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EXISTENCE OF REGULAR COVERINGS ASSOCIATED WITH
LEAVES OF CODIMENSION ONE FOLIATIONS

GIKO IKEGAMI

§1. Statement of results

In this paper we are concerned with transversely orientable codi-
mension one foliations. Let & be a C7-foliation as above in a smooth
manifold M, » = 1, and let F, be a closed leaf of #. A neighborhood
U of F, is called a bicollar of F, in this paper if there is a normal line
bundle v: U — F, with respect to a fixed Riemannian metric on M such
that each fibre of v is transverse to &%. For a bicollar U of F,, U,
= F, U (a component of U — F) is called a collar of F,., A leaf Fe%F
is said to be asymptotic to F, in U, if FF NV # ¢ for any neighborhood
V of Fy in U,. Let F, be a leaf asymptotic to F, of the restricted
foliation & |V, where V is a neighborhood of F, in U,. A plaque of
F is a leaf of F|N diffeomorphic to an open (n — 1)-ball, where N is a
sufficiently small open #n-ball in the n-manifold M. A C’-covering v: F'
— F, is said to be associated with F, if there is an injection i: F, — F'
such that ©¢ = v|F, and that ¢ maps any plaque of F';, C7-diffeomorphic-
ally into F. The one sided holonomy group @.(F,) of F, is the holonomy
group of F, defined by the restricted foliation &# |U.,.

The main purpose of this paper is to prove Theorem 2, which is an
existence theorem of associated regular coverings. Theorem 1 is used in
the proofs of Theorem 2 and Theorem 5. Theorem 3 and Theorem 4
are the properties of associated regular coverings. As an application
we show Theorem 5, which is an unstability theorem of foliations.

THEOREM 2. Let & be a transversely orientable CT-foliation of co-
dimension one, r = 1, Fy be an orientable closed leaf of F, and let U,
be a collar of F,. Suppose that the one sided holonomy group @, (F,)
18 abelian. Then there is a neighborhood V, of F, in U, such that any
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netghborhood V of F, in V, satisfies the followings.

For each asymptotic leaf F' to F, in U, let F, be an asymptotic
leaf of #|V to F, contained in F. Then, an unique (in the sense of
the equivalence of coverings) C’-regular covering 5: F — F, is associated
with Fy, and v, (z,(Fy)) = 9,(m,(F)) in z,(F,). Furthermore, the equivalence
class of o does not depend on V, and so an unique normal subgroup
G(F) = v (7,(Fy)) of =(F,) is associated with F.

p and G(I') are considered as invariants on the behavior of F in a
neighborhood of F, in U,. There is an example of &%, F,, and an as-
ymptotic leaf F' to F, such that, for any one sided neighborhood V of
F,, no regular covering is associated with F'.

THEOREM 1. Suppose that &F, F,, and U, satisfy the same conditions
as Theorem 2. Then, there are connected orientable codimension one
submanifolds Ny, --+,N, of F, satisfying the followings.

(i) F,— N, U --- UN, is connected.

(i) Let F, be the manifold obtained by cutting open F, along
N, ---,N, and let g: F, — F, be the map pasting F, on F, naturally.
(There are definitions of F, and g in §3.) Thus oF, = ., N; U N7,
g '(N;) = N, U N/, and g(N7) = N, = g(N7). Then, there are injective
diffeomorphisms f;:[0,el - [0,¢el, ¢ =1,..-, £ with the following pro-
perties.

(@ [f{0)=0 and f.J,@® =1;/:@ for any ¢, =1,---,¢ and t such that
fif ) and f;f(t) are defined. (b) Denote by X, the quotient manifold
obtained from F, X [0,e] by identifying (x,t) e N; X [0,e]l and (z, fi(t))
e N/ % [0,¢] for all it =1,---,4 and t€[0,e]. By the commutativity of
fi ond f;, X, is well defined. The product foliation of F, X [0, ] induces
a foliation F; on X,;. Then, there is a neighborhood V of Fyin U,
such that there is a leaf preserving CT-diffeomorphism from V onto X;.
(¢) The germs of fy,---,f, at 0 generate @, (F,). Moreover, if dimF,
> 2, they are chosen so that the germs of f., ---,f, are a basis of @ (F,).

The following results are consequence of Theorem 1 and Theorem

THEOREM 8. Let F be a transversely orientable C'-foliation of co-
dimension one, and let F, be an orientable closed leaf of F. Suppose

4

that = (F) = Z™ X G for a finite group G and that {logh,, ---,logh, }
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is rationally independent for a basis ay, ++-,a, of Z™, where h,, is the
derivative of the holonomy of «;.

Then there are collars U, and U_ in the both sides of F, such that
any leaf meeting U, is asymptotic to F, in U, and that, for any neigh-
borhood V of Fy in U, and for any F ¢ & meeting U,, an unique regular
covering F with =(F) = G is associated with F,. Here o denotes + or

THEOREM 4. Let % be a transversely orientable codimension one
foliation of class C7, for r = 2, and let F, be an orientable closed leaf
of . Suppose that the holonomy group OF,) of F, is abelian and that
there is fe ®(F,) such that the derivative f/ of f at 0 satisfies f/ =+ 1.

Then, there s a bicollar U= U, U U_ of F, satisfying the follow-
ings. Let ¢ denote + or —. (1) Any leaf meeting U, is asymptotic to.
F, i U, (i) For any neighborhood V of Fy in U, and for any leaf F
meeting U,, an unique regular covering v of F, is associated with F
and the normal subgroup GEF) of =, (F,) is well defined. Moreover, (iii)-
v and G(F) do not depend on U,,U_, and F.

This theorem shows that, under the above assumptions, all leaves.
near F, in a collar are in the same situation and &#|U,, % | U_ have the.
same structure.

Let F be a closed submanifold of M, and let %, %’ be foliations on
a neighborhood of F in M having F as a leaf. We say that & and %~
are locally equivalent at F', if there are neighborhoods U and U’ of F
such that there is a homomorphism from U onto U’ mapping any leaf
of #|U onto a leaf of &#’|U’.

