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Quadratic Functionals of Brownian Motion

Brownian motion (Bm) has been a central topic, not only in probability
theory but also in various applied fields. Throughout this book we
deal with Bm from a statistical viewpoint. In particular, we deal
with quadratic functionals of Bm or ratios of those functionals, and
consider their distributions, where functionals are expressed by the
Riemann–Stieltjes double integral with respect to Bm. Since it is
hard in general to derive distribution functions of such functionals
explicitly, we attempt to derive the associated characteristic function
(c.f.). For this purpose we use the theory of integral equations of
Fredholm type, among which is the Fredholm determinant. The notion
of the resolvent is also necessary if we deal with quadratic plus linear
or bilinear functionals of Bm. In this chapter we give an introductory
discussion on these. In particular, we indicate by some theorems and
simple examples how to relate the c.f. with the Fredholm determinant
and the resolvent.

1.1 Brownian Motion and Some Statistical Properties

Brownian motion (Bm) plays a fundamental role in subsequent discussions. We
thus start by defining Bm. Let (�, F , P) be a probability space on which Bm
is defined.

Definition 1.1 (Brownian motion) The stochastic process {W(t)} for t ∈ [0, 1]
is called Bm if the following conditions are satisfied.

(1) P(W(0) = 0) = 1.
(2) Increments W(t1) − W(t0), W(t2) − W(t1), . . . , W(tn) − W(tn−1) are

independent for any positive integer n and time points 0 ≤ t0 < t1 <

· · · < tn ≤ 1.
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8 Quadratic Functionals of Brownian Motion

(3) W(t)−W(s) ∼ N(0, t − s) for any 0 ≤ s < t ≤ 1, where N(μ, σ 2) stands
for a normal distribution with mean μ and variance σ 2.

Note that the parameter t denotes time and extends over the unit interval
[0, 1] throughout this book, unless otherwise stated. Note also that we shall
always use {W(t)} for Bm without mentioning its definition. It follows from (3)
above that Bm is a zero-mean Gaussian process, which means that the finite-
dimensional distributions of W(t1), . . . , W(tn) for each collection 0 ≤ t1 <

· · · < tn ≤ 1 are multivariate normal with means 0 for all n. Thus it suffices
to know only the covariance Cov(W(s), W(t)) to determine the distributions.
We have from (2) above, for s < t ,

Cov(W(s), W(t)) = E(W(s)W(t)) = E [W(s) (W(t) − W(s) + W(s))]

= E [W(s) (W(t) − W(s))] + E(W 2(s)) = s,

so that Cov(W(s), W(t)) = min(s, t). It also follows from (2) that the incre-
ment W(t) − W(s) for t > s is independent of the past W(u) for u ≤ s. More
generally W(t) is independent of Fs , the σ -field generated by W(u) for u ≤ s,
which implies that Bm is a martingale satisfying

E(|W(t)|) =
√

2 t

π
< ∞, E(W(t)|Fs) = W(s) (s ≤ t).

The mean square (m.s.) continuity of Bm is another consequence from the
definition. It holds that

lim
h→0

E
[
(W(t + h) − W(t))2

]
= lim

h→0
|h| = 0,

which says that W(t) is continuous at t in the m.s. sense. This is abbreviated as

l.i.m.
h→0

W(t + h) = W(t),

where “l.i.m.” stands for limit in mean square. The second moment is necessary
for the m.s. limit to exist. It follows that W(t) is not m.s. differentiable in the
sense that

l.i.m.
h→0

W(t + h) − W(t)

h

does not exist (Exercise 1.1.1 in this section).
Bm is also continuous with probability 1. In fact, it holds that

E
[
(W(t) − W(s))4

]
= 3 (t − s)2,

which implies that W(t) is continuous with probability 1 because of Kol-
mogorov’s continuity criterion (Liptser and Shiryaev, 2001a, p.23).
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1.1 Brownian Motion and Some Statistical Properties 9

Some other properties (a) through (d) of Bm follow (Exercises 1.1.2, 1.1.3,
1.1.4).

(a) If {X(t)} is a zero-mean Gaussian process with covariance function given
by Cov(X(s), X(t)) = min(s, t), then {X(t)} is Bm.

(b) W(t) is of unbounded variation, that is, for any 0 ≤ t0 < t1 < · · · < tn ≤ 1,
and 
n = max

1≤k≤n
(tk − tk−1),

lim

n→0

n∑
k=1

E (|W(tk) − W(tk−1)|) = ∞.

(c) The quadratic variation is finite and bounded away from 0. More specif-
ically, for any 0 ≤ a = t0 < t1 < · · · < tn = b ≤ 1, and

n = max

1≤k≤n
(tk − tk−1),

lim

n→0

n∑
k=1

E
(
|W(tk) − W(tk−1)|2

)
= b − a.

(d) The stochastic process X(t) defined in the m.s. sense by

X(t) =
∞∑

n=1

√
2 sin

(
n − 1

2

)
π t(

n − 1
2

)
π

Zn (1.1)

is Bm, where {Zn} is a sequence of independent N(0, 1) random variables,
which is denoted as {Zn} ∼ NID(0, 1). The expansion in (1.1) is called the
Karhunen–Loève expansion, which will be explained in detail in Chapter 2.

If W(t) is conditioned on P(W(1) = 0) = 1, the resulting process is called
the Brownian bridge (Bb), which may be defined as follows:

Definition 1.2 (Brownian bridge) The stochastic process {W̃ (t)} for t ∈ [0, 1]
is called the Bb if the following condition is satisfied.

(1) {W̃ (t)} is a zero-mean Gaussian process with covariance function given by
Cov(W̃ (s), W̃ (t)) = min(s, t) − st .

The increments of the Bb are not independent, unlike Bm. In fact,

Cov
(
W̃ (t2) − W̃ (t1), W̃ (t4) − W̃ (t3)

)
= −(t2 − t1)(t4 − t3) < 0

for 0 ≤ t1 < t2 < t3 < t4 ≤ 1. Some other related properties (e), (f), and (g)
of the Bb follow (Exercises 1.1.5 and 1.1.6).

(e) The stochastic process {W(t) − tW(1)} is the Bb.
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10 Quadratic Functionals of Brownian Motion

(f) Cov(W(s), W(t)|W(1) = 0) = min(s, t) − st .
(g) The stochastic process X(t) defined in the m.s. sense by

X(t) =
∞∑

n=1

√
2 sin nπt

n π
Zn (1.2)

is the Bb, where {Zn} ∼ NID(0, 1). This is the Karhunen–Loève expansion
for the Bb.

We note in passing that Bm is a continuous-time version of the random walk.
More specifically, suppose that the random walk is defined by

yj = yj−1 + εj =
j∑

i=1

εi (j = 1, . . . , n), (1.3)

where y0 = 0 and {εi} is a sequence of independent and identically distributed
random variables with mean 0 and variance σ 2, which is abbreviated as {εi} ∼
i.i.d.(0, σ 2). Define also the partial sum process

Yn(t) = 1√
nσ

yj−1 + n

(
t − j − 1

n

)
1√
nσ

εj

= 1√
nσ

y[nt] + (nt − [nt])
1√
nσ

ε[nt]+1, (1.4)

where (j − 1)/n ≤ t ≤ j/n (j = 1, . . . , n), and [x] denotes the largest
integer not exceeding x. Note that Yn(t) is continuous on [0, 1] by connecting
yj−1/(

√
nσ) and yj /(

√
nσ) (j = 1, . . . , n). Then it holds that, as n → ∞,

{Yn(t)} ⇒ {W(t)}, (1.5)

where ⇒ stands for the weak convergence. This is the result established by
Donsker (1951) and is referred to as Donsker’s theorem or the functional
central limit theorem (FCLT) because the weak convergence is concerned
with the function space C[0, 1], where C[0, 1] is the space of all real-valued
continuous functions defined on [0, 1]. Billingsley (1999) discusses details on
the FCLT and weak convergence.

Our main subject in this book is to deal with functionals of Bm. In particular
we consider functionals expressed by integrals. For this purpose we describe
the stochastic integrals associated with Bm in the next section.

Exercises for Section 1.1

Exercise 1.1.1 Show that Bm is not m.s. differentiable.

Exercise 1.1.2 Prove that, if {X(t)} is a zero-mean Gaussian process with
covariance function given by Cov(X(s), X(t)) = min(s, t), then {X(t)} is Bm.
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1.2 Mean Square Integral Associated with Brownian Motion 11

Exercise 1.1.3 Prove that

lim

n→0

n∑
k=1

E (|W(tk) − W(tk−1)|) = ∞,

lim

n→0

n∑
k=1

E
(
|W(tk) − W(tk−1)|2

)
= b − a

for a = t0 < t1 < · · · < tn = b, and 
n = max
1≤k≤n

(tk − tk−1).

Exercise 1.1.4 Show that the stochastic process X(t) defined in (1.1) is Bm,
using the formula

∞∑
n=1

cos
(
n − 1

2

)
πx(

n − 1
2

)2
π2

= 1

2
(1 − |x|) (|x| ≤ 2).

Exercise 1.1.5 Prove that Bm W(t) conditioned on W(1) = 0 is the Bb. Prove
also that the stochastic process {W(t) − tW(1)} is a Bb that is independent of
W(1).

Exercise 1.1.6 Show that the stochastic process X(t) defined in (1.2) is the
Bb, using the formula

∞∑
n=1

cos nπx

n2π2
= 1

4
(|x| − 1)2 − 1

12
(|x| ≤ 2).

1.2 Mean Square Integral Associated with Brownian Motion

Stochastic integrals associated with Bm play an important role in the develop-
ment of subsequent discussions. We define such integrals in the m.s. sense. For
this purpose we introduce the space L2, which is the space of random variables
defined on a common probability space with finite second moment. It is known
that the space L2 is complete, so that, if Xn ∈ L2 and X = l.i.m.

n→∞ Xn exists, X

also belongs to L2 (Loève, 1977, p.163). Moreover, Xn converges in the m.s.
sense if and only if E(XmXn) converges as m, n → ∞ in any manner. We
also note that “l.i.m.” and “expectation” commute in the following sense. If
l.i.m.
n→∞ Xn = X and l.i.m.

n→∞ Yn = Y , it holds (Exercise 1.2.1) that

lim
n→∞ E(Xn) = E(X), lim

m,n→∞ E(XmYn) = E(XY ). (1.6)

Using the above m.s. properties, we present stochastic integrals of two types
in this section. Integrals of other types will be presented in the subsequent two
sections.
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12 Quadratic Functionals of Brownian Motion

1.2.1 Mean Square Riemann Integral

Let a stochastic process {X(t)} belong to L2. Then consider

Y =
∫ 1

0
X(t) dt = l.i.m.

n→∞

n→0

Yn, Yn =
n∑

i=1

X(t ′i )(ti − ti−1), (1.7)

where 
n = max
1≤i≤n

(ti − ti−1) and t ′i ∈ [ti−1, ti ) (i = 1, . . . , n). The integral

in (1.7) is called the m.s. Riemann integral of X(t), and X(t) is said to be m.s.
Riemann integrable if Y = l.i.m.

n→∞ Yn exists. It follows that a sufficient condition

for the m.s. integral in (1.7) to be well defined is that X(t) is m.s. continuous
(Exercise 1.2.2). It can also be shown (Exercise 1.2.3) that, if X(t) is m.s.
continuous,

E

(∫ 1

0
X(t) dt

)
=

∫ 1

0
E(X(t)) dt ,

E

⎡
⎣(∫ 1

0
X(t) dt

)2
⎤
⎦ =

∫ 1

0

∫ 1

0
E(X(s)X(t)) ds dt .

The following are three simple examples of the m.s. Riemann integral:

I1 =
∫ 1

0
W(t) dt , I2 =

∫ 1

0
|W(t)| dt , I3 =

∫ 1

0
eW(t) dt ,

where I1 is a linear functional of W(t) so that it is normal because “l.i.m.” and
“normality” commute (Exercise 1.2.4), whereas I2 and I3 are not normal. We
have (Exercise 1.2.5)

E(I1) = 0, E(I2) = 2

3

√
2

π
, E(I3) = 2(

√
e − 1),

E
(
I 2

1

) = 1

3
, E

(
I 2

2

) = 3

8
, E

(
I 2

3

) = 2

3
e2 − 8

3

√
e + 2.

The following are three examples of the m.s. Riemann integral of quadratic
functions of Bm:

I4 =
∫ 1

0
W 2(t) dt , I5 =

∫ 1

0
W̃ 2(t) dt , I6 =

∫ 1

0
W̄ 2(t) dt ,

where W̃ (t) is the Bb, whereas

W̄ (t) = W(t) −
∫ 1

0
W(s) ds

is called demeaned Bm. We have (Exercise 1.2.6)

E(I4) = 1

2
, E

(
I 2

4

) = 7

12
, E(I5) = E(I6) = 1

6
, E

(
I 2

5

) = E
(
I 2

6

) = 1

20
.
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1.2 Mean Square Integral Associated with Brownian Motion 13

It is noted that I5 and I6 have the same mean and variance. It will be shown
later that the two have the same distribution.

Some other properties (a), (b), and (c) of the m.s. Riemann integral follow
(Soong, 1973; Kuo, 2006; Klebaner, 2012).

(a) If f (W(t)) is m.s. continuous, f (W(t)) is m.s. Riemann integrable.
(b) The m.s. Riemann integral of f (W(t)), if it exists, is unique.

(c) If f (W(t)) is m.s. integrable, X(t) =
∫ t

0
f (W(s)) ds is m.s. differen-

tiable with derivative given by Ẋ(t) = f (W(t)).

1.2.2 Mean Square Riemann–Stieltjes Integral

Let g(t) be a deterministic function of t ∈ [0, 1]. Then we define

A =
∫ 1

0
g(t) dW(t) = l.i.m.

n→∞

n→0

n∑
i=1

g(t ′i )(W(ti) − W(ti−1)), (1.8)

B =
∫ 1

0
W(t) dg(t) = l.i.m.

n→∞

n→0

n∑
i=1

W(t ′i )(g(ti) − g(ti−1)), (1.9)

where t ′i ∈ [ti−1, ti ) (i = 1, . . . , n). The integrals in (1.8) and (1.9) are
called the m.s. Riemann–Stieltjes integrals. Normality is retained in these
integrals with E(A) = E(B) = 0 (Exercise 1.2.7). Note that the Riemann–
Stieltjes integral in (1.9) reduces to the Riemann integral in (1.7) when g(t) is
differentiable with |g′(t)| < ∞ on [0, 1].

