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Abstract

In this paper a generalization of the interpretation of Robinson of torsion products as homotopy
groups is given. This generalization allows us to define right derived functors of a coproduct
preserving functor defined on a small category with all finite colimits to the category of abelian
groups. We show that when the category is additive the definition coincides with the definitions
of the right derived functors of Cartan and Eilenberg.
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1. Introduction

In his paper [5] A. C. Robinson interpreted the torsion products Tor^(Af, N),
where M and N are respectively right and left modules over an associa-
tive ring A with an identity, as the homotopy groups of a certain category
TA(M, N).

We will modify the definition of T (M, N) so that it is general enough to
allow us to associate to any coproduct preserving covariant functor T: £ -^
Ab, a sequence of coproduct preserving functors Tt: £ —> Ab; where £ is
a category with small horn sets, which is finite complete, finite cocomplete,
and has a null object *. It is also assumed that £, has enough projective
objects. As usual, Ab is the category of abelian groups. If t, is an additive
category and T an additive functor the sequence [7]],>0 coincides with the
sequence of the right derived functors of T, whose axioms are given in [3].
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Throughout this paper categorical notations and terminologies conform to
those of [4].

To outline our result we will define a category T^(M) (the analogue of
TA(M, N)) for each object M of £ as follows.

An object of T*(M) is a triple (P, f, x), where P is a projective object
of £, f:P—>M is an dimorphism and x is an element of T(P). A mor-
phism of T*(M), ( />, , / , ,*,)->• (P2, f2, x2) consists of an £-morphism
P{ - ^ P2 such that f2o(j> = fl and T(4){xx) = x2 .

If we assume that the collection of all projective objects of £ forms a set
then 7^(Af) becomes a small category. The coproduct on <*, together with
the fact that T preserves coproducts (up to natural isomorphisms) gives a bi-
functor EB: T*{M) x T*(M) -» ^(M) given by (/>,, / , , xl)B(P2, f2, x2) =
(P, ]J P2, / , ]J f2, xx ® x2). Note that ]J is used for the coproduct on £,
and © is used for the coproduct on Ab.

The bifunctor EB gives rise to a spectrum whose first term is the nerve
}Ti(M)j of the category 1*(M). One obtains this spectrum by employing
Segal's machine for constructing infinite loop spaces [6]. Our main theorems,
which generalise [5, Theorems 1 and 2], are the following theorems.

THEOREM 1. (i) The bifunctor EB induces a structure of an abelian group
on nQ\T^(m)\. Therefore the spectrum constructed from (7^(Af),EB) is an
£l-spectrum; thus \T^(M)\ has the structure of an infinite loop space.

(ii) There is a natural homomorphism 7ro|7^(Af)| —• T(M) which is an
isomorphism if T is right-exact. (For the definition of right-exactness see
Note 1 below.)

(iii) If £ is an additive category, then there are natural isomorphisms

s s s>0,

where [Ts]s>0 are the right derived functors of T.

NOTE 1. A functor S: £ —• Ab is said to be right-exact if it preserves
epimorphisms and has the Mayer-Vietoris property, that is, for every diagram

A =$ B in £ and x e S(A) such that S(f)(x) = S(g)(x), there exists a
g

morphism C —> A and an element y e S(C) such that S(h)(y) = x .
For our next theorem, which generalises [5, Theorem 2], we will assume,

further to the previous assumptions on £, the following conditions.
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(i) There is a bifunctor • : £ x £ —> £ which makes ^ a monoidal cat-
egory, in which the functors RD-: Z -* £, and -OR: <!; —> Z com-
mute (up to natural isomorphisms) with the coproduct on £, for
every object R of Z.

(ii) For every pair of objects M and N of £, !T(Af DiV) is naturally
isomorphicto T(M)®T(N).

(iii) The unit object Q of O is a projective object of Z and P{OP2 is
projective whenever Px and P2 are projective.

Now under these assumptions we have the following theorem.

THEOREM 2. As an infinite loop space, \T^(M)[ has the homotopy type of
a product of Eilenberg-Mac Lane spaces.

2. The proof of Theorem 1

(i) The bifunctor EE3 gives 7to|7^(Af)| an abelian monoid structure in the
obvious way. To complete the proof of (i) it is enough to show that every
member of no\T

i{M)\ has an additive inverse. So let a € no\T
l'(M)\ be rep-

resented by (P, f, x). Let /? be the element represented by (P, f, -x);
then a + ft is represented by (P]}P, / U / , x 0 -x), by the bifunctor
S . Now T(fUf)(x 0 -x) = x + (-JC) = 0 G T(M). ( T is coprod-
uct preserving.) Thus there are morphisms {P]\P, f]\f', x ® -x) l d m d >
(P, f, 0) «— (*, *, 0) where * denotes the null object as well as the null
morphism * —• M. It follows that a + P = 0.

We also conclude that the spectrum constructed from (T^iM), ]J) is an
Q-spectrum in which the first term \1^{M)\ is an infinite loop space.

(ii) The map n^iM)] - • T(M) which sends {P, f, x) to T(f)(x) is
easily seen to be a natural homomorphism.

