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THE UNIFORM LAW OF LARGE NUMBERS FOR THE
KAPLAN-MEIER INTEGRAL PROCESS

JONGSIG BAE AND SUNGYEUN KiM

Let Un(f) = [ fd(ﬁ,, - F) be the function-indexed Kaplan-Meier integral process
constructed from the random censorship model. We study a uniform version of
the law of large numbers of Glivenko-Cantelli type for {Un} under the bracket-
ing entropy condition. The main result is that the almost sure convergence and
convergence in the mean of the process U, holds uniformly in F. In proving the
result we shall employ the bracketing method which is used in the proof of the uni-
form law of large numbers for the complete data of the independent and identically
distributed model.

1. INTRODUCTION

In this paper, we obtain a uniform version of the law of large numbers of Glivenko-
Cantelli type for the function-indexed Kaplan-Meier integral process based on the in-
complete data of the random censorship model.

In obtaining the uniform law of large numbers, we observe the role played by
bracketing of the indexed class of functions of the process and slightly modify the
underlying metric. Then we employ the idea of DeHardt 1] of the bracketing method
to the Kaplan-Meier integral process.

The uniform law of large numbers of the present paper extends the one dimensional
law of large numbers for random censoring that was established by Stute and Wang
[4] and the DeHardt’s uniform law of large numbers for independent and identically
distributed random variables [1]. Among others our results are stated not only for
almost sure convergence but also for convergence in the mean. The results may be used
in nonparametric statistical inference in verifying uniform consistency. See Van de Geer
[6] for applications.

We begin by introducing the integral version of the usual empirical process based
on the complete data of independent and identically distributed random variables.

Let X be a random variable defined on a probability space (2,7, P) whose dis-
tribution functions is F'. Consider a sequence {X; : ¢ > 1}of independent copies of
X. Given a Borel measurable function f : R — R, we see that {f(X;) : i > 1}

Received 17th October, 2002

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 $A2.00+0.00.

459

https://doi.org/10.1017/50004972700037254 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700037254

460 J. Bae and S. Kim (2]

forms a sequence of independent and identically distributed random variables that are
more flexible in applications than the sequence {X; : ¢ > 1}. Consider a class F of
real-valued Borel measurable functions defined on R Introduce the usual empirical

distribution function F,, defined by F,(z) = n~! E{X < z} for z € R. Define a

function indexed integral process S, by
@ Sn(f) = [ 1@d(Fs - F)@) for f € 7.

Throughout the paper events are identified with their indicator functions. So,
for example, the summand of the empirical distribution function means the indicator
functions of the events {X; < z}.

In a classical probability theory, one is often interested in establishing three famous
limit theorems: the law of large numbers, the central limit theorem, and the law of the
iterated logarithm. These topics have their own importance in the classical probability
theory. The results also have applications in a parametric statistical inference. In
recent years, under the topic of empirical process theory, authors have become interested
in the uniform analogue of the three theorems: the uniform law of large numbers of
Glivenko-Cantelli type, the uniform central limit theorem for Donsker type, and the
uniform law of the iterated logarithm for Strassen type. When the underlying data are
independent and identically distributed and complete, these topics are well developed
up to a generality of function indexed process and usefully applied in nonparametric
statical inference. See for example, DeHardt [1] for the uniform law of large numbers,
and Ossiander [3] for the uniform central limit theorem and the uniform law of the
iterated logarithm.

In survival analysis, authors deal with statistical inference problems based on in-
complete data and the random censorship model. Since Kaplan and Meier introduced
the model [2], this topic has been studied in various directions. The Kaplan-Meier
estimator has been generalised and refined up to a Kaplan-Meier integral and some
limit theorems for this integral have been obtained. See, for example, Stute and Wang
[4] for the law of large numbers and Stute [5] for the central limit theorem.

In the present paper, we deal with the uniform law of large numbers problem for
the function-indexed Kaplan—Meier integral process.