Because of the definition of the m.s. limit, the existence of the above
integrals is determined by the existence of appropriate ordinary integrals,
which leads us to

Theorem 1.3 The m.s. Riemann–Stieltjes integrals in (1.8) and (1.9) are well
defined if the following limits of the Riemann–Stieltjes double sums exist.

E(A2) = lim
n→∞

n∑
i=1

n∑
j=1

g(ti)g(tj )E
(

W(ti)
W(tj )

)

= lim
n→∞

n∑
i=1

g2(ti)(ti − ti−1)

=
∫ 1

0
g2(t) dt , (1.10)
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14 Quadratic Functionals of Brownian Motion

E(B2) = lim
n→∞

n∑
i=1

n∑
j=1

E
(
W(ti)W(tj )

)

g(ti)
g(tj )

= lim
n→∞

n∑
i=1

n∑
j=1

min(ti , tj )
g(ti)
g(tj )

=
∫ 1

0

∫ 1

0
min(s, t) dg(s) dg(t), (1.11)

where 
W(ti) = W(ti) − W(ti−1) and 
g(ti) = g(ti) − g(ti−1).

A sufficient condition for the existence of (1.8) is that g(t) is continuous,
whereas (1.9) exists if g(t) is of bounded variation. Note that

A ∼ N

(
0,

∫ 1

0
g2(t) dt

)
, B ∼ N

(
0,

∫ 1

0

∫ 1

0
min(s, t) dg(s) dg(t)

)
.

(1.12)
Here are two examples of (1.8).

A1 =
∫ 1

0
dW(t), A2 =

∫ 1

0
(1 − t) dW(t).

Then A1 and A2 are well defined with g(t) = 1, 1 − t , respectively, in (1.8).
Thus we have, from (1.10),

E
(
A2

1

) = E

(∫ 1

0

∫ 1

0
dW(s) dW(t)

)
=

∫ 1

0
dt = 1,

E
(
A2

2

) = E

(∫ 1

0

∫ 1

0
(1 − s)(1 − t)dW(s) dW(t)

)
=

∫ 1

0
(1 − t)2 dt = 1

3
.

Here the Riemann–Stieltjes double integral appears, although its definition is
deferred until the next section. In any case the above computation entails the
following relation:

E (dW(s) dW(t)) = δst dt =
⎧⎨
⎩

dt (s = t),

0 (s � t).

An important and useful property associated with the two integrals in
(1.8) and (1.9) is that the existence of one integral implies the other and
vice versa, and they can be combined together in the following theorem for
integration by parts (Soong, 1973, theorem 4.5.3; Kuo, 2006, p.9; Klebaner,
2012, p.12).
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1.2 Mean Square Integral Associated with Brownian Motion 15

Theorem 1.4 If either A in (1.8) or B in (1.9) exists, then both integrals exist,
and ∫ 1

0
g(t) dW(t) = [

g(t)W(t)
]1

0 −
∫ 1

0
W(t) dg(t). (1.13)

For example, we have

A3 =
∫ 1

0
dW(t) = [W(t)]1

0 = W(1),

A4 =
∫ 1

0
(1 − t) dW(t) = [(1 − t)W(t)]1

0 −
∫ 1

0
(−1)W(t) dt =

∫ 1

0
W(t) dt .

As another example, let us consider, for t ∈ [0, 1],

Fg(t) =
∫ t

0

(t − s)g

g!
dW(s) (g = 1, 2, ... ), F0(t) = W(t). (1.14)

This integral can be transformed into

Fg(t) =
∫ t

0

(∫ t

s

(u − s)g−1

(g − 1)!
du

)
dW(s) =

∫ t

0

(∫ u

0

(u − s)g−1

(g − 1)!
dW(s)

)
du

=
∫ t

0
Fg−1(u) du =

∫ t

0

∫ t1

0
· · ·

∫ tg−1

0
W(tg) dtg dtg−1 · · · dt1. (1.15)

The stochastic process {Fg(t)} is called g-fold integrated Bm because of this
last expression, and it holds that

Fg(t) ∼ N

(
0,

t2g+1

(2g + 1)(g! )2

)
(g = 0, 1, . . . ), (1.16)

which means that the variation becomes smaller quickly as g gets large. Note
that, unlike the Bm F0(t) = W(t), Fg(t) for g ≥ 1 is m.s. g-times continuously
differentiable, and it holds that

dFg(t)

dt
= Fg−1(t),

∫ t

0
Fg(s) dFg(s) = 1

2
F 2

g (t) (g ≥ 1).

Figure 1.1 draws sample paths of F0(t), F1(t), and F2(t) with variations
adjusted allowing for (1.16) so that the three sample paths can be compared
on the same sheet without the vertical axis. These were generated by using
the Karhunen–Loève expansion for Bm given in (1.1). It can be seen that the
sample path of F2(t) is quite smooth and that of F1(t) is moderately smooth,
whereas the Bm exhibits a zigzag fluctuation.
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16 Quadratic Functionals of Brownian Motion

0.0 0.5 1.0

 g = 0
 g = 1
 g = 2

t

Figure 1.1 Sample paths of {Fg(t)} for g = 0, 1, 2.

g-fold integrated Bm arises from the discrete-time process {y(g)
j } generated

by

(1 − L)g y
(g)
j = εj (j = 1, . . . , n), (1.17)

where L is the lag-operator with the effect of lagging a variable Lyj =
yj−1, L2yj = yj−2, and so on, whereas {εj } ∼ i.i.d.(0, σ 2). We assume that

y
(g)
−k = 0 for k = 0, 1, . . . , g − 1. The process {y(g)

j } is called the I(g) process,
where “I” stands for “integrated.” Note that the random walk corresponds to
the case of g = 1. It follows from (1.17) that

y
(g)
j = y

(g)

j−1 + y
(g−1)
j = y

(g−1)

1 + · · · + y
(g−1)
j , y

(0)
j = εj .

Roughly speaking, the process Fg(t) is related to y
(g)
j in the following way. For

Bm it holds that

W(t) =
∫ t

0
dW(u) ⇔ y

(1)
j = (1 − L)−1εj =

j∑
i=1

εi ,

where (1 −L)−1 is interpreted as a cumulative sum operator. Similarly it holds
that, for F1(t),∫ t

0
W(u) du =

∫ t

0
(t − u) dW(u) ⇔ y

(2)
j = (1 − L)−2εj ≈

j∑
i=1

(j − i)εi .
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In general, we have, for Fg(t),∫ t

0

(t − u)g

g!
dW(u) ⇔ y

(g+1)
j = (1 − L)−(g+1)εj ≈ 1

g!

j∑
i=1

(j − i)gεi .

The above relationship between Fg(t) and y
(g)
j can be made exact in the

following way. Let us put, for g ≥ 1 and (j − 1)/n ≤ t ≤ j/n,

Y
(g)
n (t) = 1

ng−1/2 σ
y

(g)

j−1 + n

(
t − j − 1

n

)
1

ng−1/2σ
y

(g−1)
j

= 1

n

j−1∑
i=1

Y
(g−1)
n

(
i

n

)
+ n

(
t − j − 1

n

)
1

ng−1/2σ
y

(g−1)
j .

Then it was shown by Chan and Wei (1988) that{
Y

(g)
n (t)

}
⇒ {Fg−1(t)} (g = 1, 2, . . . ), (1.18)

which is an extended version of Donsker’s FCLT in (1.5).

Exercises for Section 1.2

Exercise 1.2.1 If l.i.m.
n→∞ Xn = X and l.i.m.

n→∞ Yn = Y , prove that

l.i.m.
n→∞ (aXn + bYn) = aX + bY , lim

m,n→∞ E(XmYn) = E(XY ),

where a and b are constants.

Exercise 1.2.2 Show that the m.s. integral
∫ 1

0
X(t) dt is well defined if X(t)

is m.s. continuous.

Exercise 1.2.3 Show that, if X(t) is m.s. continuous, it holds that

E

(∫ 1

0
X(t) dt

)
=

∫ 1

0
E(X(t)) dt ,

E

⎡
⎣(∫ 1

0
X(t) dt

)2
⎤
⎦ =

∫ 1

0

∫ 1

0
E(X(s)X(t)) ds dt .

Exercise 1.2.4 Prove that, if {Xn(t)} is a Gaussian process and l.i.m.
n→∞ Xn(t)

exists, then {X(t)} is also a Gaussian process.

Exercise 1.2.5 Compute the means and second moments of

I1 =
∫ 1

0
W(t) dt , I2 =

∫ 1

0
|W(t)| dt , I3 =

∫ 1

0
eW(t) dt .
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18 Quadratic Functionals of Brownian Motion

Exercise 1.2.6 Compute the means and second moments of

I4 =
∫ 1

0
W 2(t) dt , I5 =

∫ 1

0
(W(t) − tW(1))2 dt ,

I6 =
∫ 1

0

(
W(t) −

∫ 1

0
W(s) ds

)2

dt .

Exercise 1.2.7 Prove that
∫ 1

0
g(t) dW(t) ∼ N

(
0,

∫ 1

0
g2(t) dt

)
.

1.3 Statistics of Quadratic Functionals of Brownian Motion

Here we extend the m.s. Riemann–Stieltjes integral discussed in the previ-
ous section to the corresponding double integral, which will be frequently
used in subsequent discussions. Let the partition pm,n of the unit square
[0, 1] × [0, 1] be

pm,n : 0 = s0 < s1 < · · · < sm = 1; 0 = t0 < t1 < · · · < tn = 1,

and put


m,n = max
1≤i, j≤n

(
si − si−1, tj − tj−1

)
.

Then we consider, for a symmetric function K(s, t) defined in [0, 1] × [0, 1],

X =
∫ 1

0

∫ 1

0
K(s, t) dW(s) dW(t)

= l.i.m.
m,n→∞


m,n→0

m∑
i=1

n∑
j=1

K
(
s′
i , t

′
j

)

W(si)
W(tj ), (1.19)

where s′
i ∈ [si−1, si), t ′j ∈ [tj−1, tj ), and 
W(si) = W(si) − W(si−1). The

integral in (1.19) is called the m.s. Riemann–Stieltjes double integral, whereas
X is referred to as a quadratic functional of Bm. In Section 1.2.1 we dealt with
the m.s. Riemann integral of the quadratic functions of Bm. There is a close
relationship between the two integrals, which will be explained later.

A sufficient condition for the existence of the integral in (1.19) is that K(s, t)
is continuous in [0, 1] × [0, 1]. If K(s, t) is symmetric and continuous, it holds
(Exercise 1.3.1) that

E(X) =
∫ 1

0
K(t , t) dt ,

Var(X) = 2
∫ 1

0

∫ 1

0
K2(s, t) ds dt = 4

∫ 1

0

∫ t

0
K2(s, t) ds dt . (1.20)
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1.3 Statistics of Quadratic Functionals of Brownian Motion 19

Moreover, the c.f. of X in (1.19) is given by

E
(
eiθX

)
= E

[
exp

{
iθ

∫ 1

0

∫ 1

0
K(s, t) dW(s) dW(t)

}]
= (D(2iθ))−1/2 ,

(1.21)
where D(λ) is called the Fredholm determinant (FD) of K(s, t). This result
originates from Anderson and Darling (1952), whose proof will be given in
Theorem 2.3 under an additional assumption on K(s, t). It holds that the FD
of K(s, t) is the same as that of K(1 − s, 1 − t) because of Mercer’s theorem
(Theorem 2.2). Thus we have∫ 1

0

∫ 1

0
K(s, t) dW(s) dW(t)

D=
∫ 1

0

∫ 1

0
K(1 − s, 1 − t) dW(s) dW(t),

(1.22)

where
D= stands for distributional equivalence. The results described in (1.20)

will also be derived easily via the properties of the FD (see Theorem 2.4).
Let us deal with some examples of (1.19). For this purpose we put, for

j = 1, 2, . . . ,

Xj =
∫ 1

0

∫ 1

0
Kj(s, t) dW(s) dW(t)

D=
∫ 1

0

∫ 1

0
Kj(1−s, 1−t) dW(s) dW(t).

(1.23)
Consider first X1 with

K1(s, t) =
n∑

k=1

gk(s)gk(t),

where gk(t) (k = 1, . . . , n) are continuous and linearly independent on [0, 1].
In this case K1(s, t) is said to be degenerate. To obtain the c.f. of X1, we have

X1 =
n∑

k=1

∫ 1

0

∫ 1

0
gk(s)gk(t) dW(s) dW(t) =

n∑
k=1

Y 2
k ,

where

Yk =
∫ 1

0
gk(t) dW(t) ∼ N

(
0,

∫ 1

0
g2

k (t) dt

)
,

Cov(Yk , Y�) =
∫ 1

0
gk(t) g�(t) dt .

Each Y 2
k is a constant multiple of a χ2(1) random variable, where Y1, . . . , Yn

are not independent. We can compute the c.f. of X1 following

E
(
eiθX1

)
= |In − 2iθ�|−1/2 =

n∏
k=1

(1 − 2iθλk)
−1/2,
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20 Quadratic Functionals of Brownian Motion

where In is the n × n identity matrix and � is the covariance matrix of
Y = (Y1, . . . , Yn)

′, whereas λ1, . . . , λn are the eigenvalues of �, which are
all positive. It holds that

X1
D=

n∑
k=1

λk Z2
k , Z = (Z1, . . . , Zn) ∼ N(0, In).

