n] \.
J (6.13)
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At the origin (where a peak is supposed to exist), (u, v) = (0,0), (6.12) and (6.13)
give

3Z

(K,IO=(0,0)

= - 2 j J^ a™
I m,n>0

+ 2 \ 2 ^ a">.« sin[0m,
I m,n>0

cos0 + na>y sin9) sin[</>m,n]
I m,n>0

= - 2 j ^ am,n cos[</>n
I m,n>0

+ 2
I m,n>0

«] I ^ ] <V« ("iwx cos 0 + ncoy sin ^) cos[0m,J
J m,n>0

,«] ^ am,nma)x

J m,n>0

,«] J | X I a">nm(O*
J [m,n>0

:cos0sin[</>m,n]

- 2 I ^2 am,ncos[(j>m,nV
I m,n>0

+ 2 j J ] <*«.. sin[0m,n]

9Z

m,n>0

m,n>0

dz
(6.14)

and

dZ

(u,v)=(0,0)

= - 2 I ^ am,n cos[0m,n]
I m,n>0

m,n>0

= - 2 2L am"cos[^">"]
m,n>0

+ 2 X am,n sin[</)m,n]
m,n>0

+ 2 ^ am,n cos[0m,n]
m,n>0

am,n(ncoy

I m,n>0

am,n(na)y cos6» - mw, sin 0) cos[0m,n]
I m,n>0

am,nno)y cos 0 sin[#m,n]
I m,n>0

am,nna)ycos0cos[0mn]
m,n>0

m,n>0
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- 2 { > am,n s in[0m,n]} { > am,nmcox s in0 cos[«/>m>n]}
\m,n>0 J [m,n>0 J

3z az
= - s i n 0 — + cos0— . (6.15)

OX (x,y)=(O,O) a y (J,),)=(0,0)

For dZ/du or dZ/dv ((6.14), (6.15)) to be zero at the origin (where a feature lies)
regardless of 9, dZ/dx and (not or) dZ/dy must be both zero. In other words, if the
feature location detected in one coordinate system is to remain invariant with respect
to the axes, the gradient in both directions must be zero before the point of interest can
be tested further as a feature point. The test of sufficiency using second derivatives
can be carried out as normal.

6.2. Consistency of minimum point in phase deviation using the weighted least-
square criterion. As before, the same x — y coordinates whose origin centres on
a feature point are used. In this case, however, the feature point is a location where
there is a minimum in the phase deviation function r(x,y) which is defined as

£ £ am,n(ma)xx + ncoyy + <pm,n - 9r)
2

/ -. m>Qn>0 /r •% r\

r(x, y) = , (6.16)71 £ £ am,n
m>0 n>0

where ma>xx + na>yy + </»„„ — 9r assumes values in the principal range of (—n, n] and

£ £ amAmc°xX + ncoyy + </>m,n)
9r = ' ^ ^ ^=r^ • (6.17)

m>0 n>0

Considering the gradient dr/dx and dr/dy,

8r 2

dx n2 £ £ c
m>0 n>0

ncoyy
«>o»o \ — ^6.18)

,,„ - 9r) Imcox - —^ 1 .

Let

£ £ amnm £ £ am_nn £ £ am,n0m,n
.. m>0n>0 ,, m>0n>0 • ,, m>0n>0

M\ = ^ ^ , M2 = „ „ and V̂ = — .
m>0n>0 m>0n>0 m>On>0

Then,

0. = m . r M , 4- fi>..vM-, -4- AT
3x

9r = oixxM\ + (oyyM2 + N, -^- = .
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Therefore,

2 E am,n(jn<*>xX + neoyy + <f>mn — coxxM\ — coyyM2 — N)(mcox — a>xM\)

dr m,n>0

m>0n>0 ^ ^

Similarly,
2 E am,n(rncoxx + ncoyy + <f>m,n — coxxMx — coyyM2 — N)(ncoy — coyM2)

dr m,n>0

At the origin, (x, y) = (0, 0), the gradients are

dr 2 ^
•r— = 2 T-, y , a»>,n(<f>m,n — N)(mcox — o)xM\)

X(^)=(O,o) * J_,^am,n mn>Q ( 6 2 1 )

and

or 2
Omni'Pm n ~ N)(jl(Oy — COyM2).

m^Um'n"^° ' ' (6-22)

Next, consider the rotated coordinates («, v) and the substitution of (6.9) and (6.10)
into (6.16) and (6.17) we have

E am,n(m&>x(u cos9 - usin#) + ncoy(u s,in9 + vcos0) + 4>m,n — 9r)
m,n>0

r{u, v) = Tt
2 E E am.n

m>0 n>0 (6.23)

where mcox(u cos9 — v sin9) + no)y(u sin9 + v sin9) + 0m,n — 9r assumes values in
the principal range of (—n, n].

