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1. Introduction. Our main purpose is to describe those separated locally convex spaces
which can serve as domain spaces for a closed graph theorem in which the range space is an
arbitrary Banach space of (linear) dimension at most c, the cardinal number of the real line R.
These are the 5-barrelled spaces which are considered in §4. Many of the standard elementary
Banach spaces, including in particular all separable ones, have dimension at most c. Also it is
known that an infinite dimensional Banach space has dimension at least c (see e.g. [8]). Thus
if we classify Banach spaces by dimension we are dealing, in a natural sense, with the first class
which contains infinite dimensional spaces.

Kalton [7] has considered this problem when the range space is an arbitrary separable
Banach space. We show that the class of <5-barrelled spaces forms a proper subclass of
Kalton's domain spaces and strictly contains the class of separated barrelled spaces.
Theorem 3 is the closed graph theorem which characterizes ^-barrelled spaces and yields as
corollaries various permanence properties of these spaces. We show also that a subspace of
countable codimension of a 5-barrelled space is again ^-barrelled (Theorem 4).

In §5 we describe all possible separated locally convex range spaces for a closed graph
theorem in which the domain space is an arbitrary ^-barrelled Mackey space (Theorem 8).
These are the infra-<5-spaces, which are obtained by a variant of the hull idea due to Adasch [1],
They form a proper subclass of Adasch's infra-j-spaces and likewise they need not be weakly
r-polar. We also consider a form of the open mapping theorem (Theorem 8).

The results of §3 are concerned with separability properties. Although they are developed
for use in the sequel, we feel that they also have an independent interest.

2. Preliminaries. If £ is a real or complex vector space, £* will denote its algebraic dual.
K will stand for R or C. Let {^}^eAf t>e a basis in E. We will make frequent use of the well
known fact that the mapping x* -> ((x^, x*y)l,eU is a topological isomorphism of £* onto the
product KM when E* has the topology a{E*, E) and KM has its product topology, for which
its dual is the direct sum K(M). ev will stand for the element ($,„)„,=# of KM or Km and pv

will be the projection of KM or K(M) onto its v-th component.
If £ is a locally convex space, E' will represent its (continuous) dual. Generally we follow

the topological vector space notation of [12], except that the term " Mackey space " is applied
to any separated locally convex space E with its Mackey topology T(£, £').

The cardinality of a set A will be denoted by \A\.

3. Subsets of separable sets in E*. We begin by considering the case £ = K(M) for some
non-empty index set M so that £* = KM.

t The first author was supported by a Commonwealth Academic Staff Scholarship which he gratefully
acknowledges.
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THEOREM 1. A non-empty subset A of KM is contained in a separable subset of KM if and
only if there is a subset Mo of M and a family {*'„}(! eMu*o of elements of K(M) such that

0) |M0|^c,

(ii) for each fieM\M0, x'^ = £ A(r,n) ea(r„, where a(r,n)eM0 and A(r,n)eK
1

(iii) ifx = (Q^MSA, £„ = <x, *„> for each fieM\M0.

Proof (a) Sufficiency. Let {(n^^^M^neN} be an at most countable dense subset of
the separable product Yllp^A):fieMo] [4, Chapter VIII, 7.2]. For each neN define

JW if neM0,
=

,, if neM\M0.

Then (xn, x'^ = #> for all neN, ^eAf\^/0-
Now let {/i(l), ..., K*)} be any non-empty finite subset of M and let e be a positive real

number. If at least one (i(t)eM\M0, let

a = max {| k{r, /i(0) | : r = 1, 2, .... /w(M')); Kt)eM\MQ}

and N = max {m(ji(tj):n(t)eM\M0}. Otherwise let a = N = 1. Jf x = (QlteMeA, then
?,,^) : / (GM 0 } and so there is a positive integer « such that

(of course if n(t)eM0 we put m(n(t)) = 1, /l(l, /i(0) = 1 and a(l, ^(r)) = //(/)). It now follows
easily that | ̂ w-^t) | ^ e (r = 1,2,..., s) so that A is contained in the closure of {*„:neN}.