According to the result in (1.21), the FD of K1(s, t) is given by

D1(λ) =
∣∣∣In − λ�

∣∣∣ =
n∏

k=1

(
1 − λλk

)
, (1.24)

where it is noted that λ1, λ2, . . . , λn are the solutions to D1
(
λ−1

) = 0.
As a simple example of X1, let us consider X2 with

K2(s, t) = 1 + st , g1(t) = 1, g2(t) = t . (1.25)

Then we obtain (Exercise 1.3.2)

E(X2) = 4

3
, Var(X2) = 29

9
,

E
(
eiθX2

)
= (D2(2iθ))−1/2 =

(
1 − 8

3
iθ − 1

3
θ2

)−1/2

,

X2
D= λ1Z

2
1 + λ2Z

2
2

(
λ1, λ2 = 2

3
±

√
13

6

)
,

where D2(λ) = 1 − 4λ/3 + λ2/12, which is the FD of K2(s, t), whereas λ1

and λ2 are the solutions to D2
(
λ−1

) = 0.
As another example, consider X3 with

K3(s, t) = 1 + st + s2t2, g1(t) = 1, g2(t) = t , g3(t) = t2. (1.26)

We have

E(X3) = 23

15
, Var(X3) = 1199

300
,

E
(
eiθX3

)
= (D3(2iθ))−1/2 =

(
1 − 46

15
iθ − 127

180
θ2 + 1

270
iθ3

)−1/2

,

X3
D= λ1Z

2
1 + λ2Z

2
2 + λ3Z

2
3,

where D3(λ) = 1 − 23λ/15 + 127λ2/720 − λ3/2160, which is the FD of
K3(s, t), whereas λ1, λ2, and λ3 are the solutions to D3

(
λ−1

) = 0.
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In the above examples, the number of solutions to Dj(λ) = 0 (j = 1, 2, 3)

is finite. For these cases the functions Kj(s, t) (j = 1, 2, 3) are degenerate.
The next example deals with the case where the function K(s, t) is non-

degenerate, that is, the case where the number of zeros of the FD is infinite.
Consider

K4(s, t) =
∞∑

n=1

fn(s) fn(t)

λn

, (1.27)

where λn is positive for all n and the sum converges absolutely and uniformly
in the unit square. It is also assumed that {fn(t)} is an orthonormal sequence
of functions on [0, 1] that satisfies

∫ 1

0
fm(t) fn(t) dt = δmn =

⎧⎨
⎩

1 (m = n),

0 (m � n).

Then we can change the order of the sum and integration to get

X4 =
∫ 1

0

∫ 1

0

∞∑
n=1

fn(s) fn(t)

λn

dW(s) dW(t) =
∞∑

n=1

1

λn

Z2
n,

where

Zn =
∫ 1

0
fn(t) dW(t) ∼ NID(0, 1), E(X4) =

∞∑
n=1

1

λn

, Var(X4) =
∞∑

n=1

2

λ2
n

.

The c.f. of X4 is obtained as

E
(
eiθX4

)
= E

[
exp

{
iθ

∞∑
n=1

1

λn

Z2
n

}]
=

∞∏
n=1

(
1 − 2iθ

λn

)−1/2

.

According to the result in (1.21), the FD of K4(s, t) is given by

D4(λ) =
∞∏

n=1

(
1 − λ

λn

)
,

where the solutions to D4(λ) = 0 are λn (n = 1, 2, . . . ).
As a specific example of K4(s, t), let us take up

K5(s, t) =
∞∑

n=1

2 cos
(
n − 1

2

)
πs cos

(
n − 1

2

)
πt(

n − 1
2

)2
π2

= 1 − max(s, t), (1.28)
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22 Quadratic Functionals of Brownian Motion

where
{√

2 cos
(
n − 1

2

)
πt

}
is orthonormal on [0, 1], and this last equality

is ensured by Mercer’s theorem (Theorem 2.2). Then we have, for the
corresponding X5,

E(X5) =
∞∑

n=1

1(
n − 1

2

)2
π2

=
∫ 1

0
(1 − t) dt = 1

2
,

Var(X5) =
∞∑

n=1

2(
n − 1

2

)4
π4

= 4
∫ 1

0

∫ t

0
(1 − max(s, t))2 ds dt = 1

3
.

The c.f. of X5 is given by

E
(
eiθX5

)
=

∞∏
n=1

⎛
⎜⎝1 − 2iθ(

n − 1
2

)2
π2

⎞
⎟⎠

−1/2

=
(

cos
√

2iθ
)−1/2

, (1.29)

where this last equality comes from the infinite product expansion formula for
the cos function:

cos z =
∞∏

n=1

⎛
⎜⎝1 − z2(

n − 1
2

)2
π2

⎞
⎟⎠ . (1.30)

Thus the FD of K5(s, t) = 1 − max(s, t) is given by

D5(λ) = cos
√

λ =
∞∏

n=1

⎛
⎜⎝1 − λ(

n − 1
2

)2
π2

⎞
⎟⎠ ,

where the solutions to D5(λ) = 0 are (n − 1/2)2π2 (n = 1, 2, . . . ).
We note here that∫ 1

0

∫ 1

0
K5(s, t) dW(s) dW(t)

=
∫ 1

0

∫ 1

0
[1 − max(s, t)] dW(s) dW(t)

=
∫ 1

0

(
W(1) − t

∫ t

0
dW(s) −

∫ 1

t

s dW(s)

)
dW(t)

=
∫ 1

0

(∫ 1

t

W(s) ds

)
dW(t) =

∫ 1

0
W 2(t) dt .
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This relation may be established in a reversed direction in a general form as∫ 1

0
g(t)W 2(t) dt =

∫ 1

0
g(t)

(∫ t

0

∫ t

0
dW(u) dW(v)

)
dt

=
∫ 1

0

∫ 1

0

(∫ 1

max(u,v)

g(t) dt

)
dW(u) dW(v),

where it is justified to interchange the order of integration (Exercise 1.3.3). For
example, we have∫ 1

0
t2k W 2(t) dt =

∫ 1

0

∫ 1

0

1

2k + 1

[
1 − (max(s, t))2k+1

]
dW(s) dW(t),

where k > −1/2.
It is noted that, because of the distributional equivalence described in (1.22),

the distribution of X6 with

K6(s, t) = K5(1 − s, 1 − t) =
∞∑
i=1

2 sin
(
n − 1

2

)
πs sin

(
n − 1

2

)
πt(

n − 1
2

)2
π2

= 1 − max(1 − s, 1 − t) = min(s, t) (1.31)

is the same as that of X5. Moreover, for X6, it holds (Exercise 1.3.4) that

X6 =
∫ 1

0

∫ 1

0
min(s, t) dW(s) dW(t) =

∫ 1

0
(W(1) − W(t))2 dt .

Thus it follows that∫ 1

0
W 2(t) dt =

∫ 1

0

∫ 1

0
[1 − max(s, t)] dW(s) dW(t)

D=
∫ 1

0

∫ 1

0
min(s, t) dW(s) dW(t)

=
∫ 1

0
(W(1) − W(t))2 dt , (1.32)

which shows a close relationship between the m.s. Riemann integral of squared
functions of Bm and the m.s. Riemann–Stieltjes double integral with respect to
Bm. More generally, it will be shown in Theorem 2.11 that any zero-mean
Gaussian process {X(t)} defined on [0, 1] satisfies∫ 1

0
X2(t) dt

D=
∫ 1

0

∫ 1

0
Cov (X(s), X(t)) dW(s) dW(t). (1.33)
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24 Quadratic Functionals of Brownian Motion

Let us consider another example of the nondegenerate case for which

K7(s, t) =
∞∑

n=1

2 sin nπs sin nπt

n2π2
= min(s, t) − st , (1.34)

where this last equality also comes from Mercer’s theorem. Note here that
K7(s, t) = K7(1 − s, 1 − t), unlike K5(s, t) = 1 − max(s, t). Then it is shown
(Exercise 1.3.5) that the corresponding X7 has the following properties:

E(X7) =
∞∑

n=1

1

n2π2
= 1

6
, Var(X7) =

∞∑
n=1

2

n4π4
= 1

45
,

E
(
eiθX7

)
=

∞∏
n=1

(
1 − 2iθ

n2π2

)−1/2

=
(

sin
√

2iθ√
2iθ

)−1/2

, (1.35)

where this last equality comes from the infinite product expansion formula for
the sin function:

sin z

z
=

∞∏
n=1

(
1 − z2

n2π2

)
. (1.36)

Thus the FD of K7(s, t) = min(s, t) − st is given by

D7(λ) = sin
√

λ√
λ

=
∞∏

n=1

(
1 − λ

n2π2

)
,

where the solutions to D7(λ) = 0 are given by n2π2 (n = 1, 2, . . . ). It is also
shown (Exercise 1.3.6) that

∫ 1

0

(
W(t) −

∫ 1

0
W(s) ds

)2

dt =
∫ 1

0
W 2(t) dt −

(∫ 1

0
W(s) ds

)2

=
∫ 1

0

∫ 1

0
[min(s, t) − st] dW(s) dW(t),

where the integrand on the left-hand side is the square of demeaned Bm.
The next example gives the same FD as K7(s, t), which is given by

K8(s, t) =
∞∑

n=1

2 cos nπs cos nπt

n2π2
= 1

3
− max(s, t) + s2 + t2

2
, (1.37)
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where this last equality comes from Mercer’s theorem. Using the relation
described in (1.33), we can relate the distribution of X7 with that of X8 as
follows (Exercise 1.3.7):∫ 1

0

∫ 1

0
K7(s, t) dW(s) dW(t)

=
∫ 1

0

∫ 1

0
[min(s, t) − st] dW(s) dW(t) =

∫ 1

0

(
W(t) −

∫ 1

0
W(s) ds

)2

dt

D=
∫ 1

0
(W(t) − tW(1))2 dt =

∫ 1

0

∫ 1

0
K8(s, t) dW(s) dW(t), (1.38)

where {W(t) − tW(1)} is the Bb.
The next example is concerned with the quadratic functional of the g-fold

integrated Bm {Fg(t)} discussed in the last section. Consider here the case of
g = 1. Then we have

X9 =
∫ 1

0
F 2

1 (t) dt =
∫ 1

0

(∫ t

0
(t − s) dW(s)

)2

dt

=
∫ 1

0

∫ 1

0
K9(s, t) dW(s) dW(t) (1.39)

D= X10 =
∫ 1

0

∫ 1

0
K10(s, t) dW(s) dW(t), (1.40)

where, for s ≤ t ,

K9(s, t) = 1

6
(1 − t)2(t + 2 − 3s), (1.41)

K10(s, t) = Cov (F1(s), F1(t)) = −1

6
s3 + 1

2
s2t . (1.42)

The c.f. of this statistic cannot be obtained by the approach discussed so far.
However, it can be obtained by the method we shall use later, which yields

E
(
eiθX9

)
= E

(
eiθX10

)
=

[
1

2

(
1 + cos(2iθ)1/4 cosh(2iθ)1/4

)]−1/2

.

Thus the FD of K9(s, t) is equal to that of K10(s, t) and is given by

D9(λ) = D10(λ) = 1

2

(
1 + cos λ1/4 cosh λ1/4

)
.

The computation of the c.f. becomes more complicated as g becomes large,
which we discuss in detail in Chapter 2.

The class of quadratic functionals of Bm is quite large. We shall examine
many quadratic functionals in later chapters.
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Exercises for Section 1.3

Exercise 1.3.1 Suppose that

X =
∫ 1

0

∫ 1

0
K(s, t) dW(s) dW(t),

where K(s, t) is symmetric and continuous in [0, 1] × [0, 1]. Then prove that

E(X) =
∫ 1

0
K(t , t) dt ,

Var(X) = 2
∫ 1

0

∫ 1

0
K2(s, t) ds dt = 4

∫ 1

0

∫ t

0
K2(s, t) ds dt .

Exercise 1.3.2 For X2 and X3 defined in (1.23) with K2(s, t) = 1 + st and
K3(s, t) = 1 + st + s2t2, show that

E(X2) = 4

3
, Var(X2) = 29

9
, E

(
eiθX2

)
=

(
1 − 8

3
iθ − 1

3
θ2

)−1/2

,

E(X3) = 23

15
, Var(X3) = 1199

300
,

E
(
eiθX3

)
=

(
1 − 46

15
iθ − 127

180
θ2 + 1

270
iθ3

)−1/2

.

Exercise 1.3.3 Justify the following computation:

∫ 1

0
g(t)W 2(t) dt =

∫ 1

0

∫ 1

0

(∫ 1

max(s,t)
g(u) du

)
dW(s) dW(t),

where g(t) is continuous on [0, 1].

Exercise 1.3.4 Prove the following equality by showing that (i) the left-hand
side leads to the right-hand side and (ii) the right-hand side leads to the left-
hand side:∫ 1

0

∫ 1

0
min(s, t) dW(s) dW(t) =

∫ 1

0
(W(1) − W(t))2 dt .

Exercise 1.3.5 For X7 defined in (1.23) with

K7(s, t) =
∞∑

n=1

2 sin nπs sin nπt

n2π2
,
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1.4 Mean Square Itô Integral 27

show that

E(X7) =
∞∑

n=1

1

n2π2
= 1

6
, Var(X7) =

∞∑
n=1

2

n4π4
= 1

45
,

E
(
eiθX7

)
=

∞∏
n=1

(
1 − 2iθ

n2π2

)−1/2

=
(

sin
√

2iθ√
2iθ

)−1/2

.

Exercise 1.3.6 Show that∫ 1

0

(
W(t) −

∫ 1

0
W(s) ds

)2

dt =
∫ 1

0

∫ 1

0
[min(s, t) − st] dW(s) dW(t).

Exercise 1.3.7 Show that∫ 1

0
(W(t) − tW(1))2 dt

=
∫ 1

0

∫ 1

0

[
1

3
− max(s, t) + s2 + t2

2

]
dW(s) dW(t)

D=
∫ 1

0

∫ 1

0
[min(s, t) − st] dW(s) dW(t).

1.4 Mean Square Itô Integral

Here we discuss the m.s. Itô integral in connection with quadratic functionals
of Bm. Let {X(t)} (∈ L2) be a stochastic process that is m.s. continuous and
independent of W(v) − W(u) for all 0 ≤ t ≤ u ≤ v ≤ 1. Let the partition of
[0, 1] be pn : 0 = t0 < t1 < · · · < tn = 1, and put 
n = max

1≤i≤n
(ti − ti−1).

Then the m.s. Itô integral of X(t) with respect to W(t) is defined by

Y =
∫ 1

0
X(t) dW(t) = l.i.m.

n→∞

n→0

n∑
i=1

X(ti−1)(W(ti) − W(ti−1)). (1.43)

The Itô integral defined in this way exists and is unique. For the proof, see
Jazwinski (1970, theorem 4.2), Soong (1973, theorem 5.2.1), Kuo (2006,
theorem 4.7.1), and Klebaner (2012, theorem 4.3). It evidently holds that

E(Y ) = 0, Var(Y ) =
∫ 1

0
E(X2(t)) dt .

We notice in (1.43) that the value of X(t) taken in the interval [ti−1, ti ) is
X(ti−1), unlike in the m.s. Riemann or Riemann–Stieltjes integral. If we take
t ′i (� ti−1) in [ti−1, ti ), then the m.s. limit is different, which will be shown later.
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According to the definition of the Itô integral, the following relations can be
established (Exercise 1.4.1):

∫ 1

0
X(t) (dW(t))j =

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
X(t) dt (j = 2),

0 (j ≥ 3).