Let #1 be the set of germs at F' of codimension k C'-foliations &
defined on neighborhoods U, of F in M such that &% has F as a leaf,
and let &% have a suitable topology defined by the germ of the section
into the Grassmannian which defines the foliation. H. Levine and M.
Shub show an unstability theorem [2] as follows: If z,(#) has the form
Z™ X G for m > 1 and an arbitrary group G, there are no stable ele-
ments in FL with respect to local equivalence at F'.

Here, we show an unstability theorem for foliations defined on a
fixed neighborhood U of F in M. Let Fol, (U) be the space of (-
foliations % of codimension one defined on a neighborhood U of F in M
such that # has F as a leaf. Let Folz (U) have the C"-topology defined .
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in [1] using the charts {p:I*"' X I — M"}.

THEOREM 5. Let F be an orientable closed submanifold of M of
codimension one such that =(F) = Z™ X G for m > 1 and o finite group
G. Let F be a transversely orientable codimension one foliation of class
C"™ on a neighborhood of F in M with F as a leaf. Then,

(1) if r =2, there is a neighborhood U of F such that for any neigh-
borhood N of F|U in Foli (U) there is F' in N which tis not locally
equivalent at F to #. Moreover,

(i) if r > 2, assume that there is a in =, (F) such that |k, + 1, where
R, is the derivative of the holonomy of a. Then, the same result as (i)
holds for Folz* (U).

In the preparation for this research the papers, [4] of Nishimori
and [3] of Nakatsuka, were very helpful to the author.

-§2. Preparation for Theorem 1

This section will be in the version of class C~. Let M be an ori-
.ented n-manifold, n = 3, and let N be an oriented closed smooth sub-
manifold of M with codimension one. Let F:B"!'xXI-—-M be an
orientation preserving embedding such that F(B*~* xI) N N = F(B*' X ol),
where B*~! denotes an (n — 1)-ball in R*™! with origin 0, I = [0,1], and
.0 denotes the boundary. We obtain an (# — 1)-submanifold

Ny={N—-int F(B* x oD} U F@GB"" x I) .

By smoothing the corners, N, can be regarded as a smooth manifold.
Define a simple arc f: 1 — M by f(t) = F(0,t), tel. We shall say that
N, is obtained from N by attaching a 1-handle along a simple arc f.
If the intersection number of N and f is zero, N, is orientable. In
‘this case we assume that N, has the orientation compatible with that
of N. Then, [N,]=I[N]in H,_(M; Z), where [ ] denotes the homology
-class.

LEMMA 1. Let M be an oriented manifold of dimension n = 3, and
let N' be a connected oriented closed (n — 1) submanifold of M. Then,
for a simple closed path ¢ tn M which intersects N’ at finite points,
there is a connected oriented closed (n — 1) submanifold N of M satis-
fying the following conditions.

(1) [Nl=I[N11in H(OL; Z).
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(ii) N intersects ¢ at only |lc]-[N]| points.
@ii)) For a small neighborhood U of ¢ in M, N 1s included in N’ U U.

Proof. We may assume [¢]-[N’] = 0 and that N’ intersects with ¢
transversely at more than [c]-[N’] points, &, = c(t), -+ -, 2, = ¢(t,), 0 <¢,
<...<t, <1. We construct by induction on # the desired manifold N.
There is ¢ such that 1 <7 < » — 1 and that the intersection number of
N’ and ¢|l[t;, t;,,] is zero. By attaching a I-handle to N’ along the sim-
ple subarc c¢|[t;, t;,,], we obtain N/ which intersects at (» — 2) points
and with [N,] = [N’]. Then N/ has the inductive property.

LEMMA 2. Let N C M be a pair of oriented connected manifolds of
codimension one. If there is y in H,(M; Z) such that the intersection
number y-[N1 1s 1, then M — N is connected.

Proof. First, we show that theve is a closed path u:I — M, w(0)
= u(1), such that u intersects with N at a single point. Let ¢ be any
closed path with [c¢] = 7. We may assume that ¢ meets N transversely,
and hence ¢ meets N at finitely many peints, z;, = ¢(t), -+, 2, = c(t,),
0<t, <...<t,<1l. We shall construct by induction on + a closed
path 2 as above. We may assume 7 = 3. There is 7 with 1<i<r—1
such that the intersection number of N and ¢|lt;, ¢;,.] is zero. Since N
is connected there is a path d from z; to z;,, in N. Let ¢ be a suf-
ficiently small positive real number. Then, we can take a path d’ from
c(t; —e) to c(t;,, +¢) along d so that ¢’ does not intersect with N.
c([0,t; — ¢]) U (image d’) U e(lt;,, + ¢ 11) is an image of a path ¢/: 1 —- M
which meets N at (r — 2) points. DMoreover, we have [¢']-[N] = y-[V]
=1, where [¢'] denotes the homology class of ¢’. Then ¢ has the in-
ductive property, and therefore u is constructed.

For any two points p, and p, in M — N there is a path ¢ from p,
to p,. We may assume as above that c¢ intersects N transversely, and
hence ¢ meets N at finite points, y, = ¢(s), -+ -, 9, = ¢(s,), 0 <s,--. s,
< 1. We shall construct by induction on  a path v from p, to p, such
that v does not intersect N. Let u be a closed path such that u inter-
sects N at a single point ¥y, = u(t,) for t,€(0,1). There is a path d
from ¥, to ¥y, in N. Let ¢> 0 be sufficiently small. Then, there is a
path d_ in M — N from c¢(s, — ¢) to u(t, — o) along d, where J is a pos-
itive or negative real number with a sufficiently small absolute value.
Similarly, there is d. from c(s; + ¢) to u(t, + ). ¢(10,8, — ¢]) U (imaged.)
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Uuld — (&, — 0d,t + 8) U (imaged,) U c([s, + ¢ 1]) is an image of a path
¢ from p, to p, which intersects N at (» — 1) points. Then ¢ has the
inductive property. This proves Lemma 2.

