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INTRODUCTION 
The historical foundations of the Baade-Wesselink (BW) 

method were established through the work of Baade (1926), Becker (1940), 
and Wesselink (1947). All modern versions of the BW-method are 
constructed upon these foundations. Since the radii of pulsating stars 
are fundamental to many areas of astronomical research (theories of 
stellar structure and evolution, galactic structure, and the cosmic 
distance scale), it is paramount that we strive to improve their 
observational determination. At the present time, the BW-technique is 
the only "direct" method for determining the radii of pulsating stars. 
Until a new technique is devised, better determinations of this 
important physical parameter will only occur through improvements in the 
BW-method. 

By necessity, the scope of this review of the BW-technique will be 
limited in scope. The historical development along with the 
spectroscopic problems associated with the BW-technique are more fully 
discussed in the excellent review by Gautschy (1987). 

THE BASIC IDEA 
Using the definitions of effective temperature and apparent 

bolometric magnitude, the ratio of the radii at different phases in the 
pulsation cycle can be expressed as: 

log 
R2 

*7 
= -0.2 (V2+ B . C 2 ) - ( V ^ B.C..,) + 10 log 

Teff2 

""Tiff"., 
(1) 

where the subscripts refer to the two phases, V, B.C., and Teff refer to 
the apparent visual magnitude, the bolometric correction, and the 
effective temperature. This equation describes the behavior of the 
"photometric radii" over the pulsation cycle. 

Integration of the observed radial velocity variation of the star 
throughout its cycle can be used to describe the behavior of the 
"spectroscopic radii": 

% 
R2 - R, = -pT/(Vr-Y)dCp (2) 

where p is the conversion factor from radial velocity to pulsation 
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velocity, T is the pulsation period in seconds, Vr is the observed 
radial velocity, and Y is the velocity of the star's center of mass. The 
center of mass velocity can be determined from the observed radial 
velocities by demanding that the following equation be satisfied: 

t+T 

/(Vr- Y)dt = 0. (3) 
t 

Equations (1) and (2) can now be solved, in principle, for the radius of 
the pulsating star. 

-pT/(Vr-Y) d<p 

R1= 1 (4) 
-0.2 t(V2+B.C.,)-(V +B.C...)+10 log(Te(f2/Teff1)] 

10 - 1 

Equation (4) represents the formal solution of the BW-method provided 
one knows the values of all the quantities on the right side. In 
practice, the values of the bolometric correction and effective 
temperature as functions of pulsational phase are difficult to determine 
from the observational data. Various schemes have been devised, which 
Gautschy (1987) refers to as "realizations" of the BW-method, to solve 
this equation. The fundamental problem faced in all realizations of the 
BW-method is that the flux emitted by the star is the result of both 
temperature (more correctly surface brightness) and radius changes 
during the pulsation cycle. One must devise means to separate these two 
effects. 

Consider the idealized case of a pulsating star which maintains constant 
temperature and atmospheric structure throughout its cycle. This is the 
simplest realization since equation (4) would reduce to: 

-p T lev, -Y) d<p 
J% 

^ = • (5) 
-0.2{V2-V.) 

10 -1 

Since the surface brightness is constant, all of the quantities on the 
right side of the above equation are now easily determined from the 
observations. In the real world, this idealized case is approximated by 
working in the infrared region. The flux emitted by the star has a 
weaker coupling to the temperature in the infrared (Lm « T

1' ) as 
compared to the optical region (Lv « T

4 ) of the spectrum. If the star 
is allowed to vary its temperature during the pulsation cycle but still 
required to be a blackbody, then the simple realization of equation (5) 
can still be used. By selecting pairs of phases with equal colors, one 
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has selected pairs of equal surface brightness since the temperature and 
bolometric correction is uniquely determined by the color for a 
blackbody. In practice, this case is approximated by working in regions 
of the spectrum where the influence of non-blackbody effects (i.e. shock 
waves, etc.) is minimized. 