(1.44)

In particular, putting X(t) ≡ 1, we formally have

(dW(t))j =
⎧⎨
⎩

dt (j = 2),

0 (j ≥ 3).
(1.45)

To examine some other properties, consider the stochastic process defined by

Y (t) =
∫ t

0
X(s) dW(s), (1.46)

which is well defined for each t ∈ [0, 1]. It is clear that {Y (t)} is m.s. continuous
because, for 0 ≤ t < t + h ≤ 1,

E
[
(Y (t + h) − Y (t))2

]
= E

[(∫ t+h

t

X(s) dW(s)

)2 ]

=
∫ t+h

t

E(X2(s)) ds

≤ h max
t≤s≤t+h

E(X2(s)).

The m.s. differentiability of Y (t) is not ensured, but we express (1.46) as

Y (t) =
∫ t

0
X(s) dW(s) ⇔ dY (t) = X(t) dW(t). (1.47)

The differential expression on the right is called the stochastic differential,
which is always taken to imply the left-hand integral. It also holds that {Y (t)}
is a zero-mean martingale, that is, E(Y (t)) = 0 and, for s ≤ t ,

E[Y (t)|Y (s)] = Y (s) + E[Y (t) − Y (s)|Y (s)] = Y (s).

As an example, let us consider

Y1(t) =
∫ t

0
W(s) dW(s). (1.48)

We cannot apply Theorem 1.4 for integration by parts to Y1(t). If it is applied,
we have Y1(t) = W 2(t)/2, which is evidently incorrect because {Y1(t)} is
a zero-mean martingale, whereas E(W 2(t)/2) = t/2 � 0. Let the partition
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of [0, t] be pm(t) : 0 = t0 < t1 < · · · < tm = t , and put 
m(t) =
max

1≤i≤m
(ti − ti−1). Then, as m → ∞ and 
m(t) → 0,

Ym1(t) =
m∑

i=1

W(ti−1)(W(ti) − W(ti−1))

= −1

2

[
m∑

i=1

(W(ti) − W(ti−1))
2 −

m∑
i=1

W 2(ti) +
m∑

i=1

W 2(ti−1)

]

= 1

2
W 2(t) − 1

2

m∑
i=1

(W(ti) − W(ti−1))
2

⇒ 1

2
W 2(t) − 1

2
t ,

where the last result follows from the quadratic variation property of Bm
described in Section 1.1. Thus it holds that

Y1(t) =
∫ t

0
W(s) dW(s) = l.i.m.

m→∞

m(t)→0

Ym1(t) = 1

2
(W 2(t) − t), (1.49)

and formally we have

d

(
1

2
(W 2(t) − t)

)
= W(t) dW(t) ⇔ d(W 2(t)) = 2W(t) dW(t) + dt .

(1.50)
This is a simplified version of the Itô calculus discussed below. In connection
with the random walk {yj } defined in (1.3), it holds (Exercise 1.4.2) that, as
n → ∞,

1

nσ 2

n∑
j=1

yj−1εj ⇒ 1

2
(W 2(1) − 1) =

∫ 1

0
W(t) dW(t), (1.51)

where yj = yj−1 + εj , y0 = 0 and {εj } ∼i.i.d.(0, σ 2). Because of the
continuous mapping theorem (CMT) and joint weak convergence (Billingsley,
1999, chapter 2; Phillips, 1987a), it also holds that

Sn =
1

n

∑n

j=2
yj−1εj

1

n2

∑n

j=2
y2
j−1

⇒

∫ 1

0
W(t) dW(t)∫ 1

0
W 2(t) dt

. (1.52)
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The distribution of this last random variable is called the unit root distribution
because

Sn = n

(∑n
j=2 yj−1yj∑n
j=2 y2

j−1

− 1

)
= n(ρ̂ − 1),

where ρ̂ is the least squares estimator (LSE) of ρ for the model yj = ρyj−1 +
εj , with the true ρ being unity.

It was mentioned above that the m.s. limit of the sum that defines the Itô
integral crucially depends on the choice of the value of the integrand on each
interval. For example, we have (Exercise 1.4.3)

l.i.m.
m→∞


m(t)→0

m∑
i=1

W(τi−1)(W(ti) − W(ti−1)) = 1

2
(W 2(t) − t) + λt ,

where τi−1 = (1 − λ)ti−1 + λti for 0 ≤ λ ≤ 1. The case of λ = 0 corresponds
to the Itô integral, whereas the integral with λ = 1/2 is called the Stratonovich
integral. When λ = 0, the above quantity becomes a zero-mean martingale.

We now discuss the Itô calculus. Let {X(t)} be a stochastic process on [0, 1]
that belongs to L2, and consider the integral equation of the form

X(t) = X(0) +
∫ t

0
μ(X(s), s) ds +

∫ t

0
σ(X(s), s) dW(s). (1.53)

Notice that there are two types of m.s. integrals. One is the Riemann integral
and the other the Itô integral. Whether these integrals can be defined in the m.s.
sense, and, more importantly, whether this integral equation has a unique m.s.
solution X(t), can be answered in the affirmative by the following theorem
(Jazwinski, 1970, theorem 4.5; Kuo, 2006, theorem 10.3.5).

Theorem 1.5 Suppose that

(i) X(0) is any random variable that belongs to L2 and is independent of
W(t) − W(s) for all 0 ≤ s ≤ t ≤ 1.

(ii) There is a positive constant K such that

|μ(x, t) − μ(y, t)| ≤ K|x − y|, |σ(x, t) − σ(y, t)| ≤ K|x − y|,

|μ(x, s) − μ(x, t)| ≤ K|s − t |, |σ(x, s) − σ(x, t)| ≤ K|s − t |,

|μ(x, t)| ≤ K(1 + x2)1/2, |σ(x, t)| ≤ K(1 + x2)1/2.

Then (1.53) has a unique m.s. continuous solution X(t) on [0, 1] such that
X(t) − X(0) is independent of W(v) − W(u) for all 0 ≤ t ≤ u ≤ v ≤ 1.

https://doi.org/10.1017/9781009567008.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009567008.003


1.4 Mean Square Itô Integral 31

This theorem ensures that the two integrals appearing in (1.53) are well
defined in the m.s. sense. Note also that the solution process {X(t)} is not m.s.
differentiable in general. Nonetheless we write (1.53) as

dX(t) = μ(X(t), t) dt + σ(X(t), t) dW(t). (1.54)

Here dX(t) is called the stochastic differential of X(t), and we call this
equation the Itô stochastic differential equation (SDE), which is always
understood in terms of the integral equation (1.53).

The idea of stochastic differentials can further be developed for functions of
X(t) and t . Namely, we can consider another SDE that f (X(t), t) satisfies on
the basis of the following theorem (Jazwinski, 1970, lemma 4.2; Kuo, 2006,
theorem 7.4.3; Klebaner, 2012, theorem 4.16).

Theorem 1.6 (Itô’s formula) Suppose that X(t) has the stochastic differential
(1.54), where the conditions (i) and (ii) in Theorem 1.5 are satisfied. Let f (x, t)
denote a continuous function in (−∞, ∞) × [0, 1] with continuous partial
derivatives fx = ∂f (x, t)/∂x, fxx = ∂2f (x, t)/∂x2, and ft = ∂f (x, t)/∂t .
Assume further that ft (X(t), t) and fxx(X(t), t) σ 2(X(t), t) are m.s. Riemann
integrable. Then f (X(t), t) has the stochastic differential

df (X(t), t) = fx(X(t), t) dX(t) +
(

ft (X(t), t) + 1

2
fxx(X(t), t)σ 2(X(t), t)

)
dt .

(1.55)

Some important implications of Itô’s formula follow.

(a) If we expand df (X(t), t) formally as

df ∼ fx dX(t) + ft dt + 1

2
(fxx d2X(t) + 2fxt dX(t) dt + ftt d2t),

then (1.55) implies that we may put d2X(t) = σ 2(X(t), t) dt , dX(t) dt =
0 and d2t = 0.

(b) The integral equation corresponding to (1.55) may be written as

∫ b

a

fx(X(t), t) dX(t) = f (X(b), b) − f (X(a), a)

−
∫ b

a

(
ft (X(t), t) + 1

2
fxx(X(t), t) σ 2(X(t), t)

)
dt ,

where 0 ≤ a ≤ t ≤ b ≤ 1. The integral on the left-hand side has never
appeared before, and may be called the extended Itô integral. The above
relation tells us that the extended Itô integral can be computed via the
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Riemann integral on the right-hand side. In particular, for f (x, t) = x2,
we have∫ t

0
X(s) dX(s) = 1

2
(X2(t) − X2(0)) − 1

2

∫ t

0
σ 2(X(s), s) ds. (1.56)

(c) For any integer n ≥ 2, the following stochastic differential can be derived
from (1.55) as

d(Wn(t)) = nWn−1(t) dW(t) + n(n − 1)

2
Wn−2(t) dt . (1.57)

In particular, when n = 2, we have

d(W 2(t)) = 2W(t) dW(t) + dt ,

which was earlier presented in (1.50) as a simplified version of the Itô
calculus. The relation (1.57) is equivalent to∫ t

0
Wn(s) dW(s) = 1

n + 1
Wn+1(t) − n

2

∫ t

0
Wn−1(s) ds, (1.58)

which reduces to (1.49) when n = 1. We see that the formulas (1.56) and
(1.58) enable us to convert (extended) Itô integrals into the usual Riemann
integrals.

(d) Itô’s formula is useful for solving SDEs in conjunction with the uniqueness
property of the solution described in Theorem 1.5, which will be exempli-
fied shortly.

Two examples follow in connection with quadratic functionals associated
with the Itô integral.

Example 1.7 Let us consider the SDE

d
(
g(t)W 2(t)

)
= 2g(t)W(t) dW(t) + (g′(t)W 2(t) + g(t)) dt ,

which yields (Exercise 1.4.4)∫ 1

0
g(t)W(t) dW(t) = 1

2

∫ 1

0

∫ 1

0
g(max(s, t)) dW(s) dW(t)− 1

2

∫ 1

0
g(t) dt .

In particular, we have∫ 1

0
tk W(t) dW(t) =

∫ 1

0

∫ 1

0

1

2
(max(s, t))k dW(s) dW(t) − 1

2(k + 1)
,

(1.59)
where k ≥ 0.
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Example 1.8 Consider the SDE

dX(t) = γ X(t) dt + dW(t) ⇔ X(t) = eγ tX(0) + eγ t

∫ t

0
e−γ s dW(s),

(1.60)
which is called the Ornstein–Uhlenbeck (O–U) process defined on [0, 1], where
X(0) is independent of {W(t)}. Then it follows from (1.56) that

∫ t

0
X(s) dX(s) = 1

2
(X2(t) − X2(0) − t), (1.61)

which is of the nature of the Itô integral. The O–U process has the following
moments:

E(X(t)) = eγ tE(X(0)),

Cov(X(s), X(t)) = eγ (s+t)

[
Var(X(0)) + 1 − e−2γ min(s,t)

2γ

]
.

It turns out that, if γ is positive, {X(t)} is explosive and Var(X(t)) increases
with t . On the other hand, if γ is negative and X(0) ∼ N(0, −1/(2γ )), then
{X(t)} is stationary with E(X(t)) = 0 and Cov(X(s), X(t)) = −eγ |s−t |/(2γ )

so that Var(X(t)) = −1/(2γ ) (Exercise 1.4.5).
The O–U process {X(t)} in (1.60) arises from the near-random walk

defined by

yj = ρ yj−1 + εj (j = 1, . . . , n), y0 = 0, (1.62)

where ρ = 1 + γ /n and {εj } ∼ i.i.d.(0, σ 2). In fact, if we construct the partial
sum process

Xn(t) = 1√
nσ

y[nt] + (nt − [nt])
y[nt]+1 − y[nt]√

nσ
, (1.63)

it holds (Bobkoski, 1983; Phillips, 1987b) that

{Xn(t)} ⇒ {X(t)}, X(t) = eγ t

∫ t

0
e−γ s dW(s). (1.64)

In particular, the CMT gives

1

nσ 2
y2
n = X2

n(1) ⇒ X2(1) =
(∫ 1

0
eγ (1−s) dW(s)

)2

. (1.65)
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Let us consider the asymptotic distribution of the LSE ρ̂ of ρ in (1.62), where

n(ρ̂ − 1) = n

⎛
⎜⎝

∑n

j=2
yj−1yj∑n

j=2
y2
j−1

− 1

⎞
⎟⎠ =

1

n

∑n

j=2
yj−1(yj − yj−1)

1

n2

∑n

j=2
y2
j−1

.

The FCLT and CMT lead us to

1

nσ 2

n∑
j=2

yj−1(yj − yj−1) = − 1

2nσ 2

⎛
⎝ n∑

j=2

(yj − yj−1)
2 −

n∑
j=2

y2
j +

n∑
j=2

y2
j−1

⎞
⎠

= − 1

2nσ 2

⎛
⎝ n∑

j=2

(γ

n
yj−1 + εj

)2 − y2
n + y2

1

⎞
⎠

⇒ 1

2
(X2(1) − 1) =

∫ 1

0
X(t) dX(t),

1

n2σ 2

n∑
j=2

y2
j = 1

n

n∑
j=2

X2
n

(
j

n

)
⇒

∫ 1

0
X2(t) dt .

Thus, because of joint weak convergence (Phillips, 1987b), we have

n(ρ̂ − 1) ⇒ R =

∫ 1

0
X(t) dX(t)∫ 1

0
X2(t) dt

. (1.66)

The distribution of R in (1.66) is called the near-unit root distribution, which
will be examined in detail in Chapter 7.

To describe an extended version of Itô’s formula, we introduce

Definition 1.9 (Vector Brownian motion) A multiple stochastic process
W (t) = (W1(t), . . . , Wq(t))′ is q-dimensional Bm that satisfies

(1) P(W (0) = 0) = 1.
(2) W (t1)−W (t0), W (t2)−W (t1), . . . , W (tn)−W (tn−1) are independent for

any positive integer n and time points t0 < t1 < · · · < tn.
(3) W (t) − W (s) ∼ N(0, (t − s)Iq) for any 0 ≤ s < t ≤ 1.
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We now extend Itô’s formula to the vector case (Jazwinski, 1970, lemma 4.2;
Kuo, 2006, p.107; Klebaner, 2012, p.119).