Let H:HWM;Z)—> Zy + -+ + Z,, be an epimorphism onto a free
abelian group of rankm, Z,, =Z (G =1,---,m). Let p;: Zy,, + - + Z,,
— Z, be the projection onto the ¢-th factor. By Kiinneth’s theorem the
map «:H'M; Z)— Hom (H(M; Z),Z) induced from slant operation is
an isomorphism since H(M; Z) is free abelian. Assume oM = 4. Let
0:HM;Z)— H, (M; Z) be the Poincaré duality isomorphism, and let
0, = ox (p;H). For ye H(M; Z),

70 =7 0670)
=71 N &' (pH)

where N denotes cup product. Thus we have
(1) 7-6, = p,H(y) for ye H(M; Z) .
Now, we set the following result of Nakatsuka.

LEMMA 3 ([3]). Let M be a compact connected orientable manifold
of dimension n =3 and e H,_(M; Z). Then, there is a connected ori-
entable (n — 1)-submanifold N in M such thot 6 = [N] if and only if
there is a homology class y e H(M ; Z) such that the intersection number
r-0=1.

PROPOSITION 1. Let M be a connected orientable closed manifold of
dimension n =3, and let H:HM; Z) > Zy + -+ + Z.,y be an epimor-
phism. Then, there are connected closed codimension one submanifolds
N, ---,N, of M satisfying the followings.

(i) N, ---,N, are in general position in M.

(ii) y-INlJ=p,H@) for any yeHM; 2), ¢t =1,---,m.

(iii) N, — N, U --- UN,_, is connected for i =2, ---,m.

iv M—N,U-.---UN,, is connected.

(v) H.?*(H1(M —N,U:--UN;;2) = Zywy + o + Zy, for i =1,
-eo,m — 1, and =0 for i =m. Here, j is the inclusion M — N, U ...
UN,;,— M.

Proof. Since p,H:H(M;Z)— Z; is an epimorphism, there is p,
e H(M; Z) such that H(y,) is the generator of Z,,, =1, ---,m. Then,
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by Lemma 3, y;-0; = p;H(y) = 1 implies that there are connected ori-
entable closed (n — 1)-submanifolds N7, ---, N/, in M such that [N/] = 4,,
t1=1,...,m. Nj, .--,N, may be assumed to be in general position.

We vary N, to N, i =1, ---,m, by induction on ¢ so that N,, - - -, N,
satisfy the following condition C(i). Denote M; =M — N, U --- U N,.
Ccd (i) N, .--,N; are in general position in M.

(ii) [INJ =6, k=1,.---,1.

(iii) N,— N, U -.- U N,_, is connected for k =2, ...,7 if 1= 2.
(iv) M, is connected.

(v) Hoj ,HM3Z)=Zpory + ++ + Ziy for k=1,...,14.

First, we construct N, as follows. Since n = 3, there are simple
closed paths ¢, ---, ¢, such that [c,] =7, -, [cn] = 7 and that they
are mutually disjoint. By Lemma 1, there is a manifold N, such that
[N,] = [N7] and that N, does not intersects ¢, -, ¢,. By Lemma 2, the
existence of 7, implies that M — N, is connected. Since ¢, ---, ¢, are
contained in M, and 0 = y-[N,] = p,H(y) for y e H(M,; Z), it is not dif-
ficult to see that Hj (H,(M,; Z)) =Zy + -+ + Z.,. Then, N, satisfies
the condition C(1).

Next, suppose that N,, ---, N, are constructed so that the condition
C() is satisfied. Now, we construct N;,, so that N,, ..., N,;, N,,, satisfy
C(z +1). By (v) of C(i) there is a simple closed path ¢,,, in M, realiz-
ing y,,,€H(M; Z), and hence the intersection number c¢;,,-(Ni,; — N,
U« UN) = ¢y Niyy =[] [N = Tier Oiia is 1. We can take c¢;,,
so that it intersects N7j,, transversely. Then, by the method of the
proof of Lemma 8 in [3], there is a closed manifold N}, such that (i)
N7, N M, so N/, is connected and (ii) [N/, ] =I[N,] in H,_(M; Z)
and [N,,, N M,]=I[N,,,NM] in H, (M;; Z). Here, N/, is obtained by
attaching slender 1-handles to N/,, along simple arcs in M,. Next, we
vary N/., to construct N,,, so that N, ..., N, and N,,, satisfy the con-
dition C({ + 1). By (v) of C(i), there are simple closed paths ¢;,,, -+, Cp
in M, realizing 7;.5 -+, 7m, respectively. We may assume that they
intersect N7, transversely and that they are mutually disjoint. Similarly
as the construction of N,, we obtain N,,, from N7, by attaching slender
1-handles along simple arcs contained in ¢;,, ---,c, so that N,,, does
not intersects ¢, - -, Cn, that [N;,.] = [N},.], and that Hoj (H,(M — N,
U+ UN;UN 3 Z2)=Zysy + -+ + Z.y- Since ¢;,, is a path in M,
and ¢;,, (N;;. N M) = ¢;,.1-Niyy =1, Lemma 2 implies that M,,, = M,
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— N;,, is connected. From the above, we can see that N, ---,N,,,
satisfy the condition C(z + 1). This proves Proposition 1.

§3. Proof of Theorem 1

Let # be a codimension one foliation of class C™ of an orientable
(n + 1)-manifold M, and suppose that an orientable n-manifold F, is a
closed leaf of #. Let v: U — F, is an R-bundle of a bicollar U of F,,
and let v,: U, — F, is an R,-bundle of a collar U, of F, R = (— o0, c0)
and R, = [0,00). F, is identified with the zero section of v or v,, and
the fibres of v and v, are identified with R and R, respectively.

A curve u:[0,1] — U is called a leaf curve from u(0) to «(1) if the
image of u is contained in a leaf. Let y ey 'u(0) and let «,:{0,1]—->U
be a leaf curve such that #,(0) =y and »u,(f) = w() for any tel[0,1].
We call u, the y-lift of u. There exists at most one y-lift of u. If
there is the y-lift of w for any vy in [y, %,] C R = v='u(0) the holonomy
map h, from [y, y,] into R = v'u(d) is defined by h,(y) = u,(b).