(b) Necessity. Let {x^weN} be an at most countable subset of Ku whose closure
contains A and let F be the closed vector subspace of KM generated by {jcn:neN}. Let
{/0:<£eO} be a basis in E = KiM)/F°. Fis the algebraic dual of E and it is o(F, inseparable.
It is also topologically isomorphic to K° so that we must have 101 ^ c [4, Chapter VIII, 7.2].

Let q:K(M)^>E be the quotient map. For each #eO choose eli{rijl)sK<-M) and scalars
y(r, <f>) (r = 1, 2,..., n((p)) such that

If Mo = {Mr, <A):r = 1, 2,..., i # ) ; ^eO}( |M01 ^ c.
Let V G M \ M 0 and choose (j)(s, v)e$, f}(s,v)eK(s= 1,2,..., m(v)) such that

m(v)

s = l
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Then
/m(v) n(tf(s, v)) \

\ s = 1 r = 1 ' ' l>l'.*l*.*»J>
and, if

m(v) n(0(s, v))

*» = E E fcvWr.^v))^,,^,,,)),
s=l r=l

for all x = (<!;„)„ e M e F ,

<̂v = <x, ev> = <x, x'v>.

This gives us the required set Mo and the family {x'll}tieM\Mo.

REMARKS. Suppose that the non-empty set A is contained in a separable subset of KM.
(i) If A is bounded, the sets TJ{pll(A):neM0} and {xn:neN} constructed in part (a) of

the proof will also be bounded. Thus A is contained in a bounded separable subset of KM.

(ii) Let G be the closed linear span of A in KM. Then in the notation of part (b) of the
proof, G s F and K(M)/G° a (X(M)/F0)/(G°/F0). Since Kw/F0 has dimension at most c, the
dimension of KlM)/G0 cannot exceed c. G, being the algebraic dual of K(M)/G°, is then
topologically isomorphic to a product of at most c copies of K and so is separable.

DEFINITION. Let £ be a vector space over K. We shall say that a subset of E* is
essentially separable if it is contained in a o(E*, inseparable set.

To avoid possible confusion later on when applying this definition to a subset of the dual
space E' of a separated locally convex space E, we stress that we shall regard it as a subset
of E* and require that it be contained in a <x(2s*, inseparable set.

Since separability and boundedness are preserved by continuous linear mappings and
since any algebraic dual is topologically isomorphic to a product of copies of the scalar field,
we obtain immediately from the above remarks:

COROLLARY. Let E be a vector space over K. If A is a non-empty essentially separable
subset ofE*, the o(E*, E)-closed linear span G of A is o(E*, E)-separable. If A is also cr(E*, E)-
bounded, there is a o(E*, E)-bounded separable subset of G which contains A.

4. ^-barrelled spaces. We shall say that a separated locally convex space E is h-barrelled
if each essentially separable a(E', £)-bounded set is equicontinuous.

Certainly every separated barrelled space is ^-barrelled and every <5-barrelled space is
cr-barrelled [3], (also called co-barrelled [9]). The following two examples show that ^-barrelled
spaces are strictly intermediate to these classes.

EXAMPLE 1. Let E = R(M) where | M\ = 22" and let

(E, £ ' ) is a dual pair and E* = RM. Let A be any non-empty essentially separable cr(£', E)-
bounded set. By Theorem 1 there is a subset Mo of M such that I Mo I ̂  c and any component
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of any element of A is uniquely determined by its components corresponding to elements of Mo.
It follows that | A | g cc = 2C (alternatively use [4, Chapter VIII, 7 Ex. 4]) so that

| {v : 3 x = (Q,eMeA such that ?v * 0} | Z £ | {/i: p / x ) # 0} | g 2C2C = 2e.

Thus As II {cl (/>„(/!)) :/ie A/} £ £ ' and by Tychonoff's theorem the <r(£', £)-closure of A is
o(E', £)-compact.