Theorem 1.10 (An extended version of Itô’s formula) Let the p-dimensional
stochastic process {Y (t)} be the unique solution of the Itô SDE :

dY (t) = μ(Y (t), t)dt + G(Y (t), t) dW (t), (1.67)

where μ is p×1 and G is p×q. Let g(y, t) be a real-valued function of y : p×1
and t ∈ [0, 1] with continuous partial derivatives gy = ∂g/∂y : p × 1, gyy =
∂2g/(∂y∂y′) : p × p, and gt = ∂g/∂t . Assume further that gt and GG′gyy

are m.s. Riemann integrable. Then g(Y (t), t) has the stochastic differential

dg = g′
ydY (t) +

(
gt + 1

2
tr(GG′gyy)

)
dt . (1.68)

Some applications of Theorem 1.10 follow. Putting g(Y (t), t) =
W ′(t)HW (t) with H being a q × q symmetric matrix, it follows from (1.68)
that

d(W ′(t)HW (t)) = 2W ′(t)HdW (t) + tr (H) dt ,

which yields

S1 =
∫ 1

0
W ′(t)H dW (t) = 1

2

(
W ′(1)HW (1) − tr (H)

)
. (1.69)

Thus it is easy to derive the c.f. of S1 (Exercise 1.4.6). Note that, if H = Iq ,
we have∫ 1

0
W ′(t) dW (t) =

q∑
k=1

∫ 1

0
Wk(t) dWk(t)

=
q∑

k=1

1

2

(
W 2

k (1) − 1
)

= 1

2

(
W ′(1)W (1) − q

)
,

which may be established from the scalar Itô integral in (1.49).
As another simple case of (1.69), consider the case of q = 2, where

S2 =
∫ 1

0
W ′(t)

(
0 1
1 0

)
dW (t) =

∫ 1

0
(W1(t) dW2(t) + W2(t) dW1(t)) .

(1.70)
Then we have (Exercise 1.4.7)

S2 = 1

2
W ′(1)

(
0 1
1 0

)
W (1) = W1(1)W2(1)

D= 1

2

(
W 2

1 (1) − W 2
2 (1)

)
.
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If the matrix H is not symmetric, the formula (1.69) is invalid. As an
example, consider the case of q = 2, where

S3 =
∫ 1

0
W ′(t)

(
0 1/2

−1/2 0

)
dW (t)

= 1

2

∫ 1

0

(
W1(t) dW2(t) − W2(t) dW1(t)

)
, (1.71)

which is called Lévy’s stochastic area. If we apply the right-hand side of (1.69)
to this integral, it reduces to 0, which is evidently incorrect.

To derive the distribution of S3, we note that the conditional distribution of
S3 given {W1(t)} is normal with mean 0. Since it holds that

E(W2(s)dW2(t)) =
⎧⎨
⎩

0 (s < t),

dt (s ≥ t),

we have

Var
(

S3| {W1(t)}
)

= 1

4
E

[ ∫ 1

0

∫ 1

0

(
W1(s) dW2(s) − W2(s) dW1(s)

)

×
(
W1(t) dW2(t) − W2(t) dW1(t)

)∣∣∣{W1(t)}
]

= 1

4

[∫ 1

0
W 2

1 (t) dt − 2
∫ ∫

0≤s≤t≤1
W1(s) ds dW1(t)

+
∫ 1

0

∫ 1

0
min(s, t) dW1(s) dW1(t)

]

= 1

4

∫ 1

0

[
W 2

1 (t) − 2(W1(1) − W1(t))W1(t) + (W1(1) − W1(t))
2
]
dt

=
∫ 1

0

(
W1(t) − 1

2
W1(1)

)2

dt

D=
∫ 1

0

∫ 1

0

1

4

[
1 − 2|s − t |

]
dW1(s)dW1(t). (1.72)

Thus it is possible to obtain, using the conditional argument and the result in
(1.21),
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E
(
eiθS3

)
= E

[
E
(
eiθS3

∣∣∣ {W1(t)}
)]

= E

[
exp

{
−θ2

2
Var (S3| {W1(t)})

}]

= E

[
exp

{
−θ2

2

∫ 1

0

(
W1(t) − 1

2
W1(1)

)2

dt

}]

= E

[
exp

{
−θ2

2

∫ 1

0

∫ 1

0

1

4

[
1 − 2|s − t |

]
dW1(s) dW1(t)

}]

=
(
D(−θ2)

)−1/2 =
(

cosh
θ

2

)−1

,

where D(λ) =
(

cos(
√

λ/2)
)2

is the FD of K(s, t) = (1−2|s − t |)/4, and this

last result will be proved in Section 2.4. Assuming this result, it can be shown
that

S3
D= 1

4

∞∑
n=1

Z2
n1 + Z2

n2 − Z2
n3 − Z2

n4(
n − 1

2

)
π

,

where
(
Zn1, Zn2, Zn3, Zn4

)′ ∼ NID(0, I4). It is interesting to note that S2 and
S3 resemble each other closely, but the two distributions are totally different.
The distribution of S2 is that of the weighted sum of a finite number of χ2(1)

random variables, whereas that of S3 is the weighted sum of an infinite number
of χ2(2) random variables.

If we consider a simplified version of S3 defined by

S4 =
∫ 1

0
W ′(t)

(
0 1/2
0 0

)
dW (t) = 1

2

∫ 1

0
W1(t) dW2(t), (1.73)

it can be shown (Exercise 1.4.8) that, for
(
Zn1, Zn2

)′ ∼ NID(0, I2),

S4
D= 1

4

∞∑
n=1

Z2
n1 − Z2

n2(
n − 1

2

)
π

.

Thus we conclude that S3 is a convolution of S4, which gives

S3
D= 1

2

∫ 1

0

(
W1(t) dW2(t) + W3(t) dW4(t)

)
,

where
(
W1(t), W2(t), W3(t), W4(t)

)′ is four-dimensional Bm. The c.f. of S4 is
given by
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E
(
eiθS4

)
=

∞∏
n=1

⎧⎨
⎩

⎛
⎝1 − iθ/2(

n − 1
2

)
π

⎞
⎠

⎛
⎝1 + iθ/2(

n − 1
2

)
π

⎞
⎠

⎫⎬
⎭

−1/2

=
∞∏

n=1

⎛
⎜⎝1 + θ2/4(

n − 1
2

)2
π2

⎞
⎟⎠

−1/2

=
(

cosh
θ

2

)−1/2

,

so that the c.f. of S3 is given by

E
(
eiθS3

)
=

[
E
(
eiθS4

)]2 =
(

cosh
θ

2

)−1

. (1.74)

Exercises for Section 1.4

Exercise 1.4.1 Prove that

∫ 1

0
X(t) (dW(t))j =

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
X(t) dt (j = 2),

0 (j ≥ 3).

Exercise 1.4.2 Prove that

1

nσ 2

n∑
j=1

yj−1εj ⇒ 1

2
(W 2(1) − 1) =

∫ 1

0
W(t) dW(t),

where yj = yj−1 + εj , y0 = 0 and {εj } ∼ i.i.d.(0, σ 2).

Exercise 1.4.3 Show that

l.i.m.
m→∞


m(t)→0

m∑
i=1

W(t ′i )(W(ti) − W(ti−1)) = 1

2
(W 2(t) − t) + λt ,

where 0 = t0 < t1 < · · · < tm = t , 
m(t) = max
1≤i≤m

(ti − ti−1) and

t ′i = (1 − λ)ti−1 + λti for 0 ≤ λ ≤ 1.

Exercise 1.4.4 Show that∫ 1

0
g(t)W(t) dW(t)

= 1

2

∫ 1

0

∫ 1

0
g(max(s, t)) dW(s) dW(t) − 1

2

∫ 1

0
g(t) dt ,

where g(t) is an ordinary Riemann integrable function.
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Exercise 1.4.5 For the O–U process dX(t) = γ X(t) dt + dW(t) with
X(0) = 0, prove the following relations:∫ 1

0
X2(t) dt =

∫ 1

0

∫ 1

0

eγ (2−s−t) − eγ |s−t |

2 γ
dW(s) dW(t)

D=
∫ 1

0

∫ 1

0

eγ (s+t) − eγ |s−t |

2 γ
dW(s) dW(t).

Exercise 1.4.6 Derive the c.f. of

S1 =
∫ 1

0
W ′(t)H dW (t),

where W (t) is q-dimensional Bm, and H is a q × q symmetric matrix.

Exercise 1.4.7 Show that

S2 =
∫ 1

0

(
W2(t) dW1(t) + W1(t) dW2(t)

) D= 1

2

(
W 2

1 (1) − W 2
2 (1)

)
,

where W (t) = (
W1(t), W2(t)

)′ is two-dimensional Bm.

Exercise 1.4.8 Using (1.29) and the conditional argument, show that∫ 1

0
W1(t) dW2(t)

D= 1

2

∞∑
n=1

Z2
n1 − Z2

n2(
n − 1

2

)
π

,

where
(
Zn1, Zn2

)′ ∼ NID(0, I2).

1.5 Statistical Examples and the Fredholm Determinant

In this section we explore various statistical examples where quadratic func-
tionals of Bm are used, among which are (1) goodness-of-fit tests and Darling’s
formula, (2) LBI tests for parameter constancy, (3) LBIU tests for the moving
average unit root, and (4) LBI and LBIU tests for the autoregressive unit root.

1.5.1 Goodness-of-Fit Tests and Darling’s Formula

Let X1, . . . , Xn be a random sample from the common distribution G(x)

assumed to be absolutely continuous. The testing problem considered here is to
test if G(x) = F(x; ξ), where F(x; ξ) is a distribution function parameterized
by ξ . For illustrative purposes we concentrate here on the case where ξ is a
single parameter. The multi-parameter case will be examined in Chapters 3
and 4. Depending on whether ξ is specified or not, we deal with two cases.
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Case 1.1 The testing problem considered here is

H0 : G(x) = F(x; ξ),

where ξ is a nuisance parameter to be estimated. This case was discussed in
Darling (1955), where the test statistic is a modified version of the Cramér–
von Mises–Smirnov statistic and is given by

W 2
n (ξ̂ ) = n

∫ ∞

−∞

(
Fn(x) − F(x; ξ̂ )

)2
dF(x; ξ̂ ), (1.75)

where ξ̂ is a suitable estimator of ξ , and Fn(x) is the empirical distribution
function defined by

Fn(x) = 1

n

n∑
j=1

ε
(
x − Xj

)
, ε(x) =

⎧⎨
⎩

1 (x ≥ 0),

0 (x < 0).

For practical computation of W 2
n (ξ̂ ), we rearrange the sample X1, . . . , Xn to

get X′
1 < · · · < X′

n, so that (Exercise 1.5.1)

W 2
n (ξ̂ ) =

n∑
j=1

(
F(X′

j ; ξ̂ ) − 2j − 1

2n

)2

+ 1

12n
.

Let us consider the asymptotic distribution of W 2
n (ξ̂ ) under H0. Suppose

that ξ̂ is the maximum likelihood estimator (MLE) of ξ that satisfies some
regularity conditions. Here we exclude the super-efficient case such that
nE[(ξ̂ − ξ)2] → 0 as n → ∞. Putting

gξ (t) = ∂F (x; ξ)

∂ξ

∣∣∣∣
x=x(t ;ξ)

, x(t ; ξ) = inf{x : F(x; ξ) = t},

Darling (1955) considered

W 2
n (ξ̂ ) =

∫ ∞

−∞

(√
n (Fn(x) − F(x; ξ)) − √

n (ξ̂ − ξ)
∂F (x; ξ∗)

∂ξ

)2

dF(x; ξ̂ )

=
∫ 1

0

(
Yn(t) − √

n (ξ̂ − ξ) gξ (t)
)2

dt + δn

=
∫ 1

0
Z2

n(t) dt + δn, plimn→∞δn = 0,

where ξ∗ lies between ξ and ξ̂ and plim stands for convergence in probability,
whereas

Zn(t) = Yn(t) − √
n (ξ̂ − ξ) gξ (t),
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and

Yn(t) = √
n (Hn(t) − t), Hn(t) = 1

n

n∑
j=1

ε
(
t − F(Xj ; ξ)

)
.

Since F(X1; ξ), . . . , F(Xn; ξ) are independent and uniformly distributed over
[0, 1], it follows (Exercise 1.5.2) that

E(Hn(t)) = t , Cov(Hn(s), Hn(t)) = 1

n
(min(s, t) − st),

so that

E(Yn(t)) = 0, Cov(Yn(s), Yn(t)) = min(s, t) − st .

Then it was shown by Darling (1955) that

W 2
n (ξ̂ ) ⇒

∫ 1

0
Z2(t) dt = W 2(ξ),

W 2(ξ)
D=

∫ 1

0

∫ 1

0
K(s, t) dW(s) dW(t), (1.76)

where {Z(t)} is a zero-mean Gaussian process and

K(s, t) = Cov(Z(s), Z(t)) = min(s, t) − st − σ 2(ξ) gξ (s) gξ (t), (1.77)

σ−2(ξ) = E

{(
∂ log f (X1; ξ)

∂ξ

)2
}

=
∫ ∞

−∞

(
∂ log f (x; ξ)

∂ξ

)2

f (x; ξ) dx,

with f (x; ξ) = ∂F (x; ξ)/∂x.
It must be ensured that σ(ξ)gξ (t) does not depend on ξ . If it does, the present

test is useless because we cannot compute significance points. It was shown in
Darling (1955) that, if ξ is a location or scale parameter, σ(ξ)gξ (t) does not
depend on ξ, so that the W 2

n (ξ̂ ) test is parameter free. In fact, it holds (Exercise
1.5.3) that, when F(x; ξ) = R(x − ξ) and r(x) = R′(x),

σ(ξ) gξ (t) = −
(∫ ∞

−∞
(r ′(x))2

r(x)
dx

)−1/2

r(R−1(t)),

and, when F(x; ξ) = R(x/ξ),

σ(ξ) gξ (t) = −
(∫ ∞

−∞
(x r ′(x))2

r(x)
dx − 1

)−1/2

R−1(t) r(R−1(t)).

It also holds (Exercise 1.5.4) that, when F(x; ξ) = (R(x))ξ (ξ > 0),

σ(ξ) gξ (t) = t log t .
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As a specific example, let us consider

F(x; ξ) = 1

1 + e−(x−ξ)
,

which is the logistic distribution function with location parameter ξ . We have

∂F (x; ξ)

∂ξ
= −e−(x−ξ)(

1 + e−(x−ξ)
)2

, F(x; ξ) = t ⇔ e−(x−ξ) = 1 − t

t
,

which yields

gξ (t) = ∂F (x; ξ)

∂ξ

∣∣∣∣
x=x(t ;ξ)

= −t (1 − t).