Let x, e Fy and u be a closed leaf curve with base point x,. The
germ of h, at 0 is called the holonomy of u. The holonomy of u is
determined by the homotopy class [u] of v in =,(F, x,) and is independent
of the choice of v up to conjugations by origin preserving diffeomorphism
of R. Let G be the group of the germs at 0 of all orientation-preserv-
ing local Cr-diffeomorphisms of R which leave the origin fixed. A
homomorphism h: x,(Fy, z,) — G” is defined by corresponding the holonomy
of u to [u]l e m(Fy, x,). The image of the homomorphism % is called the
holonomy group of F, and denoted by @(F,). The one-sided holonomy
group O .(F,) of F, is defined similarly by replacing » and R by v, and
R..

A proof of the following Lemma 4 is found in the proof of Lemma
2 in [4].

LeMMA 4. If @.(F,) is the trivial group there is a neighborhood
U, of Fy in U, such that the restricted foliation F|U, is trivial; i.e.
for each leaf F of F|U, v:F — F, is a diffeomorphism.

In this paper, we assume that @ (F,) is abelian, then @, (F) is free
abelian since G™ has no torsion element. Let¢: @, (Fo)—Z, + -+ + Z,,
be an isomorphism and let 3: =y, z,) — H,(Fy: Z) be the Hurewicz
homomorphism. Then, there is an epimorphism H: H(F; Z)—>Zy + - - -
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+ Z, such that Hy = . Let p; be the projection from Z,, + --- + Z,
onto the i-th factor. Thus we have the following diagram.

h )
2(Foy @) —> OF) —> Zy + +++ + Zomy — Zis

l’? H
H\(F,; Z)

Let N, ---,N,, be codimension one smooth submanifolds in F, such
that they are in the general position and that Ff, — N, U --- UN,, is
connected. Denote by F, the compact manifold with boundary obtained
by attaching two copies N; and Ny of N, to F, — N,, so that oF, = N]
U N7Y. Then, a local diffeomorphism g,: F', — F, is defined by ¢,(z) =2
for x¢dF, and ¢,(¥) = 9,(¥'") =y for ye N,, where ¥y e N; and y” e N/
are the copies of y e N;,. gr%(N;) C F, is denoted also by N;, 1 = 2, . - -, m.
Inductively we define F,, .-, F,,and g;: F;, - F,_,, 1 = 2, - - -, m, similarly
as above. The boundaries of F,,.--.,F, have possibly corners. Let
g:F, — F, be the composition g;---g,. F, is said to be the manifold
which is obtained by cutting open F, along N, ---,N,. ¢ is said to be
the map pasting F,, on F,.

Proof of Theorem 1. If n =1, this theorem is well known in the
theory of dynamical system. If n > 2, let N, -.-,N,, be the manifolds
obtained by Proposition 1 for the epimorphism H: H\(F; Z) —> Zy +-- -
+ Zy = O,.(Fy) defined above. If n =2, let p be the genus of F,. Then
we can take simple closed curves Ny, .--,N,, in F, such that N; N1 N; is
at most one point for any different ¢,7 and that F, — N, U --- UN,, is
an open 2-ball. We define N, ---,N, in the theorem as above.

Since Fy — N, U --- U N,isa 2-ball for n =2, ¢ ,(Fy,— N, U --- UN)
=0 in F|v;'(Fy— N, U --- UN). When n > 2, let ¢ be a simple closed
pathin F;, — N, U --- UN,,. Let y be the homotopy class of ¢ in ,(F, x,),
2,eFy—N,U---UN,, and [N,] be the homology class of N, in H,(F,; Z).
Then, by Proposition 1,

pilh(T) = pz‘H”(T) ’
= p;H([c]) , lcle H(F; Z)
= [c].[N;] =0

since ¢cNN; =¢, for ¢ =1,..-,m. This implies & (F, — N, U --- UN,)
=0, if » > 2. By using Lemma 4, wee see that there is a injective
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Cr-diffeomorphism &:(Fy — N, U --- UN,) x [0,6] — U, such that (i) &
maps each (F, — N, U --- U N x {t} into a leaf of #|U, and that (i)
v, 8@, t) =« for x¢Fy—N,U-.-- UN, and £¢[0,6]. Put &(F, — N,
U--- UN) x[0,6]) = F, Cv;F,—N,U--- UN,. By identifying &(x, t)
with (x,1), @, t)eF, —N,U --- UN,) x [0,5] is a coordinates of F,.
Putting V' =clF,, V' is a closed neighborhood of F, in U,. We are
dealing with the holonomy maps and the holonomies for closed paths in
F, with the fixed base point z, eint F,. From now on in this section
a holonomy maps are considered as local diffeomorphisms of [0, d] by
identifying [0, 6] with x, x [0, 8], where z, x [0,d] is the expression of
the above coordinates.