Developing a uniform law of large numbers for a function-indexed process such as
S, has usually meant that ;up |Sn( f)| converges to zero in a certain sense under a

certain entropy condition on the class F. The process is indexed by F and is treated
as random elements in B{F), the space of bounded real-valued function on F, taken
with the sup norm || - ||=. It is known that (B(F), |- ||x) forms a Banach space.
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We use the following defintion of almost sure convergence and convergence in the
mean. See, for a recent reference, Van der Vaart and Wellner [7].

DEFINITION 1: A sequence of B(F)-valued random functions {Y,} converges with
probability 1 to a constant ¢ if

P*{sup Y, (f) = c} =P{sup Yo (f)* 2 c} =1
feF fex
The sequence {Y,} converges in the mean to a constant c if

E*sup Yn(f) = Esup Y,(f)" — c.
ferF feF
Here E* denotes the upper expectation with respect to the outer probability P*, and

sup Y, (f)" is the measurable cover function of sup Y,(f).
feF fer

In 1971, DeHardt [1] obtained the uniform law of large numbers for the sequence
of independent and identically distributed random variables under bracketing entropy.
DeHardt’s result states that if F has a bracketing entropy then sup|S,| — 0 with

F

probability 1.

In 1993, taking a statistical point of view, Stute and Wang [4] proved, using a
super martingale method, a one dimensional law of large numbers for the Kaplan—Meier
integral based on the incomplete data of the random censorship model.

The aim of our work is to extend Stute and Wang’s law of large numbers for the
Kaplan-Meier integral to a function indexed process version by employing DeHardt’s
idea of the bracketing method.

In Section 2, we introduce the Kaplan-Meier integral process, establish the uniform
law of large numbers for the process, and discuss some corollaries of the main result.

2. THE MAIN RESULTS

We introduce the random censorship model where one observes the incomplete data
{Z;,68;}. The {Z;} are independent copies of Z whose distribution is H. The {Z;,é;}
are obtained by the equations Z; = min (X;,Y;) and §; = {X; < Y;} where the {¥;}
are independent copies of the censoring random variable Y with distribution G which
is also assumed to be independent of F', the distribution of independent and identically
distributed random variables {X;} of original interest in a statistical inference.

Let F{a} = F(a)—F(a—) denote the jump size of F at a, and let A be the set of all
atoms of H, which is an empty set when H is continuous. Let 75 = inf {z: H(z) =1}
denote the least upper bound of the support of H. The fact that the 7y is not
necessarily finite leads us to consider a subdistribution function F defined by

(2.2) F(z) = F(z){z < ta} + [F(ra—) + {rn € A}F{ry}}{z > mu}.
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Let F C Li(F) := {f : [|f(=)|F(dz) < oo} be a class of functions which are
real-valued measurable defined on R. In this paper, we shall use the metric defined by

d(f,g) == / |#(z) ~ o(z)|F(dz).

REMARK 1. Inthe case 7y < 0o, such as independent and identically distributed model
of the complete data, F boils down to F so that the metric d becomes the usual Ly
metric.

In order to measure the size of the function space, we define the following version
of metric entropy with bracketing. See, for example, Van der Vaart and Wellner [7] for
a recent reference.

DEFINITION 2: Given two functions [ and u, the bracket [[,u] is the set of all
functions f with I < f < u. An e-bracket is a bracket [I,u] with [ (u— 1)(z)F(dx)
< €. The bracketing number Njj(¢) := Njj(e, F,d) is the minimum number of &-
brackets needed to cover F. We say that F has a bracketing entropy if

& 1/2
/0 [l Ny (e, F, )] /2de < oo.

We now consider the Kaplan—Meier integral process {U,} defined by
(2.3) U.(f) = /fd(ﬁ,l - F’) for fe F,

where ﬁ,, is the Kaplan-Meier product limit estimator of the underlying distribution
F in the random censorship model. See Kaplan and Meier [2].

The process {Un(f): f € F} will be the proper extension of the process {S,(f):
f € F} given in (1.1) to the random censorship model.

Our goal is to show that the almost sure and mean convergence of the process
{Un}, given in (2.3), to 0 holds uniformly for a class ¥ = {f} of f’s that have a
bracketing entropy condition.