Since

f (x; ξ) = e−(x−ξ)(
1 + e−(x−ξ)

)2
,

∂ log f (x; ξ)

∂ξ
= 1 − 2e−(x−ξ)

1 + e−(x−ξ)
,

we have

σ−2(ξ) =
∫ ∞

−∞

(
1 − 2e−(x−ξ)

1 + e−(x−ξ)

)2
e−(x−ξ)(

1 + e−(x−ξ)
)2

dx

=
∫ 1

0
(2t − 1)2 dt = 1

3
.

Thus the distribution of W 2(ξ) in the present case is given by (1.76), and it
follows from (1.77) that

Cov(Z(s), Z(t)) = min(s, t) − st − 3st (1 − s)(1 − t). (1.78)

The computation of the c.f. of W 2(ξ) can be carried out using Darling’s
formula (see Darling (1955, theorem 6.5) and (2.83)), which gives the FD of
Cov(Z(s), Z(t)) in (1.78) as

D(λ) = sin
√

λ√
λ

− 6
∫ 1

0

(∫ t

0
g′

ξ (s) cos
√

λs ds

)
g′

ξ (t) cos
√

λ(1 − t) dt

= 12

λ

(
2
(
1 − cos

√
λ
)

λ
− sin

√
λ√

λ

)
. (1.79)

Thus we obtain

E
(
eiθW 2(ξ)

)
= (D(2iθ))−1/2 =

[
6

iθ

(
1 − cos

√
2iθ

iθ
− sin

√
2iθ√

2iθ

)]−1/2

.

(1.80)
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As another example, consider

F(x; ξ) = 1

2
+ 1

π
tan−1 x

ξ
(ξ > 0),

which is the Cauchy distribution with scale parameter ξ . We have

∂F (x; ξ)

∂ξ
= − x

ξ2π

1

1 + x2/ξ2
,

F(x; ξ) = t ⇔ x

ξ
= tan π(t − 1/2) = − cot πt ,

which yields

gξ (t) = ∂F (x; ξ)

∂ξ

∣∣∣∣
x=x(t ;ξ)

= cot πt

ξπ

1

1 + cot2 πt
= 1

2ξπ
sin 2πt .

Since

f (x; ξ) = 1

ξπ

1

1 + x2/ξ2
,

∂ log f (x; ξ)

∂ξ
= −1

ξ
+ 2x2/ξ3

1 + x2/ξ2
,

we have

σ−2(ξ) =
∫ ∞

−∞

(
−1

ξ
+ 2x2/ξ3

1 + x2/ξ2

)2
1

ξπ

1

1 + x2/ξ2
dx

= 1

ξ2
+ 8

ξ2π

∫ ∞

0

( −u2

(1 + u2)2
+ u4

(1 + u2)3

)
du

= 1

2ξ2
,

where we have used the fact that∫ ∞

0

xa−1

(1 + xc)b
dx = 1

c
B(b − a/c, a/c) (a > 0, b > a/c, c > 0).

Here B(p, q) is the beta function defined by

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt (p > 0, q > 0).

Thus the distribution of W 2(ξ) in the present case is given by (1.76) with

Cov(Z(s), Z(t)) = min(s, t) − st − 1

2π2
sin 2πs sin 2πt . (1.81)
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Then, using Darling’s formula in (2.83), the FD of Cov(Z(s), Z(t)) in (1.81) is
given by

D(λ) = sin
√

λ√
λ

− 4
∫ 1

0

(∫ t

0
cos 2πs cos

√
λs ds

)
cos 2πt cos

√
λ(1 − t) dt

= sin
√

λ√
λ

/(
1 − λ

4π2

)
. (1.82)

Thus we now obtain

E
(
eiθW 2(ξ)

)
= (D(2iθ))−1/2 =

[
sin

√
2iθ√

2iθ

/(
1 − iθ

2π2

)]−1/2

. (1.83)

Case 1.2 Here we deal with the testing problem

H0 : G(x) = F(x; ξ0) versus H1 : G(x) = F(x; ξ), ξ = ξ0 + γ√
n

,

where ξ0 is a specified value and γ is a constant. This case was discussed in
Durbin (1973). Using the Cramér–von Mises–Smirnov statistic

W 2
n (ξ0) = n

∫ ∞

−∞

(
Fn(x) − F(x; ξ0)

)2
dF(x; ξ0), (1.84)

the null hypothesis H0 is rejected if W 2
n (ξ0) is sufficiently large.

Let us consider the limiting distribution of W 2
n (ξ0) as n → ∞. We first deal

with the distribution under H0. Putting G(x) = F(x; ξ0) = t , we have

W 2
n (ξ0) = n

∫ ∞

−∞

⎛
⎝1

n

n∑
j=1

ε(x − Xj) − F(x; ξ0)

⎞
⎠

2

dF(x; ξ0)

= n

∫ 1

0

⎛
⎝1

n

n∑
j=1

ε
(
t − F(Xj ; ξ0)

)
− t

⎞
⎠

2

dt

=
∫ 1

0
Y 2

n (t) dt ,

where

Yn(t) = √
n (Hn(t) − t), Hn(t) = 1

n

n∑
j=1

ε
(
t − F(Xj ; ξ0)

)
.
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It follows that {Yn(t)} ⇒ {Y (t)}, where {Y (t)} is the Bb. Thus it holds that

W 2
n (ξ0) ⇒ W 2(ξ0) =

∫ 1

0
Y 2(t) dt

D=
∫ 1

0

∫ 1

0
[min(s, t) − st] dW(s) dW(t), (1.85)

and the c.f. of W 2(ξ0) is given from (1.35) by

E
(
eiθW 2(ξ0)

)
= (D(2iθ))−1/2 =

(
sin

√
2iθ√

2iθ

)−1/2

,

where D(λ) is the FD of K(s, t) = min(s, t) − st .
We next consider the limiting distribution of W 2

n (ξ0) under H1 : ξ = ξ0 +
γ /

√
n. Expanding F(x; ξ0) around ξ = ξ0 + γ /

√
n, we consider, in place of

W 2
n (ξ0),

R2
n(ξ0) = n

∫ ∞

−∞

(
Fn(x) − F(x; ξ) + γ√

n

∂F(x; ξ)

∂ξ

∣∣∣∣
ξ=ξ0

)2

dF(x; ξ)

=
∫ 1

0

(
Yn(t) + γgξ0(t)

)2
dt , (1.86)

where

Yn(t) = √
n(Hn(t) − t), Hn(t) = 1

n

n∑
j=1

ε
(
t − F(Xj ; ξ)

)
,

gξ0(t) = ∂F (x; ξ)

∂ξ

∣∣∣∣
x=x(t ;ξ0)

, x(t ; ξ0) = inf{x : F(x; ξ0) = t}.

It follows from Durbin (1973) that, under H1 and some regularity conditions,
the limiting distributions of W 2

n (ξ0) and R2
n(ξ0) are the same and

R2
n(ξ0) ⇒ R2(ξ0) =

∫ 1

0

(
Y (t) + γgξ0(t)

)2
dt , (1.87)

where {Y (t)} is the Bb. Unlike the previous statistics, the statistic R2(ξ0) is a
quadratic functional of a nonzero-mean Gaussian process {Y (t) + γgξ0(t)}. To
derive the c.f. of such a functional, it is not sufficient to compute the FD of
K(s, t) = Cov(Y (s), Y (t)); we also need to deal with the resolvent associated
with K(s, t) and the function m(t) = γgξ0(t).

Discussions on the resolvent are deferred until Chapter 3. Here we take
up two examples only for demonstration purposes. Consider first the logistic
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distribution function F(x; ξ) = 1/(1 + e−(x−ξ)) dealt with in Case 1.1. Then
we have

gξ0(t) = ∂
(
1 + e−(x−ξ)

)−1

∂ξ

∣∣∣∣∣
x=x(t ;ξ0)

= −t (1 − t).

Thus (1.87) holds under H1 with gξ0(t) = −t (1− t). The corresponding c.f. of
R2(ξ0), the derivation of which involves the resolvent and will be explained in
Section 3.2, is given by

E
(
eiθR2(ξ0)

)

= E

[
exp

{
iθ

∫ 1

0
(Y (t) − γ t (1 − t))2 dt

}]

=
(

sin
√

2iθ√
2iθ

)−1/2

exp

[
γ 2

θ2

(
cos

√
2iθ − 1

sin
√

2iθ/
√

2iθ
+ iθ − θ2

6

)]
. (1.88)

It can be seen that R2(ξ0) does not depend on ξ0 and tends to normality as
|γ | → ∞.

As the second example, consider the Cauchy distribution F(x; ξ) = 1/2 +
tan−1(x/ξ)/π also dealt with in Case 1.1, where ξ > 0. We have

gξ0(t) = ∂

∂ξ

(
1

2
+ 1

π
tan−1 x

ξ

)∣∣∣∣
x=x(t ;ξ0)

= 1

2ξ0π
sin 2πt ,

and

E
(
eiθR2(ξ0)

)
= E

(
exp

{
iθ

∫ 1

0

(
Y (t) + γ

2ξ0π
sin 2πt

)2

dt

})

=
(

sin
√

2iθ√
2iθ

)−1/2

exp

[
γ 2

ξ2
0

iθ

4(2π2 − iθ)

]
. (1.89)

The derivation of this c.f. also involves the resolvent and will be demonstrated
in Section 3.2. Unlike R2(ξ0) in (1.88), the present statistic R2(ξ0) depends on
ξ0, although it also tends to normality as |γ | → ∞.

Goodness-of-fit tests will be discussed in more detail in Chapter 4, dealing
with the multi-parameter case.

1.5.2 LBI Tests for Parameter Constancy

Let us consider the following state space model:

yj = βj + εj , βj = βj−1 + ηj (j = 1, . . . , n), (1.90)
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where

(i) {yj } is an observable sequence, whereas {βj } is an unobservable sequence
starting from an unknown constant β0;

(ii) {εj } ∼ NID(0, σ 2
ε ), {ηj } ∼ NID(0, σ 2

η ), and these are independent of each
other.

The state space model is composed of two equations. One is a measurement
equation that describes the relation between the observed variable yj and the
unobserved state variable βj . The other is a state equation that reflects the
dynamics of the state variable βj .

Our concern is to test if βj , the level of the process, is constant, that is,
βj = β0 for all j . This is equivalent to testing

H0 : ρ = σ 2
η

σ 2
ε

= 0 versus H1 : ρ > 0. (1.91)

The present testing problem was first discussed in Nyblom and Mäkeläinen
(1983) and Tanaka (1983), and was generalized by Nabeya and Tanaka (1988)
and Nabeya (1989) to various cases, which we shall deal with in subsequent
chapters.

Since yj = β0 +εj +η1 +· · ·+ηj , the observation vector y = (y1, . . . , yn)
′

follows

y = β0e + ε + Cη ∼ N
(
β0e, σ 2

ε �(ρ)
)
, (1.92)

where e = (1, . . . , 1)′ : n × 1, ε = (ε1, . . . , εn)
′, η = (η1, . . . , ηn)

′, and

�(ρ) = In+ρ CC′, C =

⎛
⎜⎜⎜⎜⎝

1
· · 0
· ·
· ·
1 · · · 1

⎞
⎟⎟⎟⎟⎠ , C−1 =

⎛
⎜⎜⎜⎜⎝

1
−1 · 0

· ·
· ·

0 −1 1

⎞
⎟⎟⎟⎟⎠ .

(1.93)
Defining the parameter vector δ = (ρ, β0, σ 2

ε )′, the log-likelihood for y is
given by

L(δ) = −n

2
log 2πσ 2

ε − 1

2
log |�(ρ)| − 1

2σ 2
ε

(y − β0e)
′�−1(ρ)(y − β0e).

(1.94)
The matrix C necessarily arises from the random walk process βj = βj−1 +ηj

and may be called the random walk-generating matrix. Note that the (j , k)th
element of CC′ is min(j , k), and the eigenvalues of CC′ were obtained by
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Rutherford (1946) as

λj = 1

4

(
sin

j − 1
2

2n + 1
π

)−2

(j = 1, . . . , n).

For the present problem there exists no uniformly best test. Here we consider
the locally best invariant (LBI) test (Ferguson, 1967). It follows from (1.92)
that the testing problem (1.91) is invariant under the group of transformations:
y → ay +be and (ρ, β0, σ 2

ε ) → (ρ, aβ0 +b, a2σ 2
ε ), where a > 0. Following

Kariya (1980), choose an n × (n − 1) matrix H such that H ′H = In−1 and
HH ′ = In − ee′/n = M = M ′ = M2. Let us put w = H ′y = H ′(β0e + ε +
Cη). Noting that Me = HH ′e = 0 and thus H ′e = 0, we have

w ∼ N
(

0, σ 2
ε H ′�(ρ)H

)
, (1.95)

and the statistic s(w) = w/
√

w′w is a maximal invariant under the above
group. Let Pρ(·) be the distribution of s(w), and put

fn(s(w)|ρ) = |H ′�(ρ)H |−1/2
[
w′(H ′�(ρ)H)−1w

w′w

]−(n−1)/2

, (1.96)

which is the probability density of Pρ(·) with respect to P0(·). The rejection
region of the LBI test is now obtained (Ferguson, 1967, p.235) as

∂ log fn(s(w)|ρ)

∂ρ

∣∣∣∣
ρ=0

> constant, (1.97)

which leads to the rejection region given by

Rn1 = w′H ′CC′Hw

w′w
= y′MCC′My

y′My
> constant. (1.98)

The derivation of the LBI test is somewhat complicated. It can be shown
(Tanaka, 1996, chapter 9) that the LBI test for the present problem is equivalent
to the Lagrange multiplier (LM) test, which is easier to derive. In fact, the
rejection region of the LM test is given by

∂L(δ)

∂ρ

∣∣∣∣
H0

> constant, (1.99)

where the partial derivative is evaluated at the MLE δ̃ = (ρ̃, β̃0, σ̃ 2
ε )′ of δ under

H0. Note that ρ̃ = 0. We also have

β̃0 = 1

n

n∑
j=1

yj = 1

n
e′y, σ̃ 2

ε = 1

n

n∑
j=1

(yj − ȳ)2 = 1

n
y′My.
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Then, using

d log |�(ρ)|
dρ

= tr

(
�−1(ρ)

d�(ρ)

dρ

)
,

d�−1(ρ)

dρ
= −�−1(ρ)

d�(ρ)

dρ
�−1(ρ),

we have

∂L(δ)

∂ρ

∣∣∣∣
H0

= −1

2
tr(CC′) + 1

2σ̃ 2
ε

y′MCC′My

= −n(n + 1)

4
+ n

2

y′MCC′My

y′My
. (1.100)

Thus it is seen that the LM test is equivalent to the LBI test. An interesting
feature of the present test is that ∂L(δ)/∂ρ|H0 does not tend to normality, which
will be seen below. This contrasts with the standard situation.