The number of the connected components of N, — N, U --- UN,_,
UN;,;U---UN,is only one if n =2. For n >3, let N,; be one of
these components. For any x in N,, there is a closed path v, in F,
with base point x, such that v, intersects N, U .--- U N, at only one
point x, since Fy — N, U --- U N, is connected. There is ¢, with 0 <eg,
< 6 such that there is a leaf curve of & |V’ which is the lift of v,
starting from (x,,¢,) cv7'(x,). So, the holonomy map f, of v, is defined
on [0,¢,]. Let 7, be a lift of v, and let 7,(0) = ¢, v,(1) = 8" in {z,}
x [0, 8,] € vi'(x,). Let 9,(t) evi'(x). For any ¢/,t” with 0 ¢ <t¢, <t
< 1, we have ¥,(t) = (v,(t), s") and ¥,(t") = (v,(t"), s”) in the coordinates
F* =WF,—N,U---UN, x [0,6], since f[ﬁ’* is trivial. Hence, we
have f.(s’) = s”’. Let N,; have the orientation which is compatible with
the inclusion N,; € N, and the given orientation of N,. For another
point y in N,; let v, be a closed curve as above such that [v,]-[N,;]
= [v,]-[N;,;]. From the triviality of Z#|F, it is easy to see that the
source of the holonomy map f, of v, is same as f, and that f, = f, on
it, i.e. f,(8) = f,(8) for any se[0,¢,]. Therefore, there are ¢; with
0 <¢g; <9 and an injective diffeomorphism f;;: [0,¢;;] — [0,d] satisfying
the following property; for any = in N,; and any closed path v, in F,
with base point x, such that v, intersects N, U --- U N, at only one
point « and that [v.]-[N,] =1, the holonomy map of v, is defined on
[0,¢;;] and is equal to f;;. For two components N,;; and N, of N, — N,
U--+UN;:;UN; ;U .- UN, the holonomy maps f;; and f;, are coin-
cide on a small neighborhood of 0, since [v,]-[N;] = [v,]-[N,] =1 so the
holonomies of v, and v, are coincide. Hence, there are ¢ with 0 <g;
< § and an injective diffeomorphism f;: [0, ¢,] — [0, ] satisfying the same
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property as above. Therefore, there are 0 <e¢ <4 and injective diffeo-
morphisms f,,---,f, for N, ---,N, satisfying the following property;
for any x in N, and any closed path v, in F, with base point x, such
that v, intersects N, U --- U N, at only one point « and that [v,]-[N,]
=1, the holonomy map of v, is defined on [0,¢] and is equal to f;.
Since @(F,) is abelian, we may assume that f,, ---,f, are mutually com-
mutative by choosing ¢ sufficiently small.

Since f; and f;' are monotonously increasing, f,(¢) > ¢ implies ¢ > f;(e).
So, replacing f; by f;' (i.e. replacing the orientation of N,) if necessary,
we can suppose that ¢ = f;(¢) for all . Notice that N, = UelN;; and

J

97'(N;;)) = Ni; UN7,. Here, g:F,— F, is the diffeomorphism pasting

F, on F,, F, is the manifold obtained by cutting open F, along

N, ---,N,, and Ni;, N/, are diffeomorphic manifolds such that g(N7))

= N;; = g(N{)). Then, g7'(N;) = N; U N/, where N; and N/ are diffeo-

morphic manifolds such that Ni={JclNj;, Ni={JclIN; and g(N)) =N,
J J

= g(N/). Since N, ---,N, are in general position and f,,---,f, are
mutually commutative, it is not difficult to show that a quotient manifold
X, is well defined from F, X [0,¢] by identifying (x,s) e N; x [0,¢] and
(x, f:(8)) e N/ x [0,¢]. Let &, be the foliation on X, induced from the
trivial foliation of F', X [0,¢]. Since int F', is diffeomorphic to F, — N,
U+ UN, we can see from the above facts that there is a C’-diffeo-
morphism from a neighborhood V of F, in U, onto X, mapping each
leaf of # |V onto a leaf of & .

By the constructions of f}, ---,f, these maps satisfies the property
(ii)—(c) in the theorem. This completes the proof of Theorem 1.

§4. Proof of Theorem 2

LEMMA 5. Let fy,---,f, be injective homeomorphisms from [0, e]
into [0,¢] such that f,(0) =0 for ¢ =1,...,4. Suppose

S @) =Fifi &), Li=1,---,0.

Put
(1) hl(t) = ia:' . f;;l(t) ’ G = il ’
(2) W) = f3 - Fa), = %1,

Then hy(t) = hy(t) for any t such that h,(t) and h,(t) are defined if
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(3) Zia=iaia22jb=ifjb, 1::1,-~-,€, a:l,---,a, b:l,"-,ﬁ..
Here, f;' is considered to be defined on [0, f;(e)].

Proof. By the assumption we have
f:f;(t):f;f;(t), O‘,T:il,i,]._—“l,-",g

for any ¢ such that both sides of the expression are defined. We define:
a linear order < in the set {fy, .-+, fo 7% -+, f7} as follows; for f,,
f; and f7% f;7', we define f; < f; and f;' < f;' respectively if ¢ <7, and
we define f;, < f;! for any f; and f;'. It is not difficult to see that <
is a linear order.

Next, we show that if f7if7/(¢) is defined and f7: < f7i, ffei(t) is.
also defined and fyify/(t) = fyf¢i(t). This property is trivial for f; and
Si. For fi* and f;' it is shown as follows. Suppose fi' <[f;'. If
S f7(@) is defined, f7'(F) = file), so t < f;fi(e). Since [f;fue) = fif (o),
t < f.fi(e). Hence, fi'(t) < fi(e), and so f;7f;'(t) is defined. Then
SN = f7Af7'@t). Finally, for f; and f;' it is shown as follows.
Suppose f; < f;'. If fif7'®) is defined, ¢t < f;(e), so t,(t) < f.f;(e). Since:
fif &) =Fifie) £ Fy(0), fi®) =< f,(9). Then, f;'f,(t) is defined, and so
FI7@) = F7A).

If f;(®) or f;'(t) is defined, f,(f7*f)(®) or (fi'f)f;'(®) is defined and
Fi@® = fi(f72 )@ or f71®) = (f71f)f;' (1), respectively. Next, we inter-
plate f71f; in the right hand of the expressions of (1) and (2) if neces-
sary so that the same number of f; and f;' are contained in these ex-
pressions for each ¢=1,.-.,¢4. Finally, we change the order in the
rows of the terms in these expressions to the order induced from <.
Then, the obtained expressions are identical. This proves n,(t) = h(t).

LEMMA 6. Let & be a transversely orientable C'-foliation of co-
dimension one, v = 1, and let F, be a compact leaf of F. Let v be a
normal R.-bundle map from a collar U, onto F such that v is transverse
to F, and let F e F be asymptotic to F, in U,. Then, the following
properties are satisfied.

(i) For a neighborhood V of F, in U,, let F', be an asymptotic
leaf of F |V to F, such that F, N F % ¢. Then, an unique regular covering
5: F — F, is associated with Fy and v (z,(Fy)) = 0,(x,(F)) in z(Fy) if and
only if the following condition (x) is satisfied.