Most realizations of the BW-technique are formulated in terms of surface 
brightness defined by Wesselink (1969) as: 

Sv = mv+ 5 log9 (6) 

or, 

Sv = Mv + 5 log R + const. (7) 

where 6 is the angular diameter, R the linear radius, and the constant 
is defined by the adopted zero points of Sv and Mv, plus the units used 
for the linear radius. The surface brightness can be expressed in a 
variety of forms. For example, since the surface brightness is the flux 
expressed in magnitudes per unit surface area of the star, one can 
write, 

Sbol - -2.5 log 
4sR2OT«ff 

4*R2 
= -10 log Teff + const. (8) 

or, in terms of the visual magnitude of the star, 

Sv= -10 log Teff- B.C. + const. (9) 

Barnes, Evans and Moffett (1978) express the surface brightness in terms 
of the visual surface brightness parameter, Fv, defined as, 

Fv = log Teff + 0.1 B.C. (10) 

Comparing eqs. (9) and (10), we see that the relationship between the 
surface brightness and the visual surface brightness parameter is: 

Fv= -0.1 (Sv+const.) (11) 

Similar to eq. (6), the visual surface brightness parameter can also be 
expressed in terms of the angular diameter of the star: 

Fv= 4.2207 - 0.1 V0- 0.5 log8 (12) 

where the constant was determined by adopting solar values, V„ is the 
un-reddened apparent visual magnitude, and 9 the angular diameter 
expressed in arc milliseconds. 
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Using the surface brightness approach is the most natural way to 
formulate a realization of the BW-technique since it separates the 
temperature dependent effects from the radius variations. In the 
classical BW-realization, pairs of phases with equal surface 
brightnesses are used to reduce eq.(4) to the simple form of eq.(5). 
Realizations which rely on pairs of points suffer from two problems. 
First, not all of the observed points are used in the final radius 
determination. Observations near the turning points in the light curve 
are not utilized, for practical reasons, in the pair selection process. 
Secondly, the selected pairs of phases are composed of inhomogeneous 
members. In general, one member of the pair will represent a point 
during the expansion portion of the pulsation cycle while the other 
member corresponds to a contraction portion (see Gautschy 1987). 

On the other hand, if Sv or E. is explicitly known, then data over the 
entire cycle can be used in the determination of the mean radius. The 
most popular approach is to parameterize the surface brightness in terms 
of a linear relation using some color index, 

Fv= a + b (C.I.) (13) 

If the zero-point and the slope in the above equation are known, then 
measurements of the apparent magnitude and appropriate color index over 
the entire pulsation cycle allows one to determine the variation of the 
star's angular diameter over the cycle by means of eqs.(13) and (12). 
Integration of the radial velocity curve provides the changes in linear 
diameter over the cycle. The distance to a pulsating star, r (in 
parsecs), is related to its linear and angular diameter, 8, through the 
equation, 

AD + Dm = 10"
3r6 (14) 

where AD is the instantaneous linear displacement from the mean 
diameter, Dm, both expressed in Astronomical Units. A regression 
analysis of 8 against AD yields both the star's distance and mean 
radius. In this realization, the radius depends only on the value of 
the slope, b, but the distance depends on both the slope and the 
zero-point, a, in eq.(13). 

MODERN REALIZATIONS 
Since a major objective of radius determination via the BW-

technique is to serve as a check on theory, one would like to maintain 
observational "purity". It is obvious that a radius determined without 
recourse to theory serves as the best observational check. In all 
realizations of the BW-method, theory enters through the calculation of 
the velocity conversion factor p, so absolute purity is never realized. 
The question which must be addressed is how much additional theoretical 
input is acceptable before observational purity is severely compromised? 
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Two philosophies have evolved in formulating modern realizations. In 
the empirical approach, one tries to find a region of the spectrum where 
the effects of surface gravity, abundance, shocks, temperature etc. are 
minimized. An example of this approach is the use of the infrared 
region to minimize the effect of temperature changes to approximate the 
simple realization of eq.(5). The advantages of the empirical approach 
are simplicity and observational purity. The major disadvantage is that 
one intentionally avoids some of the interesting physics (e.g. shock 
waves, surface gravity effects, etc.). A concern is the compromising of 
physical reality in favor of observational purity. 

In the modeling approach, one tries to handle some of the non-blackbody 
effects by invoking theory (model atmospheres) to some degree. An 
example of the modeling approach is the CORS method of Caccin et 
al. (1981) in which two color indices, calibrated by the model 
atmosphere grids of Kurucz (1979), are used to track variations in Teff, 
B.C., and geft over the pulsation cycle. The advantages are a more 
realistic realization and the inclusion of interesting physics. The 
disadvantages are the realization is more complex and observational 
purity is compromised to some degree. This last point is often 
overlooked or not fully appreciated. Simon (1988) and Fernley et 
al. (1988) both stress that model atmospheres 'used to track surface 
gravity effects etc. may contain inaccurate or missing physics which 
could lead to systematic errors in the radii determined in these 
realizations. 