It follows that if we give £ its Mackey topology T(£, E') it is ^-barrelled. However
[0, l]M n £ " is a o(E', £)-bounded set which is not o{E', £)-relatively compact since it is dense
in [0, \f $ £ ' . Thus E is not barrelled under T(£, £")•

EXAMPLE 2. Let £ = R(M) where | M \ = c and let £ ' = {(£„)„eAf: | {/t: £„ # 0} | ^ Ko}.
Again (£, £') is a dual pair and £* = RM. Given an at most countable subset A of M and a
family (aJA e A of non-negative real numbers, the set

{(U..M : I ^ I ̂  «A(*6 A), ?„ = 0 otherwise}

is crCE', £")-compact and absolutely convex. The topology on E of uniform convergence on all
such sets is a topology of the dual pair (£, £ ') under which £ is ^-barrelled and even countably
barrelled [5].

However £ cannot have a <5-barrelled topology for this dual pair since £* is CT(£*, £)-
separable and [0, 1]M n £ ' is ff(£', £)-bounded but not o{E', £)-relatively compact, being dense
in [0, l]M.

THEOREM 2. Let E be a 5-barrelled space. The topology 8(E, £ ') of uniform convergence
on the family s? of essentially separable a{E'', E)-bounded sets is a topology of the dual pair
(£, £ ' ) and E is 8-barrelled under any topology of this dual pair which is finer than <5(£, £ ') .
E is also countably barrelled under <5(£, £') .

Proof. The polars of the elements of si form a base of neighbourhoods of the origin for
<5(£, £ ' ) since si clearly contains the union of any finite collection of its elements and any
scalar multiple of an element. Since si contains all finite subsets of £ ' , 8(E, £ ' ) is separated.
Since each element of si is equicontinuous in the initial topology of £, by the Mackey-Arens
theorem, the <r(£', £)-closed absolutely convex envelope of each element of si is <r(£', £)-
compact and <5(£, £ ') is a topology of the dual pair (£, £ ') .

It is clear that £ is 5-barrelled under any topology of the dual pair (£, £') which is finer
than <5(£, £')•

Finally let (An) be a sequence of 5(E, £')-equicontinuous sets whose union is <r(£', £)-
00

bounded. Since a countable union of separable sets is again separable, (J An is contained in
oo n=\

a ff(£*, £)-separable set. Thus [j An is <5(£, £')-equicontinuous so that £ is countably

barrelled under <5(£, £') .
The following result provides our principal reason for introducing (5-barrelled spaces.

The corresponding characterization of barrelled spaces as the domain spaces for a closed graph
theorem in which an arbitrary Banach space may serve as range space is of course well known.
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THEOREM 3. A separated locally convex space E is 8-barrelled if and only if whenever F is
a Banach space with dimension at most c and t:E->Fisa linear mapping whose graph is closed,
t is necessarily continuous.

Proof. Consider a linear mapping t:E-*F where E is a ^-barrelled space, F is a Banach
space of dimension at most c and the graph of t is closed in E x F. Let t*:F* -* E* be the
transpose of t. t* is continuous under o(F*, F) and o(E*, E) and t*~1(E') nF' is a a(F", F)-
dense vector subspace of F'. Let B be the closed unit ball of F' and consider t*~1(E') nB.
Since F* is a(F*, /^-separable, being topologically isomorphic under <r(F*, F) to a product of
at most c copies of K, A = t*(t*~l(E')nB) is an essentially separable <r(E', £)-bounded set.
It is therefore equicontinuous and so a(E\ £)-relatively compact. The standard closed graph
theorem argument now shows that t*~\E')nB is a(F',F)-closed so that t*~1(E')nF' is
a(F', /^-closed, F being fully complete. Since z*"1^') nF' is a(F', £)-dense, it coincides with
F' and t*(B) is equicontinuous. (See [12, Chapter VI, §2] for details.) The mapping t is
therefore continuous as required.