(*) For a point z, in Fy and any closed path v in F, with the base
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points x, let y and z be any two points in v~ '(x,) N Fy such that h,(y)
and h,(2) are defined, where h, is the holonomy map of u. Then, h,(y)
=y if and only if h,(2) = z.

(i) Suppose F and V satisfies (x). Then, for any neighborhood V'

of Fyin V, the same regular covering as ¥ is associated with Fy,.

Proof. Let 5: F—F, be a regular covering and let  be a closed curve
in F, with base point z,. For y and z in 5 '(x,) let w, and u, be the
lifts of u starting from y and z respectively. Then, %, is a closed curve
if and only if %, is so. Therefore, if there is an associated regular
covering with F,, condition (%) is satisfied.

Next, we prove the converse. Define a subgroup G(F) of =,(F,, x,)
by

G(Fy) = {e e n(Fy, z,)| there is a closed curve % in F)
such that ] =} ,

where [ ] denotes the homotopy class. We must show that G(F}) is a
subgroup of =,(Fy, x,). For « and 8 in G(Fy) there are closed curves %
and 7 in F, such that ] =« and [v0] = 7'. Let y,zev(x,) be the
base point of %,7. Assume z, <y <z in the line v7'(z,). Put v& =u
and vo = v. By the existence of 7, h,(y) is defined. Condition (x) im-
plies ,(y) = y. So, there is the lift ¥ of v starting from y. ?» is a
closed curve in F,. Then, %7 is a closed curve in F';, such that [v(%d)]
= apf™'. Therefore, af™'e G(Fy).

To the conjugacy class of a subgroup of =,(F, z,) an unique cover-
ing of F, exists. Let o: F — F, be the covering corresponding to the
conjugacy class including G(F'y). Then, for §e i (x,), 0. (m(F,y)) is a
subgroup of x,(F,, #,) which is conjugate to GFY).

Next, we define the map i:FV—aﬁ’. Fix two points y,eF, and
7. e F so that v(y,) = 5(#,) = z, and that 5,(r,(F', 7,)) = G(F,). For any
point y in Fj, there is a curve u:[0,1] — F} such that «#(0) = y, and
u(l) = y. Let % be the lift of vu starting from 7, for the covering 5.
We define i(y) e F by i(y) = @(1). i(y) is well defined, i.e. for another
curve v in F, from y, to y, #(1) = %@). In fact, since [v(uv=Y] e G(FY)
and G(F'y) = ﬁ*(n:,(ﬁ’, 74)), the lift of v(uv~') starting from %, e Fis a closed
curve. Hence, % '0 is a closed curve with the base point #%(1). This
implies #(1) = #(1). By the definition of 4, o7 = v is obvious.

If u(y) # v(y), clearly i(y) # i(y). Next, we show that i(y) = i(¥)
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when uv(y) = v(y’) and y #+= y'. Let ¥ and " be the curves in F, from
Y, to ¥ and ¥y respectively. Put v/ =u and »’' =v. We can assume
that ¥ <9 in v }(y). Since h,-.(¥) = Y4 hy-(¥) is defined and h,-.(y)
< Y, in v (z,). Since hyy—(¥) = hyi(y) <Yy, [wv1¢ GEFy). So that,
the lift of uv~! starting from ¥, in F is never a closed curve. Hence,
(y) = a(l) == (1) = i(y’). Therefore, 7 is an injection.

It is obvious that ¢ maps any plaque of F, C"-diffeomorphically into
F.

To show » is a regular covering we are sufficient to show that G(F',)
is a normal subgroup of z,(Fy, x,). Let u and v be closed curves in F,
with the base point x,. Assume [u]e G(F;). Since F, is asymptotic to
F, there is y in vz, N F, such that h,,,-.(y) is defined. Since [u]
e G(Fy), h,h,(y) = h,(y). So that, hyu,-:(y) = hy-kh(y) = y. Hence,
[vuv~'1e G(F'y). This implies that G(¥)) is a normal subgroup. There-
fore, (i) is proved.

To prove (ii) it is sufficient, if G(F)y) = G(Fy,) is shown. But, this
is obvious since F', is asymptotic to F,.

Proof of Theorem 2. By Theorem 1 we obtain N,,-..,N,C F,,V,
and the functions fy,---,f,. Let x,€F;— N, U--- UN, For an as-
ymptotic leaf F' of # |V to F,, let F';, be an asymptotic leaf of & |V to
F, such that F', C F.

First, we show that, if u,v are closed paths in F, with base point
x, in a same homology class of H(F,; Z), h,(y) = h,(y) for any y e v~'(z,)
NV such that h,(y), h,(y) are defined. Let i,? be the leaf curves of
Z |V which are lifts of u,v starting from y. We may assume that @, o
intersect »~'(N, U --- U N,) transversely. So, since Fi; — N, U --- UN,
is connected, % and 7 are homotopic to #%,- - -, and ;- - -7, by homotopies
such that the homotopies preserve the end points of the paths and that
each homotopy level is a leaf curve of & |V, where 4,---i, and ?,---9,
are the paths which are the compositions of the paths ii,, #, with end
points in yv~'(z,) such that putting vi, = %, and vd, = v,, u, and v, are
closed paths in F, each of which intersect N, U --- U N, at one point.
Here, the composition of paths is defined by

@ w(2t) for 0 < ¢
X)) =
w 2@t —1)  for 3 <t

Define N,, and N;, by w4, NN, U .- UN) =u, N N,, and v, N (N,
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U-+UN)=wv,NN,,. Let the intersection numbers be [%,]-[N;] =0,
and [v,]-In;] = ¢,, where g,,7, = +1. Here, Ny, ---, N, are imposed the
orientations such that if a closed path « intersects N, U ... U N, at only
one point in N; with the intersection number [u]-[N,] = o, as in the proof
of Theorem 1, then the holonomy map h, of u is coincide with fy.
Thus, we have

hu(y) == hul-uha(y) = hua‘ : hul(y)
= fro F20)

Similarly,
ho(y) = [ S5 .

Since # and v are in the same homology class, Lemma 5 implies h,(y)
=h,(¥).