We are ready to state the main result of the paper.

THEOREM 2.1. Suppose that F and G do not have jumps in common. Suppose
that F has a bracketing entropy. Then, with the probability 1 and in the mean,

(2.4) igg /f(z)(F,, — F)(dz)| = 0.

REMARK 2. We note that the bracketing proof of a uniform law of large numbers, due
to DeHardt [1], is relatively short and concise comparing with the proof of a uniform
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central limit theorem. On the other hand, to the best of our knowledge, it is unfortunate
that the bracketing approach for the uniform central limit theorem must depend on a
complicated chaining argument with stratifications. See Ossiander [3].
We shall use the following proposition that appears in Stute and Wang [4].
PROPOSITION 1. Suppose that F and G do not have jumps in common. Then,
with probability 1 and in the mean,

[ 1@ (B - Fyiaz) o

We are ready to give the proof of Theorem 2.1. We find that the idea of DeHardt
[1] still works in getting the uniform law of large numbers for the Kaplan~Meier integral
process, in both sense of the almost sure convergence and the mean convergence.

PROOF: Fix € > 0. Choose finitely many e-brackets [l;,u;] whose union contains
F and such that [ (u; — L)(z)F(dz) <¢ forevery i =1,... » Npj(€). Then, for every
f € F, there is a bracket such that

Un(f) = / f@Faldz) - [ £(2)F(dz)
- / (@) P (dz) — / wi(z)F(ds) + / wi(z) F(dz) — / () F(d)
< / u;(z) (F, — F)(dz) + / (ui — ;) (z)F(dz).

Consequently

sup U, < max /u,-x ﬁn—ﬁ dxr) +e.
sup (f) 2 (=)( ) (dz)

The right hand side converges almost surely and in the mean to £ by Proposition 1.
Combining with a similar argument for ;él;__ Un(f) yields that

lim sup sup'Un(f)l‘ e,
n—oo feF

almost surely, for every € > 0. Take a sequence €, | 0 to see that the limsup must
actually be zero almost surely. The proof of Theorem 2.1 is completed. 1]
We consider the R-indexed Kaplan-Meier integral process as a random element of
D(R), the space of cadlag functions on infinite finite time scale non-compact interval
R.
Let ¢ : R — R be a measurable function such that [ |p|dF < co. Consider the
Kaplan-Meier integral process {Un(t) : t € R} defined by

(2.5) Un(t) := /t p(z)d(F, - F)(z) for t € R.

-0
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The following result can be considered as the uniform law of large numbers for the
R-indexed Kaplan—Meier integral process.

COROLLARY 1. Let ¢ : R = R be a measurable function such that [ |p|dF
< 00. Suppose that F and G do not have jumps in common. Then, with probability
1 and in the mean,

/ ; o(@)(F, — F)(do)| = 0.

sup|Upn (t)| = sup
teR t€R

PROOF: Apply Theorem 2.1 to F = {p - 1(_oy : t € R} which certainly satisfies
the bracketing entropy condition. a

The following corollary deals with the case that the underlying distribution F is
continuous. In this case, the additional assumption that F' and G do not have jumps
in common is unnecessary.

COROLLARY 2. Suppose that F iscontinuous. Suppose that F has a bracketing
entropy. Then, with the probability 1 and in the mean

sup / f(@)(Fn — F)(dz)| = 0.
feF

ProoOF: When F is continuous, we observe from (2.2) that F boils down to F.
The result follows from Theorem 2.1.

Applying Theorem 2.1 we obtain the following corollary which is the well known

uniform laws of large numbers under finite entropy with bracketing. See the recent
references Van de Geer [6] and Van der Vaart and Wellner [7]. 0

CoROLLARY 3. Suppose that F has a bracketing entropy. If no censoring is
present then, with probability 1 and in the mean,

(2.6) sup| / 7 (@)(Fx — F)(da)] 0.
feF
PROOF: If no censoring is present, ﬁn = F,, and H = F, so that (2.4) leads to
(2.6). The proof is completed. 0
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