We now suppose that £ is a separated locally convex space which satisfies the condition
of the enunciation. Let A be any non-empty essentially separable <r(£', £)-bounded set,
let B be the cr(£*, £)-closed absolutely convex envelope of A and let F' be the linear span of B
in £*. Since B is <r(£*, £)-compact, £/F° is a normed space under T(£/F'° , F) . (£/F'°)* is
the ff(£*, £)-closed linear span of A in E* which, by the corollary to Theorem 1, is cr(£*, £)-
separable. It now follows from the usual topological isomorphism that E/F'° has dimension
at most c. Let F be the completion of £/F'° in the norm topology. Since each element of F
is the limit of a sequence of elements of £/F'°, it is easy to see that

from which it follows that the Banach space F has dimension at most c. Again we can refer
to standard arguments to observe that the quotient map q:E-*E/F'°, regarded as a mapping
of £ into F, has a closed graph in £ x F. By hypothesis q is then continuous and so its
transpose must map B onto an equicontinuous subset of E'. Since the transpose of q is just
the natural injection of F' into £', it follows that B and therefore also A are equicontinuous.
Thus £ is 5-barrelled.

COROLLARY 1. (a) A separated inductive limit of 5-barrelled spaces is 8-barrelled.

(b) Any product of 8-barrelled spaces is 8-barrelled.
(c) The completion of a 8-barrelled space is 8-barrelled.

Proof (a) This may be proved directly using [12, Chapter V, Proposition 5] or it may
be deduced immediately from the theorem using [6, Theorem 2.1] (this is stated without proof
but the method is standard).

(b) This follows from the theorem and [6, Theorem 2.2].
(c) Let £ be a ^-barrelled space and G its completion. Suppose that /: G -* F is a linear

mapping with a closed graph of G into a Banach space F whose dimension is at most c.
11 £ has a closed graph and so is continuous by the theorem. Let s be the unique extension by
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continuity of t \ E to a continuous linear mapping of G into F. Since the graph of s — tis closed,
{xeG:s(x) = t(x)} is a closed vector subspace of G which contains E and therefore must be
the whole of G. t is therefore continuous and the result follows by the theorem.

COROLLARY 2. If a b-barrelled space E has a /?(£, E')-dense subset of cardinality at most c,
then E is barrelled.

Proof. If we carry out the construction of the Banach space F as in the second part of the
proof of the theorem but start with an arbitrary non-empty a(E', £)-bounded set A, EIF'° has
a norm dense subset G of cardinality at most c. It follows, by considering sequences in G,
that F has dimension at most c. Since E is 5-barrelled, the theorem shows that the quotient
map is continuous and that A is equicontinuous as before.

REMARKS, (i) We can also show that any linear mapping with a closed graph of a Banach
space of dimension at most c onto a 5-barrelled space is open. This is deduced from the closed
graph theorem in the usual way on observing that any quotient of such a Banach space by a
closed vector subspace (in this case the null-space of the mapping) is also a Banach space of
dimension at most c.

(ii) In Theorem 2.6 of [7], Kalton has characterized those spaces which can be domain
spaces for a closed graph theorem in which the range space is an arbitrary separable Banach
space. Of course every separable Banach space has dimension at most c, but the converse is
not true (e.g. {«,). Our 5-barrelled spaces therefore form a subclass of Kalton's class #(CB).

As an example of a non-barrelled element of #(£B) he gives («, with the topology zil^, t,).
This space is not (5-barrelled since the closed unit ball of tj is a o(llt (^-separable bounded set
which is not o{lu too)-relatively compact. The inclusion is therefore strict.

(iii) Since a 5-barrelled space is also <r-barrelled, a separable 5-barrelled space is necessarily
barrelled [3, Corollary 4.a].

It is known that a subspace of countable codimension of a barrelled, a-barrelled or
countably barrelled space is again of the same type [13,15, 9,16]. We now establish the
corresponding result for 5-barrelled spaces.

THEOREM 4. Let E be a 5-barrelled space and let Fbe a subspace of countable codimension.
Then F is b-barrelled in the induced topology.