THE EMPIRICAL APPROACH 
The realizations of the BW-technique used by Gieren (1986) 

and Moffett and Barnes (1987) are identical in that they both use the 
visual surface brightness method. The method used by Balona (1977) and 
Balona and Martin (1978a,b) is essentially the same realization except 
that the method of linear least squares is not used in the solution. 

In the realizations of Moffett and Barnes (1987) and Gieren (1986), the 
Thompson (1975) method is used to determined the slope of the visual 
surface brightness relation, eq.(13), for each Cepheid. These 
individual values are then used to determine a mean slope relation which 
is then used in a linear least squares solution for the mean radius. In 
Simon's (1988) nomenclature, this is a "consecutive" realization since 
the mean radius and slope of the visual surface brightness are not found 
in a "concurrent" manner. 

Balona (1977) made a major contribution by emphasizing that the method 
of linear least squares does not correctly take into account the effects 
of errors, in all the observational quantities, on the final mean radius 
determination. Balona's formulation of the surface brightness method 
uses the following working equation: 

V0= a + b (B-V)Q- 5 log(R0+Ar) (15) 
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This gives the star's apparent magnitude as a function of the surface 
brightness variation (first two terms) and the surface area variation 
(third term) at each phase during the pulsation cycle. The constant a 
contains a distance term which is different for each star. The last term 
is linearized under the assumption that Ar is small compared to the mean 
radius R0. Coulson, Caldwell and Gieren (1986) later improved this 
realization by developing an iterative procedure which no longer 
required that Ar be small. Since Balona's realization is a concurrent 
solution, the slope of the surface brightness relation, b, is allowed to 
vary star by star. 

Balona states that the Principle of Maximum Likelihood is used to solve 
eq. (15). Strictly speaking, this is incorrect since the Principle of 
Maximum Likelihood requires that both the errors in all observables and 
the functional form of their distribution be known. If one assumes, as 
Balona does, that the errors follow a Gaussian distribution, then the 
Principle of Maximum Likelihood reduces to the method of nonlinear least 
squares. 

The above realizations, and in fact all realizations both empirical and 
modeling, have a common unresolved problem. The spectroscopic and 
photometric radii curves do not agree in shape and/or phase for most 
stars. The correct phasing between the photometric and spectroscopic 
curves is very difficult to disentangle because there are two different 
sources of phase mismatch. The first is a "real" phase shift due to the 
fact that the photometric and spectroscopic data were acquired at 
difference epochs. Inaccuracies in the period or real changes in the 
period of the star produce a real phase shift. The second source is an 
"artificial" phase shift introduced by an incorrect slope in the surface 
brightness relation, eq.(13), as pointed out by Barnes et al. (1977) and 
Balona and Martin (1978a). The real phase shifts can only be eliminated 
by having simultaneous photometric and spectroscopic data which is 
usually not the case. 

Balona and Martin (1978a,b) clearly demonstrate that introducing an 
arbitrary phase shift between the velocity and light curves is 
equivalent to changing the value of the slope in eq.(13). The converse 
is also true. If the adopted value of the slope of the surface 
brightness relation is slightly off, then an artificial phase shift is 
required to bring the spectroscopic and photometric curves into phase 
alignment. In a consecutive approach using a mean value for the slope, 
artificial phase shifts are inevitable since the individual slopes will 
scatter about the mean value. Leaving the slope as a free parameter, 
which forces phase alignment, is claimed to be one of the virtues of 
concurrent solutions, but this virtue is more aesthetic than 
substantive. As Balona and Martin (1978b) show, these two approaches are 
equivalent ways of obtaining phase alignment. Since real phase shifts 
can also be present, it could be argued that a final phase adjustment 
between the spectroscopic and photometric curves might be a better 
approach. 
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The real problem lies in the parameterization of the surface brightness 
by a linear relation of a single color index, eq.(13), which is an 
oversimplification of physical reality. This problem is present in all 
realizations, both empirical and modeling. The breakdown of this simple 
assumption is clearly seen in stars with very dynamic atmospheres, e.g. 
RR Lyrae stars. In these stars, the photometric curves are in very poor 
agreement with the spectroscopic curves near maximum light. In most 
applications, these problem phases are excluded in the final solution 
for the mean radius. The same shortcoming is present, but not as 
pronounced, in the Classical Cepheids. If the surface brightness 
relation is correct, then the photometric and spectroscopic curves 
should be in both phase and shape agreement. A plot of photometric 
versus spectroscopic displacement should show a one-to-one 
correspondence i.e. a straight line. Figure 1 shows such a plot where 
the equivalence is approximately, but not strictly, true. 