If we can show that V and F, satisfy the condition (x) in Lemma
6, the proof of Theorem 2 is completed by Lemma 6. (%) is shown as
follows. Let ¥,z be two points in v'(x,) N F} such that ,(y) and h,(2)
are defined, where « is a closed path in F, with end points z,. We can
assume Yy = h,(y);if y < h,(y), consider the curve u~! with the inverse
direction of u. Here, < is considered in the coordinates v='(x,) NV
=z, X [0,e]. Let y > 2. Since h, is a homomorphism, &,(y) > h,(z).
There is a path % in F, from y to z. Put w = vw. Since h,(¥) =y
and h,h,(y) is defined. h,(y) <y implies z = h,(y) = hh,(y). Notice
that y = h,(y) if and only if 2 = h,h,(y). We have h,-1,,(2) = Wyl Tiy-1(2)
= h,h,(y). Since w™uw and u# are in the same homology class, Ny -1,,(2)
= h,(2) by the fact that we proved above. Thus, %,(2) = h,h,(y). Since
2 = h,(y), we have y = h,(y) if and only if z = h,(2). This proves
Theorem 2.

§5. Proof of Theorem 3

Let v,: U, — F, be a collar. Since {log ., ---,logh, } is rationally
independent, there is a closed curve u in F, such that i, 1. We can
assume that 0 < h, <1. Let x be the base point of u. There is an
interval [¢,2) in v7%(x) and a positive number » < 1 such that for any y
in [x,2) h,(y) is defined and that A/ (y) <r. Hence, lim (h,)(y) = z for

t—c0

any ¥y in [z,2z). Therefore, by taking a sufficiently small collar U,, any
leaf meeting U, is asymptotic to F,. We can U_ similarly.
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By the assumption of =,(F,), the one sided holonomy group @,(F,)
is abelian for ¢ = + or —. Let V be any neighborhood of F, in U,.
Then, for any leaf F meeting U, a regular covering : F’——>F0 is as-
sociated with F'y, by Theorem 2.

Since holonomy has no torsion element, G(F) = v,m,(Fy) = ﬁ*n:l(F')
D G. v, and P, are injections. Suppose that there is a leaf F such
that, for the associated covering b: F’—>F0 with F,, G(F) = G. Then,
there is a closed curve % in F with base point in 5~'(z) such that the
homotopy class « = [#4] is not contained in G. By the definition of F,
there is a closed curve # in F, starting from a point ¥ in v;(x) such
that [v,u] = «. Then, for any %' in the interval [z,y] in v;'(z), the
holonomy map h,(y') is defined. As above, there is a sequence of points
Yo = Y, Y1 Yo» - -+ in [z, y] N Fy such that limy, = x. By condition (x) of

Lemma 6, h.(y,) = y; for each y;. Since m;(F, @) = Zy, + +++ + Zimy + G,
and v,7(Fy) O G, we can put
o= 00+ Oty + 2+ Gty

for the integers a, ---,a, with (@, ---,a,) # @O, ---,0). Let u,---,u,
be the closed curves with base point 2 realizing the homotopy classes
ay, - -+, a, respectively. Then, the multiple v = uf*-..u%» realizes «, S0
that, [v] = [v,u]. Let v, be a homotopy from u to v, t<[0,1]. Since
h, (y) is defined for arbitrary ¥’ e [x,y] which is sufficiently close to z,
we have n,(¥) = h,(y). Hence, for such o

ko (y) = (Bep)*m- - - (R )™ (W)

Since limy, = z and 2, (y;) = v;, we have h, = 1. Hence,

(e )ome (e )™ = 1.
Therefore,
a,logh,, + -+ +a,logh, =0
with (a,, ---,a,) # (0, ---,0). But, this contradicts to the assumption

of the theorem. This proves Theorem 3.

§6. Proof of Theorem 4

The proof of (i) and (ii) of Theorem 4 is contained in the proof of
Theorem 3.
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Next we prove (iii). Since f is a local diffeomorphism of class C?
with f(0) = 0 and f/(0) > 1, by a theorem of Sterenberg [5], there is a
C'-diffeomorphism ¢ from a neighborhood of 0 of R into R such that
-t =gfg-'(t) for any t in the image of g. Hence, by a C'-alterna-
tion of the coordinate of v»~(x) N U, we may assume that f(¢) = dt,
where d = f’(0) < 1. Hereafter we use the new coordinate of v=*(x) N U
translated by ¢g. Let f,, ---, f, be local diffeomorphisms of R generat-
ing @(F,). Since @(F,) is abelian, we may assume f,f = ff; for i =1,
-..,m by choosing U sufficiently small. Hence, f/(f()-f't) = f'(f:(t)
-fi®), and so f/(f(®) = f/({®), for f'(t) =d. Then, f/(t) = f/(0), since
lim f*(t) =0 and f, is of class C'. Therefore, f,(t) = d;-t, where d,

= f/(0). To show (iii), it is sufficient if G(F) = G(F”) is shown for any
asymptotic leaves F' and F’ to F,. Let a be a closed curve realizing an
element of G(F) and let h, be the holonomy map defined by « e z,(F,, x).
Then, 7, can be written as h, = fi*---f}*. By the definition of G(F),
there is a closed curve g in FF N U with the end point £ in »~*(x) such
that « = vop. Hence, t = h(¢) = fi*- - f/4@t) = df*- - -dj*ot. Thus, kb, = 1id.
since d»...d¥ = 1. Therefore, a lift of o« to F” is a closed curve, and
so the holonomy class of « is contained in G(F’). This implies G(F)
= G(F). This completes the proof of Theorem 3.

Remark 1. For fe®F,) let /R be the derivative of f at 0.
Denoting DO(F,) = {f'| f € &(Fy)}, DO(F,) is a multiplicative subgroup of
R — {0}. Let D:d(F,) — DOF) be the homomorphism defined by the
derivation. Then, for any asymptotic leaf F' to F,, we see that G(F)
C ker Dh, where h is the homomorphism =,(F, x,) — @(F,) defined in
§ 3.