Proof. Let A be a non-empty essentially separable a{F', F)-bounded set and let F be the
completion of F in the topology induced from E. We show first of all that A is o{F", P)-
bounded. If this were not the case, there would be an element xeP and a sequence (x'n) in A
such that {<*, x'n):neN} is an unbounded set of scalars. Now by [9, Theorem], F is
certainly <r-barrelled in the induced topology so that {x^neN} is equicontinuous on F.
A contradiction is obtained on observing that the same subsets of F' are equicontinuous for
the initial topology of F and its extension to F [12, Chapter VI, Theorem 3].

Let G be the closure of F in E and let B £ G' be the set of extensions by continuity of the
elements of A. Since G can be embedded in P, it follows that B is a(G', G)-bounded. The
codimension of G in E is also countable (perhaps finite) and so we can choose an (at most)
countable family {*„} of linearly independent elements of E\G which spans a supplement of

https://doi.org/10.1017/S0017089500002780 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002780


THE CLOSED GRAPH THEOREM 95

G in E. We extend the elements of B to the whole of E by putting <*„, x'} = 0 for each n and
each x'eB. Let C be the set of all these extensions. By the Lemma of [13, §2], C c £ ' and
clearly C is CT(£', £)-bounded.

We now show that C is essentially separable. By hypothesis C must then be equi-
continuous and the result follows on observing that C°nF=A°. We consider the usual
topological isomorphism of F* onto KM where | M | is the dimension of F. Since F has
countable codimension in E, this extends to a topological isomorphism of E* onto KMuN

where N is at most countable. Now determine Mo £ M, x'^ e £( A° (/i e Af\M0) as in Theorem 1
for the image of A in KM. With Mo replaced by Mo uN and the same linear forms JĈ , (more
correctly, the elements of K(M uN) defined by the same formulae with the ea(ri/j) now in K(MUN)),

Theorem 1 shows that the image of C in KMuN is contained in a separable subset of KMuN.
This completes the proof.

5. The range space. In our closed graph theorem (Theorem 3) the range space is a
Banach space of dimension at most c. It is clear that the result continues to hold and the proof
is essentially the same if the range space F is taken to be a incomplete space [11] or a weakly
/-polar space [10] in which each equicontinuous set, respectively each <r(F', ̂ -bounded set,
is essentially separable. By suitably adapting Adasch's hull approach [1], we are able to
describe those separated locally convex spaces which can serve as range spaces for a closed
graph theorem in which the domain space is an arbitrary ^-barrelled space endowed with its
Mackey topology.

DEFINITIONS. Let F be a separated locally convex space. For each vector subspace H of
F' let H6 be the intersection of all vector subspaces G of F* such that

(ii) the o{F*, /^-closure of each essentially separable a(F*, F)-bounded subset of G is
contained in G. (Note that this closure will be o{F*, F)-compact.)

We shall say that (a) F is a 5-space if the a(F', F)-closure of each vector subspace H of F'
coincides with F' r\Hs, and (b) F is an infra-8-space if for each <r(F', F)-dense vector subspace
HofF',

We need the following analogues of [1, §5 (4), (5)].

THEOREM. 5. Let Fbe an (infra-)5-space and let G' be a a(F', F)-dense vector subspace ofF'.
Then F is an (infra-)5-space for any topology of the dual pair {F, G').

Proof. This is immediate since the a(G', F)-closure of any vector subspace of G' is the
intersection with G' of its <r(F', F)-closure and any a{G', .F)-dense vector subspace of G' is
also a(F', F)-dense in F'.

THEOREM 6. Let F be a 5-space and M a closed vector subspace of F. Then F\M is a
5-space under its quotient topology.

Proof. (F/M)' = M°, the polar of M in F\ and (FjM)* = M+, the polar of M in F*.
The problem is to show that for any vector subspace H of M°, the hull H*' constructed for the
dual pair (F/M, M°) and the hull H'2 constructed for the dual pair (F, F') coincide.
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Let G be any vector subspace of M+ which contains H and suppose that the o(M*, FjM)-
closure of each a(M+, F/M)-bounded subset of G which is contained in a <x(M+, F/M)-separable
set is contained in G. Let /4 be a <x(F*, F)-bounded subset of G which is contained in a
<x(F*, inseparable set. By the corollary to Theorem 1, the a{F*, F)-closed vector subspace of
F* generated by A is a(JF*, F)-separable. It is also contained in M*. Since a(M+, FjM) and
a{F*, F) coincide on M+, it follows that the o(F*, F)-closure of A is contained in G. Thus
HSl s H*'.