Since the photometric radii, or angular diameters, are very sensitive to 
errors in the photometry, it is difficult to decide if the scatter from 
a straight line in Figure 1 is real, or merely due to observational 
uncertainty. In order to differentiate between the two possibilities, 
we solved eq.(15), using the (V - R)0 index, for a, b, and RQ for each 
of the 63 Cepheids in our sample (Moffett & Barnes 1987). The residuals 
of the observed value minus the calculated visual magnitude, as given by 
eq. (15), were determined for each Cepheid. The residuals for all the 
Cepheids were then combined into small phases bins (Barnes et al. 1987). 
Combining the residuals in this manner reduces the influence of random 

Figure 1. The angular diameter as determined from the 
surface brightness relation versus the linear displacement 
from integration of the velocity curve. 
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observational errors. The results of this comparison are shown in 
Figure 2 which clearly indicates that there are systematic effects 
present. 

Despite the trend shown in Figure 2, the residuals produced by the 
simple linear version of the surface brightness relation are not bad. 
This simple empirical approach produces residuals with a peak-to-peak 
spread of less than ±0.02 magnitudes. As a point of comparison, 
Hindsley and Bell (1987) used static model atmospheres to produce 
synthetic infrared magnitudes of Cepheids which were systematically 
different from the observed values by 0.15 magnitudes. The empirical 
approach using the simple linear surface brightness relation appears to 
be a good, but not perfect, approximation for Cepheids. 

The empirical calibration of the surface brightness, Fv, in eq.(13) 
using (V-R) is very good for non-variable stars (see Barnes et 
al. 1978). This is confirmed by the theoretical work of Bell and 
Gustafsson (1980) in which static model atmospheres were used to show 
that the combined effects of metal abundance and gravity are smallest in 
the (V-R) index. This empirical calibration starts to breakdown for 
variable stars because of their dynamic nature. Several researchers 
have shown that the influence of dynamic effects can be reduced by the 
judicious selection of both the magnitude and color index employed. 
Jones et al. (1987a), working with RR Lyrae stars, found that the size 
of the required artificial phase shift is smallest for the (V-K) index 
when used in combination with the V-mag. They found even better 

Figure 2. The combined residuals for all stars as a 
function of pulsation phase. 
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agreement between the photometric and spectroscopic curves when the 
K-mag. replaced the V-mag. Fernley et al. (1987) pointed out the 
advantages of the infrared over the optical region for radius 
determination. For RR Lyrae stars, the optical region is near the peak 
of their flux distribution so Lv « T

4 but in the infrared one is on the 
Rayleigh-Jeans tail of the Planck function, where LK «T1'5. In other 
words, the luminosity variation in the infrared is dominated by the 
changes in surface area rather than temperature, but the opposite is 
true in the optical region. Errors in the temperature description have 
a lesser effect in the infrared than in the optical region. In 
addition, the effects of metallicity and gravity are an order of 
magnitude less sensitive in the infrared than in the optical. 

Coulson, Caldwell, and Gieren (1986) used the method of Balona (1977) to 
find the mean radius of the Cepheid TT Aql employing a variety of 
magnitude and color index combinations. Their study gave a range of 68 
to 107 RQ for the mean radius depending on the particular combination 
used in the solution. Their mean period-radius relation for Cepheids, 
based on a nonlinear least squares solution using the V-mag. and 
Cousins (V-I) index, is in excellent agreement with the mean relation of 
Moffett and Barnes (1987), based on a linear least squares solution 
using the V-mag. and Johnson (V-R) index. For example, the mean 
period-radius relation of Coulson et al. (1986) predicts a 68.2 R0 

radius for a 10 day Cepheid and the corresponding relation of Moffett 
and Barnes (1987) predicts 70.8 R0. The particular color index used has 
a much greater effect on the radius determination than does the 
particular mathematical technique employed in the realization. 