Let us derive the asymptotic distribution of the LBI statistic Rn1 in (1.98)
under H0 : ρ = 0. For this purpose we can assume that σ 2

ε = 1 without any
loss of generality and consider

Sn1 = 1

n
Rn1 = 1

n

y′MCC′My

y′My
. (1.101)

Under H0, it holds that y = β0e + ε and

1

n
y′My = 1

n
ε′Mε → 1 in probability, (1.102)

1

n2
y′MCC′My = 1

n2
ε′MCC′Mε = 1

n
ε′Bn1ε

= 1

n

n∑
j=1

n∑
k=1

Bn1(j , k)εj εk , (1.103)

where Bn1 = MCC′M/n, and Bn1(j , k) is the (j , k)th element of Bn1 given by

Bn1(j , k) = 1

n
min(j , k) − 1

2n2
j (2n − j + 1) − 1

2n2
k(2n − k + 1)

+ 1

6n3
n(n + 1)(2n + 1). (1.104)

To derive the limiting distribution of the quadratic form in (1.103), we can
use the following theorem. Its extended version is given in Nabeya and Tanaka
(1988) and will be proved in Chapter 5 (see Theorem 5.1).

Theorem 1.11 Consider

Sn = 1

n
ε′Bnε = 1

n

n∑
j=1

n∑
k=1

Bn(j , k)εj εk ,
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where {εj } ∼ i.i.d.(0, 1) and Bn is an n×n symmetric and nonnegative definite
matrix. Assume that, for the (j , k)th element Bn(j , k) of Bn, there exists a
symmetric and continuous function K(s, t) satisfying

lim
n→∞ max

1≤j ,k≤n

∣∣∣∣Bn(j , k) − K

(
j

n
,
k

n

)∣∣∣∣ = 0. (1.105)

Then it holds that, as n → ∞,

Sn ⇒ S =
∫ 1

0

∫ 1

0
K(s, t) dW(s) dW(t). (1.106)

Note that, because Bn is nonnegative definite and the condition (1.105) is
imposed, the statistic S is nonnegative. This can be weakened to the extent that
the matrix Bn is indefinite so that S is not necessarily nonnegative to deal with
more general cases, which will be discussed in Chapter 5.

Let us return to (1.103) and (1.104). It holds that the matrix
Bn1 = MCC′M/n with Bn1(j , k) in the (j , k)th place is nonnegative definite
and the function

K1(s, t) = min(s, t) − s − t + s2 + t2

2
+ 1

3
= 1

3
− max(s, t) + s2 + t2

2

is the uniform limit of Bn1(j , k) in the sense of (1.105). Thus Theorem 1.11
leads us to establish that

1

n2
y′MCC′My = 1

n

n∑
j=1

n∑
k=1

Bn1(j , k)εj εk

⇒
∫ 1

0

∫ 1

0
K1(s, t) dW(s) dW(t). (1.107)

Therefore it follows that

Sn1 = 1

n

y′MCC′My

y′My
⇒ S1 =

∫ 1

0

∫ 1

0
K1(s, t) dW(s) dW(t). (1.108)

The c.f. of S1 is given from (1.35) and (1.38) by (D1(2iθ))−1/2, where
D1(λ) = sin

√
λ/

√
λ is the FD of K1(s, t).

In the present case there is a simpler way of deriving the limiting distribution
of Sn1. Noting that

1

n2
y′MCC′My = 1

n2
ε′MCC′Mε

D= 1

n2
εC′MCε

= 1

n
ε′B�

n1ε = 1

n

n∑
j=1

n∑
k=1

B�
n1(j , k),
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where B�
n1 = C′MC/n and B�

n1(j , k) is the (j , k)th element of B�
n1 defined by

B�
n1(j , k) = 1

n
min(n+1−j , n+1−k)− 1

n2
(n−j +1)(n−k+1), (1.109)

we can find the uniform limit K�
1(s, t) of B�

n1(j , k) as

K�
1(s, t) = min(1 − s, 1 − t) − (1 − s)(1 − t) = min(s, t) − st .

Thus it follows that

Sn1 ⇒ S1
D=

∫ 1

0

∫ 1

0
[min(s, t) − st] dW(s) dW(t). (1.110)

In the present model (1.92), the initial value β0 was unknown. If β0 is
assumed to be known, in which case we can put β0 = 0, then the above results
hold true by replacing K1(s, t) by min(s, t) (Exercise 1.5.5).

Nabeya and Tanaka (1988) extended the present model to

yj = xjβj + z′
jγ + εj , βj = βj−1 + ηj (j = 1, . . . , n),

where xj and zj are scalar and vector deterministic regressors, respectively.
We shall deal with this extended case in Chapter 5.

It is also interesting to examine the power of the LBI test. For this purpose
we consider the distribution of the LBI test statistic under the local alternative

H1(c, κ) : ρ = c

nκ
,

where c and κ are positive constants. We shall discuss the local alternative in
Chapter 5.

1.5.3 LBIU Tests for the Moving Average Unit Root

In this section we deal with the first-order moving average (MA(1)) model
given by

yj − μ = εj − α εj−1 (j = 1, . . . , n), (1.111)

where μ is an unknown mean and α (0 < α ≤ 1) is the coefficient parameter,
whereas {εj } (j = 0, 1, . . . , n) is an error sequence following NID(0, σ 2

ε ).
Our concern here is to consider testing

H0 : α = 1 versus H1 : α < 1, (1.112)

which was initially discussed in Tanaka (1990b) when μ = 0. The MA(1)
model (1.111) is said to be noninvertible under H0. The log-likelihood for
y = (y1, y2, . . . , yn)

′ is
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L(δ) = −n

2
log 2πσ 2

ε − 1

2
log |�(α)| − 1

2σ 2
ε

(y − μe)′�−1(α)(y − μe),

(1.113)
where δ = (α, μ, σ 2

ε )′, e = (1, . . . , 1)′ : n × 1, and

�(α) =

⎛
⎜⎜⎜⎜⎜⎝

1 + α2 −α 0
−α 1 + α2 ·

· · ·
· · −α

0 −α 1 + α2

⎞
⎟⎟⎟⎟⎟⎠ .

Proceeding in the same way as in the last section, the testing problem (1.112)
is shown to be invariant under the group of transformations: y → ay + be and
(α, μ, σ 2

ε ) → (α, aμ+b, a2σ 2
ε ), where a > 0. Let us put w = H ′y, where H

is the n × (n − 1) matrix such that H ′H = In−1 and HH ′ = In − ee′/n = M .
Then we have

w ∼ N
(

0, σ 2
ε H ′�(α)H

)
, (1.114)

and the probability density of the maximal invariant s(w) = w/
√

w′w is
given by

fn(s(w)|α) = |H ′�(α)H |−1/2
[

w′(H ′�(α)H)−1w

w′w

]−(n−1)/2

. (1.115)

Using

d�(α)

dα

∣∣∣∣
α=1

= �(1) = �,
d2�(α)

dα2

∣∣∣∣
α=1

= 2In, (1.116)

we obtain

∂ log fn(s(w)|α)

∂α

∣∣∣∣
α=1

= 0,

∂2 log fn(s(w)|α)

∂α2

∣∣∣∣
α=1

= c1 + n − 1

2

y′H(H ′�H)−2H ′y
y′H(H ′�H)−1H ′y

,

where c1 is a constant. Then we can conduct the unbiased locally best invariant
(LBIU) test (Ferguson, 1967, p.237), which rejects H0 when

∂2 log fn(s(w)|α)

∂α2

∣∣∣∣
α=1

> c2 ⇔ Rn2 = y′H(H ′�H)−2H ′y
y′H(H ′�H)−1H ′y

> c3,

(1.117)
where c2 and c3 are constants. We can rewrite the LBIU statistic Rn2 so that it
does not depend on H . For this purpose we have (Rao, 1973, p.77)
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Lemma 1.12 Let R = (P Q) be an n × n orthogonal matrix, where P and Q

are n×(n−p) and n×p matrices, respectively. Then, for any n×n nonsingular
symmetric matrix A, it holds that

P(P ′AP)−1P ′ = A−1N = N ′A−1 = N ′A−1N , (1.118)

P(P ′AP)−2P ′ = N ′A−2N , (1.119)

where N = In − Q(Q′A−1Q)−1Q′A−1.

Proof Let us consider

G =
⎛
⎝ P ′A

Q′

⎞
⎠ , GR =

⎛
⎝ P ′A

Q′

⎞
⎠ (P Q) =

⎛
⎝ P ′AP P ′AQ

0 Ip

⎞
⎠ .

It follows from the assumption that the n × n matrix G is nonsingular. Then,
noting that P ′Q = 0 and Q′P = 0, the first equality in (1.118) is established
because

G
[
P(P ′AP)−1P ′ −

(
A−1 − A−1Q(Q′A−1Q)−1Q′A−1

)]
= G

[
P(P ′AP)−1P ′ − A−1N

]
= 0.

It can be checked that A−1N = N ′A−1 = N ′A−1N , which proves (1.118).
Since

P(P ′AP)−2P ′ = P(P ′AP)−1P ′P(P ′AP)−1P ′ = N ′A−1A−1N = N ′A−2N ,

the relation (1.119) is also established. �

Note that the above lemma holds if P and Q are replaced by PF1 and QF2,
respectively, where F1 and F2 are any nonsigular matrices of size (n − p) ×
(n − p) and p × p, respectively. Using this fact, the LBIU statistic Rn2 in
(1.117) can be expressed (Exercise 1.5.6) as

Rn2 = y′N ′�−2Ny

y′N ′�−1Ny
, (1.120)

where N = In − e(e′�−1e)−1e′�−1, N ′�−1N = �−1N = N ′�−1, and

�−1 =
[
(CC′)−1 + ene

′
n

]−1 = CC′ − 1

n + 1
Cee′C′

=
[
(C′C)−1 + e1e

′
1

]−1 = C′C − 1

n + 1
C′ee′C. (1.121)

Here en = (0, . . . , 0, 1)′ : n × 1, e1 = (1, 0, . . . , 0)′ : n × 1, and C is
the random walk-generating matrix defined in (1.93). Note that the (j , k)th
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element of �−1 is min(j , k) − jk/(n + 1), and the eigenvalues of �−1 are
given (Anderson, 1971, theorem 6.5.5) by

λj = 1

4

(
sin

jπ

2(n + 1)

)−2

(j = 1, . . . , n).

The present LBIU test can also be derived on the basis of the log-likelihood
L(δ) defined in (1.113). Using the relations in (1.116) and tr(�−1) =
n(n + 2)/6, we obtain

∂L(δ)

∂α

∣∣∣∣
H0

= 0,
∂2L(δ)

∂α2

∣∣∣∣
H0

= −n(n + 5)

6
+ n

y′N ′�−2Ny

y′N ′�−1Ny
, (1.122)

where the derivatives are evaluated at the MLE of δ under H0. Then it is seen
that the resulting statistic is the same as the LBIU statistic Rn2 in (1.117) and
(1.120). It is also recognized that α = 1 gives a local maximum of L(δ) when
∂2L(δ)/∂α2|H0 < 0, which will be discussed in Chapter 6.

Let us consider the asymptotic distribution of Rn2 as n → ∞ under H0. We
can assume that σ 2

ε = 1. Putting ζ ∼ N(0, In), we have

1

n
y′N ′�−1Ny

D= 1

n
ζ ′�1/2N ′�−1N�1/2ζ

D= 1

n
ζ ′�−1/2N�N ′�−1/2ζ

= 1

n
ζ ′M̃ζ → 1 in probability,

1

n2
y′N ′�−2Ny

D= 1

n2
ζ ′�1/2N ′�−2N�1/2ζ

D= 1

n2
ζ ′�−1N�N ′�−1ζ

= 1

n
ζ ′ Bn2 ζ ,

where

M̃ = In − �−1/2e(e′�−1e)−1e′�−1/2 = M̃ ′ = M̃2,

Bn2 = 1

n
�−1N = 1

n

(
�−1 − �−1e(e′�−1e)−1e′�−1

)
.

Here tr(M̃) = n − 1 and �−1 is given in (1.121), whereas

�−1e = C′d − n

2
C′e, e′�−1e = n(n + 1)(n + 2)

12
,

where d = (1, 2, . . . , n)′. Then we have

Bn2(j , k) = 1

n

(
min(j , k) − jk

n + 1
− 3jk(n − j + 1)(n − k + 1)

n(n + 1)(n + 2)

)
,
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which has the uniform limit

K2(s, t) = min(s, t) − st − 3st (1 − s)(1 − t). (1.123)

It follows from Theorem 1.11 that

Sn2 = 1

n
Rn2 = 1

n

y′N ′�−2Ny

y′N ′�−1Ny
⇒ S2 =

∫ 1

0

∫ 1

0
K2(s, t) dW(s) dW(t).

(1.124)
It is interesting to note that the function K2(s, t) in (1.123) was earlier
presented in connection with goodness-of-fit tests in Section 1.5.1, and its FD
is given in (1.79) together with the c.f. of S2 in (1.80).

In this section we have dealt with the MA(1) model with unknown mean. If
the mean is known and assumed to be 0, the analysis is easier (Exercise 1.5.7).

In Chapter 6 we shall deal with more general models and derive the
asymptotic distributions of the LBIU statistics under the local alternative

H1(c, κ) : α = 1 − c

nκ
,

where c and κ are positive constants. We shall also deal with the conditional
model where the initial value ε0 of the error process {εj } is set at 0. The LBI
test is derived for that model, and the power performance of the LBI test is
compared with that of the LBIU test discussed in this section.

1.5.4 LBI and LBIU Tests for the Autoregressive Unit Root

Let us consider the following model:

yj = β ′xj + uj , uj = ρ uj−1 + εj (j = 1, . . . , n), (1.125)

where β and xj are p × 1 coefficient and regression vectors, respectively, and
{uj } is an error term that follows the first-order autoregressive (AR(1)) process
with {εj } ∼ i.i.d.(0, σ 2

ε ). The AR(1) coefficient parameter ρ is assumed to take
any value, and the initial value u0 of {uj } is assumed to be u0 = 0.