Also

E am,n(mo)x(u cos9 - v sin9) + ncoy.(u sin<? 4- ucosfl) + </»m,n)
m,n>0

or =
m>0n>0

= cox(u cos 9 — v sin9)M{ + coJu sin9 + v cos9)M2 + N, (6.24)

d9r -
3 M y ' •
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—- = —u)xM\ sin0 + a)yM2cos9. (6.26)
dv

Substituting (6.25) and (6.26) into the expressions for dr/du and dr/dv gives

cosO — vsin9)+ na)y(usin9 + vcos9)
du n2 J2

,n>

• <t>mn — 9r)(mcox cos9 + ncoy sin 9 ) I,
du /

m,n>0

du

u,u)=(0,0)

2 • ^ . . , - ME
m,«>0

x (m<yx cos 0 + rcojj, sin 9 — coxM\ cos 0 — u>yM2 sin 0)

amA<t>m,n - N)(mcox - coxMt) cos9
* 2 E <*m,n m ^ 0

m,n>0

2 ^-^
+ 2 ^ 2 ^ amA<t>m,n - N)(ncoy - coyM2) sin 9

71 2s am,n mn>0
m,n>0

dr dr
= cos9— + s in<9— , (6.27)

dx u,y)=(o.o) dy (Xiy)=(o,o)

and

3r

m>0n>0

x ^^ am,n(m(Ox(ucos9 — vsir\9) + na)y(usin9 + vcos9) + <pmn — 0r)
m,n>0

( d9 \
—mcox sin 9 + ncoy cos 9 I ,

dv )
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(u,v)=(0,0)

2 5Z am,ni.(t>m,n — ft)(-ffi(i), sin9 + tiWy cos6 + a)xM\ sin6 — coyM2 cos9)
0m,n>0

i-i i-j"-m,n m > 0 n>0
m>0 n>0

2—i 2—i am,n m > o n > o
m>0 n>0

n,« ~ N)(-ma)x + coxM

— (oyM2)cos9

= -s in0— +cos0— . (6.28)
dx (x.y)=(o,o) dy u,j,)=(o,o)

Again, for dr/du or 3/-/3v ((6.27), (6.28)) to be zero at the origin (where a feature
lies) regardless of 9, dr/dx and (not or) dr/dv must both be zero. (Usual second
derivatives test can be worked out and also note that (6.27) and (6.28) have the same
form as (6.14) and (6.15).)

In summary, if a feature point is defined at the minimum phase deviation point
(in the weighted least-square sense), and if the detected location is to be invariant
to the arbitrary orientation of the coordinate axes with respect to the image, then it
is necessary to check for zero gradient in both axis directions when determining a
feature point in one direction.

7. Conclusion

We have shown that features detected by searching for the local energy peaks
or by looking for minimum phase deviation in the weighted least-square sense can
differ slightly in locations and phase angles. If the harmonics' phases are perfectly
congruent, as in the case of a perfect step or sawtooth (roof) luminance function (Cases
2 and 3 in Section 2.5), there is no difference between the two methods in location and
in phase angle. If, however, the harmonics' phases are only maximally (not perfectly)
congruent, as in the case of a trapezoidal luminance function or combinations of steps
and roof profiles, small differences in the order of a few degrees per picture width
can exist in locations and phase angles calculated by the two methods. This is due
to the fact that the local energy method is a Taylor-approximation of the weighted
least-square method in measuring phase congruency.

The consistency in the detected feature location with respect to an arbitrary set
of orientations of the applied energy operator has also been examined. We showed
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that while determining a local energy peak in one direction (say, the *-direction) as
a feature point, it is important to check that the gradient of the local energy in the
orthogonal direction (the y-direction) is also zero, though it need not be a peak in
the y-direction at the same time (as in the case of a roof profile in the x -direction
with a constant luminance in the y-direction). However, if one decides that a roof
profile in the *-direction with a gradual increase in luminance in the y-direction is to
contain features at peaks of the roof points, then a priori knowledge about the feature
line orientation is needed to apply the local energy operator correctly in a direction
perpendicular to the feature line. Any other orientation of coordinate system will give
inconsistent results on feature point locations.

A similar necessary condition applies to feature point detection using the weighted
least-square phase deviation function. A zero-gradient condition in the deviation
function in the orthogonal (y) direction must be met when deciding whether the
minimum point in phase deviation in the current (x) direction is a feature point (and
vice versa).
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