All realizations of the BW-technique will benefit from the high 
precision radial velocity measurements being made of pulsating stars. 
The CORAVEL velocities, for example, have uncertainties of ±1 km-sec-1 

or less for a single velocity measurement. Integrations of radial 
velocity curves of this quality yield linear displacements of very high 
precision. 

Simon (1987) has proposed a realization which takes full advantage of 
these improved velocities by inverting the classical BW-method. Instead 
of trying to pick pairs of phases at which the surface brightnesses are 
equal, Simon picks pairs of phases at which the linear displacements are 
equal, since these can now be determined with high precision. Once 
phase pairs of equal radii are known, one can determine the values of 
the coefficients of the adopted surface brightness relation by noting 
that any difference in the flux levels is due to the surface brightness. 
The formulation of this realization is very general, since the adopted 
parameterization of the surface brightness can be of any form: linear 
or nonlinear, single color index, multiple color indices, dynamic 
parameters (kinetic energy, acceleration), etc. In his method, both the 
radial velocity and photometric curves are represented by a Fourier 
series. This realization requires photometric data of equivalent 
precision (±0.002 mag.) as the radial velocities. In addition, rather 
complete phase coverage over the pulsation cycle is needed to determine 
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an accurate Fourier series representation of the velocity and 
photometric curves. The use of pairs of points has the same 
disadvantage as mentioned earlier, inhomogeneous pair members. However, 
Simon (1988) described a consecutive solution version of his method 
which removes the phase pair problem. Since this is a new realization, 
it has not been fully tested, but it does show great promise for 
improvements in the empirical approach. 

THE MODELING APPROACH 
All of these realizations use model atmospheres in some 

fashion to determine the photometric displacement curve. Realizations 
of this class suffer from the same problems encountered in the empirical 
approaches: poor phase and shape agreement between the photometric and 
spectroscopic displacement curves, strong sensitivity to the spectral 
region used, and difficulty in assigning realistic error estimates to 
the final mean radius. 

Fernley et al. (1988) have used a very direct method which matches the 
observed flux to the predicted model atmosphere flux in order to 
determine the mean radius of the RR Lyrae star X Arietis. The total 
flux of the star at any phase, L(<t>), can be determined from the observed 
de-reddened flux at the top of the earth's atmosphere, /. , from: 

M<P) = //A(<t>)dA (16) 

The effective temperature can be.determined from the standard relation: 

L(*) = e2(0)oTe
4
ff (<P) (17) 

if an initial guess of the angular diameter, 0, is made. Using this 
estimate of the effective temperature, an improved determination of the 
angular diameter can be obtained by using the predicted flux from a 
model atmosphere via the equation: 

L I R (<p) = 62(<I>)F| R { T e f f (<p)} ( 1 8 ) 

where L)R is the observed value and FiR is the model atmosphere 
prediction. Iteration between eqs. (17) and (18) yields the final 
values of Teff (<t>), and 8(<P) . In evaluating the integral in eq. (16), 
observations over the range of 2,000 to 22,000 A were used. This gives 
temperature determination based on a wide spectral range encompassing 
over 95% of the total flux rather than a temperature estimate based on 
the rather narrow spectral region defined by a color index. Equation 
(18) makes use of the fact that most of the variation in the infrared 
magnitudes, H and K bands, is due to radius (surface area) changes with 
reduced sensitivity to temperature, metallicity, and gravity effects. 

Cohen and Gordon (1987) used a similar realization to study RR Lyrae 
stars in the globular cluster M5. The major difference is that they use 
two narrow regions in the spectrum, one in the optical and the other in 
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the infrared. The observed fluxes in these two regions are fitted to 
Kurucz (1979) model fluxes to find the angular diameter as a function of 
phase. 

Burki and Benz (1982) and Burki and Meylan (1986) adopt a quadratic 
surface brightness relation calibrated by means of model atmospheres. 
The shape mismatch between the two displacement curves is still present, 
and the final mean radius excludes the phase interval of poor fit. 

The most complex modeling realization is the CORS method developed by 
Caccin et al. (1981), Sollazzo et al. (1981),and Onnembo et al. (1985). 
They assume that the atmosphere of the pulsating star can be described 
by the QSA approximation (quasi-static approximation), the 
plane-parallel approximation for the radiative transfer and radiative 
and hydrostatic equilibrium. The simple assumption that the surface 
brightness can be described by a linear relation of a single color index 
is abandoned. The effective temperatures and gravities are described by 
two color indices calibrated via model atmospheres and the physical 
calibration of the Walraven photometric system. The CORS realization is 
currently the only one which uses all observations over the entire cycle 
to calculate the radius at one particular phase. In principle, the CORS 
method treats the BW-problem in a realistic rather than oversimplified 
fashion, but in practice, it is only as reliable as the model 
atmospheres and calibration of the photometric system used in its 
application. The fundamental problem remains; a dynamic situation is 
described by a series of static models. 