Remark 2. If & is of class C? then, by the method used in the
proof of Theorem 4, we see that the sequence
13
1—> GF) - n(F) —> O(F) —> 1

is exact for any asymptotic leaf F' to F.

§7. Proof of Theorem 5

Assuming that z(F) =Zy + --- + Z,,, + G for a finite group G,
let N, ---,N, be the manifolds of F obtained by Proposition 1 for the
isomorphism H:H((F:Z)—>Zy + -+ + Z,,. Here, we may assume
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that dim F' = 2, because if dim F = 2, F is a torus. By observing the
proof of Theorem 1, the same conclusion of Theorem 1 is satisfied for
these N, ---,N,.. Then, if # is a foliation of class C”, there are in-
jective C7-diffeomorphisms f;7:[0,e] —[0,e] for ¢ =1,...,m with the
properties (a) and (b) of Theorem 1. By the proof of Theorem 1, f,
can be identified with an one sided holonomy map &}, of a generator «;
of Z,,.

We divide the stage into Case 1 and Case 2. (i) of Theorem 5 is
divided into the both cases and (ii) is contained in Case 1.

Case 1: The case that & is of class C7, r = 2, and that there is
1 such that (f/)(0) = 1. Let f; be a (both sided) holonomy map of «;.
Then f/(0) = (f;)(0). By Sternberg’s theorem, f,,---, f, are C" '-con-
jugate to linear functions by a same conjugation map ¢ in a small
neighborhood of 0. (See the proof of Theorem 4.) Then, gf;97'(t)
= f}(0)-t if |t| is sufficiently small. Let U_ be a collar of F such that
U_ is in the another side of U,. Using Theorem 1 we get f;:[—¢,0]
—[—¢,0] for i =1,...,m. f; is the other sided holonomy map of a
generator o, of Z,. |fi«(t)| <|t] for sufficiently small |¢| if and only if
|£1(0)] <1 since f; = ¢f,g~" is linear and f,(t) = f/(0)-t, i=1,--.,m.
Hence, by taking ¢ small, «) = a;, i.e. f; and f; are the one sided
holonomies of the same generator «; of Z,. Therefore, there are in-
jective linear maps f;: [—e, el — [—e,el, 1 =1,...,m with the following
properties: Let N, N7/, and F, be the manifolds defined in Theorem 1.
Denote by X; the quotient manifold obtained from F, X [—¢,e] by
identifying (z,t) € N} X [—e, el and (z, fi(1)) e N/ X [—¢, el foralli=1,.--,m
and te[—e e]. The product foliation of F, X [—e, ] induces a foliation
& ; on X;. Then, there is a neighborhood V of F' such that there is a
leaf preserving C7~'-diffeomorphism ¢ from V onto X; which maps F
onto F, X 0/ ~.

By Theorem 4, for any leaf F’/ meeting V an unique regular cov-
ering F' is associated with F,. Since f; is linear, by Theorem 3, v, x,(F’,)
= i*nl(F’) = 7,(F) = G if and only if log f/, - - -,log f/, are rationally in-

dependent. By an arbitrarily small perturbations of f,, - -, fn, ‘we can
take linear maps g, -+, Jn:[—e el = [—¢,e] such that loggi, ---,log g,
are rationally independent or dependent when log f7, - --,log f,, are ra-

tionally dependent or independent, respectively.
Let U be an open neighborhood of F' contained in V. Let N be a
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neighborhood of #|U in Fol;* (U). ¢(U) is a neighborhood of F',, X 0/ ~

in X;. Since g,,::-,89, are close to Sy fn We may assume that
o(U) € X, C X; and that F#,|e(U) is close to F;|o(U). ZF,|¢(U) induce
a foliation &’ of U. By taking g, ---, g, sufficiently close to fi, - -+, fu

we can F'eN.

Case 2. The case that & is of class C' and that (f})(0) = 1 for all
t=1,.--,m. f; is the one sided holonomy map of «; defined on [0, ¢].
First, assume that there is no neighborhood U of F' such that F|U is
a product foliation. For small § > 0 we define a C'-diffeomorphism
g7 :10,e + 61 — R, by

¢ for 0 <t <4
g9 () =
fit—08) + o for t >4 .
Since (f7)(0) =1, g; is of class C'. It is easy to see that g},.---, g
are mutually commutative since fi,---,f; are so. g¢;|[0,¢] is a C'-

perturbation of f;. Let &#; and X, be the ones defined in Theorem 1
from f; and F, X [0,¢]. Define &%, and X, similarly from g¢; and
F, x [0, +6]. We can consider that X, C X, and that #,|X; is C'-
close to &, is ¢ is small enough. There is a neighborhood V, of F in
U, and a C'-diffeomorphism ¢: V, — X, mapping F |V, to &,. Let #’,
be the foliation induced by ¢! from % ,|X,. F’, is C'-close to F|V,
if ¢ is small enough. We get #7 on V_ similarly. On small neighbor-
hoods of F, %’ and %’ are product foliations. Let U=V, U V_.
Then, we get ' on U by #'|V,= %", o = +. We can take #’ in any
neighborhood N of % |U in Foly (U). By the assumption &%’ is not local-
ly equivalent to &# | U.

Next, we assume that there is a neighborhood V of F such that
F |V is a product foliation. Then, V is leaf preservingly diffeomorphic
to F X [—e,e]. Consider that V=F X [—e,¢]l and F=F x 0. Let U
=F X (—¢/2,¢/2). Let a; be a generator of Z,,. Then, the holonomy map
Sfii[—e,e]l = [—e,e] of a; is the identity map. Let g; be the perturbation
of f; such that g, = f; for ¢« > 1 and that |g,(8)] <|{| and |g,(£e)| > ¢/2.
Let #, and X, be as above defined from g, and F, X [—e,¢]l. Then,
we can consider that U € X, C V and that &#,|U is close to #|U if g,
is close enough to f,. Any leaf of %, is asymptotic to ¥, but any leaf
of #|V is not asymptotic. Hence, % ,|U is not locally equivalent to
& |V. This completes the proof of Theorem 5.
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