Our concern here is to conduct the test

H0 : ρ = 1 versus H1 : ρ < 1 or H1 : ρ � 1. (1.126)

Dickey and Fuller (1979) first suggested the unit root test using the following
three models:

yj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ yj−1 + εj ,

ρ yj−1 + α + εj ,

ρ yj−1 + β + γ j ,

(1.127)
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where it is assumed that ρ is close to unity and the true value of (α, γ ) is (0, 0),
while β is arbitrary. This seemingly curious restriction may be understood from
the model in (1.125). In fact, when xj = (1, j)′ in (1.125), we have

yj = β1 + β2 j + uj = ρ yj−1 + β1(1 − ρ) + β2ρ + β2(1 − ρ) j + εj ,

and it is recognized that the above restriction is imposed on this model when
ρ = 1.

The unit root test applied to the model (1.125) is based on n(ρ̂ − 1), where
ρ̂ is the LSE of ρ computed from

ρ̂ =
∑n

j=2
ûj−1ûj∑n

j=2
û2

j−1

, ûj = yj − β̂
′
xj . (1.128)

Here β̂ is the LSE of β obtained from the regression of {yj } on {xj }, where we
consider three cases for xj :

Case 1: xj = 0, Case 2: xj = 1, Case 3: xj = (1, j)′.

Note that ρ̂ computed for the three cases is asymptotically equivalent to
the LSE computed from the three models in (1.127). Then it can be shown
(Phillips, 1987a; Nabeya and Tanaka, 1990a) that, as n → ∞ under H0,

n(ρ̂ − 1) ⇒

∫ 1

0
G(t) dW(t)∫ 1

0
G2(t) dt

, (1.129)

where

G(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(t), (Case 1)

W(t) −
∫ 1

0
W(s) ds, (Case 2)

W(t) + (6t − 4)

∫ 1

0
W(s) ds − (12t − 6)

∫ 1

0
sW(s) ds. (Case 3)

We already presented an expression for the limit in distribution of n(ρ̂ − 1) for
Case 1, which is the unit root distribution given in (1.52). Note that G(t) in
Case 2 is referred to as demeaned Bm, which comes from

1√
nσε

ûj = 1√
nσε

(
uj − 1

n

n∑
k=1

uk

)
⇔ W(t) −

∫ 1

0
W(s) ds,
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whereas G(t) in Case 3 is detrended Bm, which comes from (Exercise 1.5.8)

1√
nσε

ûj = 1√
nσε

(uj − β̂1 − β̂2 j)

⇔ W(t) + (6t − 4)

∫ 1

0
W(s) ds − (12t − 6)

∫ 1

0
sW(s) ds.

The limiting distributions of n(ρ̂ − 1) under H0 can be expressed as

F(x) = lim
n→∞ P

(
n(ρ̂ − 1) ≤ x

)
= P(H(x) ≥ 0),

where

H(x) = x

∫ 1

0
G2(W) dt −

∫ 1

0
G(t) dW(t).

The distribution function F(x) can be computed by deriving the FD associated
with H(x). The limiting local powers of the unit root tests can also be
computed by deriving the associated FD, which was discussed in Nabeya and
Tanaka (1990a, 1990b). This topic will be discussed in Chapter 7.

In subsequent discussions, as a continuation of the last two sections, we
consider the LBI or LBIU type tests, assuming that {εj } ∼ NID(0, σ 2

ε ). The
model (1.125) can be expressed as

y = Xβ + u, u = C(ρ)ε, (1.130)

where

y =

⎛
⎜⎜⎜⎝

y1

y2
...

yn

⎞
⎟⎟⎟⎠ , X =

⎛
⎜⎜⎜⎝

x′
1

x′
2
...

x′
n

⎞
⎟⎟⎟⎠ , u =

⎛
⎜⎜⎜⎝

u1

u2
...

un

⎞
⎟⎟⎟⎠ , ε =

⎛
⎜⎜⎜⎝

ε1

ε2
...
εn

⎞
⎟⎟⎟⎠ ,

whereas

C(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
ρ 1 0
· · ·
· · ·
· · ·

ρn−1 · · · ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (1.131)

Here C(1) = C is the random walk-generating matrix defined in (1.93).
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Putting �(ρ) = C(ρ)C′(ρ), � = �(1) = CC′, and noting (Exercise 1.5.9)
that

d�(ρ)

dρ

∣∣∣∣
ρ=1

= dd ′ − �, d =

⎛
⎜⎜⎜⎝

1
2
...
n

⎞
⎟⎟⎟⎠ , (1.132)

it follows from (1.97) that the LBI test rejects H0 when

Rn3 = y′H
(
H ′�H

)−1
H ′dd ′H

(
H ′�H

)−1
H ′y

y′H (H ′�H)−1 H ′y
(1.133)

takes small values, where H is an n × (n − p) matrix such that H ′H = In−p,
and HH ′ = In − X(X′X)−1X′ = M . It follows from Lemma 1.12 that

H(H ′�H)−1H ′ = �−1 − �−1X(X′�−1X)−1X′�−1 = M̃ ,

which gives

Rn3 = y′M̃dd ′M̃y

y′M̃y
. (1.134)

It is recognized that Rn3 in (1.134) reduces to 0 if M̃d = 0. This occurs if
d belongs to the column space of X because it holds that M̃X = 0. Avoiding
this case, let us consider the case where X = (1, . . . , 1)′ = e. Then we have

y′M̃y =
n∑

j=2

(yj − yj−1)
2 =

n∑
j=2

(uj − uj−1)
2,

y′M̃d = yn − y1 = un − u1,

so that

Rn3 = y′M̃dd ′M̃y

y′M̃y
= (un − u1)

2∑n

j=2
(uj − uj−1)

2
= Un

Vn

,

where Un = (un − u1)
2 and Vn = ∑n

j=2 (uj − uj−1)
2. It follows that, as

n → ∞ under H0, Rn3 ⇒ χ2(1). The power performance of the present LBI
test is found to be quite poor and is not recommended; this will be clarified in
Chapter 7.

We next consider the LBIU test for the case where d = (1, 2, . . . , n)′

belongs to the column space of X. To derive the test, it is more convenient
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to use the log-likelihood for y ∼ N(Xβ, σ 2
ε �(ρ)). Noting that |�(ρ)| = 1, the

log-likelihood is given by

L(δ) = −n

2
log 2πσ 2

ε − 1

2σ 2
ε

(y − Xβ)′�−1(ρ)(y − Xβ), (1.135)

where δ = (ρ, β ′, σ 2
ε )′. Then the LBIU test rejects H0 when

∂2L(δ)

∂ρ2

∣∣∣∣
H0

= − 1

2σ 2
ε

(y − Xβ)′
d2�−1(ρ)

d2ρ
(y − Xβ)

∣∣∣∣
H0

= − 1

2σ̃ 2
ε

y′N ′ d2�−1(ρ)

d2ρ

∣∣∣∣
ρ=1

Ny

becomes large, where N = In − X(X′�−1X)−1X′�−1 and σ̃ 2
ε = y′N ′�−1

Ny/n. We also obtain (Exercise 1.5.10)

d2�−1(ρ)

dρ2

∣∣∣∣
ρ=1

= 2(In − ene
′
n), en = (0, . . . , 0, 1)′ : n × 1,

which yields

∂2L(δ)

∂ρ2

∣∣∣∣
H0

= −n
y′N ′(In − ene

′
n)Ny

y′N ′�−1Ny
. (1.136)

Since it holds that N ′�−1X = 0, y′N ′en reduces to 0 if en belongs to the
column space of �−1X or if �en = CC′en = d belongs to the column space
of X. In that case we have the LBIU statistic

Rn4 = y′N ′Ny

y′N ′�−1Ny
= y′N ′Ny

y′M̃y
, (1.137)

and H0 is rejected when Rn4 takes small values.
Consider X = (e, d), which yields (Exercise 1.5.11)

y′N ′Ny =
n∑

j=2

(
yj − y1 − j − 1

n − 1
(yn − y1)

)2

=
n∑

j=2

(
uj − u1 − j − 1

n − 1
(un − u1)

)2

,

y′M̃y =
n∑

j=2

(
yj − yj−1 − yn − y1

n − 1

)2

=
n∑

j=2

(
uj − uj−1 − un − u1

n − 1

)2

,
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where it holds (Exercise 1.5.12) that, as n → ∞ under H0, y′M̃y/(nσ 2
ε ) → 1

in probability and

Sn4 = 1

n
Rn4 = y′N ′Ny/

(
n2σ 2

ε

)
y′M̃y/

(
nσ 2

ε

) ⇒ S4,

S4 =
∫ 1

0
(W(t) − tW(1))2 dt

D=
∫ 1

0

∫ 1

0
[min(s, t) − st] dW(s) dW(t).

The c.f. of S4 is (D(2iθ))−1/2, where D(λ) = sin
√

λ/
√

λ.
The performance of the LBIU test is found to be quite good, unlike the LBI

test; this will be clarified in Chapter 7.

Exercises for Section 1.5

Exercise 1.5.1 Show that the modified Cramér–von Mises–Smirnov statistic
W 2

n (ξ̂ ) defined in (1.75) can be rewritten as

W 2
n (ξ̂ ) =

n∑
j=1

(
F(X′

j ; ξ̂ ) − 2j − 1

2n

)2

+ 1

12n
,

where X′
1 ≤ X′

2 ≤ · · · ≤ X′
n are ordered observations of X1, X2, . . . , Xn.

Exercise 1.5.2 Let X1, . . . , Xn be a random sample from the continuous
distribution F(x). Prove that

E(Hn(t)) = t , Cov(Hn(s), Hn(t)) = 1

n
(min(s, t) − st),

where Hn(t) is the empirical distribution function defined by

Hn(t) = 1

n

n∑
j=1

ε
(
t − F(Xj )

)
, ε(x) =

⎧⎨
⎩

1 (x ≥ 0),

0 (x < 0).

Exercise 1.5.3 Let F(x; ξ) be the continuous distribution function of X with
a parameter ξ , and f (x; ξ) be its probability density. Put

σ−2(ξ) =
∫ ∞

−∞

(
∂ log f (x; ξ)

∂ξ

)2

f (x; ξ) dx,

gξ (t) = ∂F (x; ξ)

∂ξ

∣∣∣∣
x=x(t ;ξ)

, x(t ; ξ) = inf{x : F(x; ξ) = t}.

Then prove that, when F(x; ξ) = R(x − ξ) and r(x) = R′(x),

σ(ξ) gξ (t) = −
(∫ ∞

−∞
(r ′(x))2

r(x)
dx

)−1/2

r(R−1(t)).
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Prove also that, when F(x; ξ) = R(x/ξ),

σ(ξ) gξ (t) = −
(∫ ∞

−∞
(x r ′(x))2

r(x)
dx − 1

)−1/2

R−1(t) r(R−1(t)).

Exercise 1.5.4 For the distribution function F(x; ξ) = (R(x))ξ (ξ > 0), prove
that

σ(ξ) gξ (t) = t log t ,

where σ(ξ) and gξ (t) are as defined in Exercise 1.5.3.

Exercise 1.5.5 Consider the model

yj = βj + εj , βj = βj−1 + ηj (j = 1, . . . , n),

where β0 = 0, {εj } ∼ NID(0, σ 2
ε ) and {ηj } ∼ NID(0, σ 2

η ), with {εj } and {ηj }
being independent of each other. Putting ρ = σ 2

η /σ 2
ε , show that ∂L(ρ, σ 2

ε )/∂ρ

does not tend to normality when ρ = 0, where L(ρ, σ 2
ε ) is the log-likelihood

for y = (y1, . . . , yn)
′.

Exercise 1.5.6 Prove that

H(H ′�H)−1H ′ = N ′�−1N , H(H ′�H)−2H ′ = N ′�−2N ,

where � is any n×n nonsingular symmetric matrix, H is an n×(n−p) matrix
with rank n − p, N = In − X(X′�−1X)−1X′�−1, and X is an n × p matrix
with rank p such that H ′X = 0.

Exercise 1.5.7 Consider the testing problem H0 : α = 1 for the MA(1) model

yj = εj − αεj−1 (j = 1, . . . , n),

where {εj } ∼ NID(0, σ 2
ε ). Derive the LBIU test statistic and its asymptotic

distribution under H0.

Exercise 1.5.8 Consider the model

yj = β1 + β2 j + uj , uj = uj−1 + εj (j = 1, . . . , n),

where {εj } ∼ i.i.d.(0, σ 2
ε ). Denote by ûj the residual obtained from the least

squares regression of {yj } on (1, j) (j = 1, . . . , n). Prove that

1

n2σ 2
ε

n∑
j=1

û2
j ⇒

∫ 1

0

(
W(t) + (6t − 4)

∫ 1

0
W(s) ds

−(12t − 6)

∫ 1

0
sW(s) ds

)2

dt .
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Exercise 1.5.9 Define the n × n matrix C(ρ) by (1.131), where its (j , k)th
element is ρj−k for j ≥ k and 0 for j < k. Show that

dC(ρ)C′(ρ)

dρ

∣∣∣∣
ρ=1

=

⎛
⎜⎜⎜⎝

1
2
...
n

⎞
⎟⎟⎟⎠ (1, 2, . . . , n) − C(1)C′(1).

Exercise 1.5.10 For the matrix C(ρ) given in Exercise 1.5.9, show that

d2
{(

C(ρ)C′(ρ)
)−1

}
dρ2

∣∣∣∣
ρ=1

= 2
(
In − ene

′
n

)
, en = (0, . . . , 0, 1)′ : n × 1.

Exercise 1.5.11 Consider the model

y = Xβ + u, u = C(1)ε, ε ∼ N
(
0, σ 2

ε In

)
,

where X = (e, d), e = (1, . . . , 1)′ : n × 1 and d = (1, 2, . . . , n)′, whereas
C(ρ) is as given in Exercise 1.5.9 with C = C(1). Then show that

y′N ′Ny =
n∑

j=2

(
uj − u1 − j − 1

n − 1
(un − u1)

)2

,

y′M̃y =
n∑

j=2

(
uj − uj−1 − un − u1

n − 1

)2

,

where N = In − X(X′(CC′)−1X)−1X′(CC′)−1 and M̃ = N ′(CC′)−1N .

Exercise 1.5.12 Prove that

1

n2

n∑
j=2

(
uj − u1 − j − 1

n − 1
(un − u1)

)2

⇒
∫ 1

0
(W(t) − tW(1))2 dt ,

where uj = uj−1 + εj , u0 = 0 and {εj } ∼ NID(0, 1).
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