The most popular version of modeling realizations uses synthetic colors 
produced from model atmospheres to effectively determine a surface 
brightness relation. Examples of this approach are the papers by: 
McNamara and Feltz (1977), Manduca et al. (1981), Carney and Latham 
(1984), Liu and Janes (1988), Jones (1988), and Jones et al. (1987a,b, 
1988). 

Most researchers using the modeling approach have pointed out the major 
limitation of this technique. The final mean radii are only as good as 
the theoretical model input parameters. The only available model 
atmospheres are static models which do not satisfactorily reproduce the 
dynamic effects present in real stars. Faced with describing a dynamic 
atmosphere with a static model, one is forced to either pick a spectral 
region where the dynamic effects (shock waves, rapid changes in 
effective gravity, etc.) are minimized or exclude certain phase regions, 
near minimum radius in the case of the RR Lyrae stars, or do both. The 
fundamental requirement for better mean radii via the modeling approach 
is better model atmospheres which include dynamic effects. 

QUALITY OF RESULTS 
Assigning realistic uncertainties to the final mean radius 

has been a problem for all of the realizations. Balona (1977) correctly 
points out that the method of linear least squares is not strictly valid 
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when all of the variables are subject to observational errors. He 
recommends that the Principle of Maximum Likelihood be used in place of 
linear least squares since the observational errors are treated in the 
correct manner. However, the full advantage of the Maximum Likelihood 
method is only realized when both the standard errors and the form of 
their distributions are known for all observational quantities. This 
latter requirement has not been included in any of the so called Maximum 
Likelihood solutions. Hawley et al. (1987) and Fernley et al. (1987) 
recommend an iterative nonlinear least squares with outlier rejection as 
a better mathematical technique in BW-solutions. It is clear that 
linear least squares is not the best mathematical method to use. 
Nonlinear least squares is better and the full application of the 
Principle of Maximum Likelihood may be the best. 

Simon (1988) has the best procedure for estimating the uncertainty due 
to the methodology of the particular realization. One would like to 
have a good estimate of the true uncertainty of the mean radius due to 
all sources (observational, methodological, physical aptness of the 
adopted surface brightness relation), but these are difficult to 
estimate. Error estimates for the modeling approaches are even more 
complex. In addition to the uncertainties referred to above, one has to 
include errors due to incorrect or missing physics in the model 
atmospheres, errors in constructing synthetic colors and magnitudes, and 
errors due to interpolation between grids in the model atmospheres. 

Using current BW-realizations, the true uncertainty of individual mean 
radii are probably not better than ±10% (Gautschy 1987). If a large 
sample of stars is used to determine a mean period-radius relation, the 
result may be better than ±10%. However, as Gautschy (1987) points out, 
it is very difficult to compare the various period-radius relations 
since the distribution of stars, both in terms of the number of stars 
and their period distribution, makes direct comparisons hard to 
interpret. 

CONCLUSIONS 
We must concur with Gautschy's statement that, THE BW-method 

does not yet exist. Of the two general approaches, empirical and 
modeling, there are no compelling reasons to pick one as superior to the 
other. Since the two approaches actually complement each other, we 
strongly recommend that improvements to both be vigorously pursued. 
Knowledge of mean radii at the 10% level is simply not good enough to 
address current problems in pulsating stars. For example, the current 
precision in the radii implies an uncertainty of 30% in the mass 
determination. 

On the observational side, several things are needed to improve all 
types of BW-realizations. More high quality radial velocities with good 
phase coverage and, ideally, with simultaneous photometry to eliminate 
the phasing problem would be a great help. Photometric data, again with 
good phase coverage and with a precision to match the radial velocities, 
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are needed. Additional, high precision infrared observations are needed 
to realize the advantages offered in the infrared region of the 
spectrum. 

On the theoretical side, better model atmospheres which include dynamic 
effects represent the most urgent need. More work on the projection 
factor for converting observed radial velocities to pulsational 
velocities would benefit all realizations. 
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