Conversely let G be any vector subspace of F* which contains H and suppose that the
o(F*, F)-closure of each a{F*, F)-bounded subset of G which is contained in a <x(F*, in-
separable set is contained in G. Since M+ is o{F*, F)-complete, GnM+ has the same property.
It now follows easily that Hs> £ H>2 and the result is immediate.

We now give our general closed graph and open mapping theorems. The proofs have
much in common with the proofs of the corresponding results A, Aj, A2 and B, B, of [1].
We therefore confine ourselves to the essential details and differences.

THEOREM 7. (a) A linear mapping with a closed graph of a 5-barrelled Mackey space into
an infra-5-space is continuous.

(b) Let F be a separated locally convex space with the property that any linear mapping
with a closed graph of a 5-barrelled Mackey space into F is continuous. Then F is an infra-5-space.

(c) Let E be a separated locally convex Mackey space with the property that any linear
mapping with a closed graph of E into an infra-5-space is continuous. Then E is 5-barrelled.

Proof, (a) If f.E-* F is such a mapping and / *: F* -> E* is its transpose, we observe that
G = t*~1(E') is one of the subspaces of F* in the intersection which determines
(t*-\E') nF')s. As in [1, proof of A] it follows that

t*-\E')r\F' = (t*-\E')nF')sr\F' = F'

so that t is weakly continuous and therefore continuous since £ is a Mackey space.
(b) Let H be any a{F\ f)-dense vector subspace. F is ^-barrelled under T(F, HS). The

result follows from (a) on considering the identity mapping of F(T(F, H3)) onto F with its given
topology. (See [1, proof of AJ.)

(c) This is immediate from Theorem 3 and (b).

THEOREM. 8 (a) A linear mapping with a closed graph of a 5-space onto a 5-barrelled
Mackey space is open.

(b) Let F be a separated locally convex space with the property that any linear mapping
with a closed graph of F onto a 5-barrelled Mackey space is open. Then F is a 5-space.

Proof, (a) This is deduced from Theorem 7 (a) and Theorem 6 in the usual way. (See
also [1, proof of B].)

(b) Let H be a vector subspace of F'. We consider the quotient mapping q of F onto
FjH° when FjH0 has the ^-barrelled topology T(F/ /7° , HS). AS in [1, proof of BJ , the
hypothesis implies that q is open so that x{FlH°, H5) must be finer than the quotient topology
on FjH°, for which the dual is the a(F', F)-closure H00 of H. Then H00 £ H* and the result
is now immediate.
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REMARKS, (i) It is not possible to allow E to be an arbitrary <5-barrelled space in
Theorems 7 and 8. Consider for example the Hilbert space t2(A) where | A | > c. 12(A) is
(5-barrelled under <5(t2(A), (2(A)) (Theorem 2) which is strictly coarser than the norm topology.
For any topology of the dual pair (12(A), 12(A)), a point of closure of a vector subspace H of
t2(A) is the limit of a sequence in H, from which it follows that 12(A) is a (5-space for any such
topology. We now observe that the identity mapping of 12(A) under <5(12(A), 12(A)) onto t2(A)
with its norm topology has a closed graph but it is not continuous. Also its inverse is not open.

(ii) It follows from Theorem 7 (a), [1, A J , Example 1 and [1, A2] that the infra-5-spaces
form a proper subclass of the class of infra-5-spaces.

(iii) In [14], Sulley gives an example of an infra-j-space which is not weakly /-polar.
He starts with a Banach space E and a proper o(E', 2s)-dense vector subspace M described in
[2, p. 121 Ex. 14] and puts them in duality. Since E is clearly separable in its norm topology,
we have by Theorem 3, Theorem 7 (b) and Theorem 5 that E is an infra-<5-space for any
topology of the dual pair {E, M). Thus infra-5-spaces need not be weakly <-polar.
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