Suppose now that T is right-exact (in the sense of Note 1). Since £ has
enough projectives there is a projective object P and an £-epimorphism

P -^ M. Now T{P) nf) > T(M) is an epimorphism in Ab. This shows

that the natural homomorphism 7to|7^(Af)| —> T(M) is an epimorphism. To
show that n^r^Af) ! -»• T(M) is one-to-one, suppose that (Px, fx, x{) and
(P2,f2,x2) are such that r ( / , ) (x , ) = T(f2)(x2). Then clearly ( P , ! ] ^ .
f\ II * > *i ® xz) a n d (A II ^2 > * II fi > x\ ® xi) m a P t 0 t n e s a m e element in
T(M). By right-exactness of T there is an object D of £, a morphism
g: Z) — />, IIJ^ and x e T(D) such that (*LJ/2) ° g = (AU*) ° g and
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T(g)(x) = x{ © x2 . Now there is a projective object P in £, a morphism
k: P -> D and an element y e T(P) such that T{k)(y) = x. It is now

straightforward to see that the ^-morphism P —> D -̂ -> Pl JJ P2 gives rise

to a pair of r*(Af)-morphisms from (P, (*Uf) ° g o k, y) to the objects
(P{ JJ P2, / , LI *, *, © x2) and (P, ]J P2, * U f2, xx © JC2) . These morphisms
together with the obvious morphisms (P, , / , , xl) —• (P, ]J P2 > /i II * > *i ®
x2) and (P 2 , f 2 ,x 2 ) -> (P, UP2> * I I / i > x i ® ̂ 2) ^ P ^ t h a t (pi > /1» x i )
and (P2, , / j , JC2) represent the same element in jro|7^(Af)| •

(iii) The proof of this part is similar to the proof of [5, Theorem l(ii)].

3. The proof of Theorem 2

First recall the description of the F-space structure |7^(Af)| as given in
[5, Section 2] For each object S+ of F , introduce the category 7<'(Af)5+.
An object of ^{M)^ is a triple (P,f,x) where P is a sheaf of projective
objects on the canonical topology Js+ on the category of all based subsets
of 5"+, / : P —> M is a homomorphism to the constant sheaf denned by
M, and x: Js+ -> T(P) is a sheaf homomorphism into the sheaf T(P). A
morphism (/>,, / , , x,) —»(P2, f2, x2) is specified by a sheaf homomorphism
g: P{ -+ P2 such that T(g) ox, = x2 . Any F-morphism S+ —»• R+ yields a
morphism of topologies and hence a functor 1^{M)S+ —> T^{M)R+ . Passing

to the nerve we have a F-space S+ —»• ^ ( A / ) ^ ! which is readily seen to be
special [5, A.I].

Now for the category £ and the functor T: £ —» Ab satisfying the con-
ditions in Theorem 2, there is a pairing of F-spaces 7^(Af) x 7^(JV) —*
r*(A/DAT), (in the sense of [5, Section 5, A]). The F x F-space needed
to set up the pairings is the nerve of the category T*(M : N) (the ana-
logue of r ( A : A ) ( A / , N; M, N) of [5]). An object of this category is a
quadruple (Xs+ , YR+ ; ZS+AR+, m) where Xs+ , YR+ , ZS+AR+ are objects of

7^(A/)5 + , 7^(A%+ and 7^(A/DAf)5+A/?+ respectively. (Note that

r(A/niV)5 + A J ? + represents the F x F-space (S+, R+) -> | r i (A/nA r ) 5 + A / j + | . )

The map m: Xs+ x 1̂ + —• ZS+AR+ is a map of sheaves that arises from the

functor D: T*(M) x T*(N) -» ^(A/DA^) given by

», ,fl,xl);(P2,f2, x2)) - (P,DP2, / , n / 2 , x,

one easily sees that D respects ffl-products in both variables. We also assume
that m respects the augmentation to the appropriate constant sheaves.
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The structural morphisms needed to define the pairings are given by two
functors. To obtain the first functor we consider the functor (Xs+, YR+;
ZS+AR+ , m) —> ZS+AR+ which induces on nerves the FxT-map fi{S+ , R+):

Next we consider the functor (Xs+ , YR+; ZS+AR+, m) —> (Xs+ , YR+) which
can be seen to be an equivalence of the categories T^{M : N) and T^(M) x
7**(.W) and so induces a weak homotopy equivalence k(S+, R+) on the
nerves. We therefore deduce from [5, A.ll] the existence of an associated
pairing of spectra SpT*{M) A 5p7^(iV) -+ S^iMUN). If we set N = ft,
the unit of • the pairing becomes

p A 5p7^(ft) - SpT*(Af).

Since ft is a projective object in £, 5 7^(ft) is an Eilenberg-Mac Lane
spectrum. Now we have a straightforward generalisation of [5, Theorem
2.5].

THEOREM 3. The pairing makes the spectrum Sp1
i{M) and p

module with respect to the map X —* SpT
i(M) which represents 1 e 7to|T*(M)|;

£ being the sphere spectrum.

PROOF. See the proof of [5, Theorem 2.5].
To complete the proof of Theorem 2, we observe that an argument of

Moore and Whitehead [7] shows that 5^ 7** (A/) has the homotopy type of a
product of an Eilenberg-Mac Lane spectra.

References

[ 1 ] M. Andre, Methode simpliciale en algebre homologique et algebre commutative, (Lecture
Notes in Math. 32, Springer-Verlag, Berlin, Heidelberg and New York, 1967).

[2] M. Artin, Grothendieck topologies (Harvard, 1962).
[3] H. Cartan and S. Eilenberg, Homological algebra (Princeton, 1956).
[4] S. Mac Lane, Categories for the working mathematician (Springer-Verlag, New York,

Heidelberg and Berlin, 1971).
[5] A. C. Robinson, 'Torsion products as homotopy groups', J. Pure Appl. Algebra 21 (1981),

167-182.

https://doi.org/10.1017/S1446788700030020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030020


[6] Derived functors as homotopy groups 511

[6] G. B. Segal, 'Categories and cohomology theories', Topology 13 (1974), 293-312.
[7] G. W. Whitehead, 'Generalised homology theories', Trans. Amer. Math. Soc. 102 (1962),

227-283.

Department of Mathematics and Computer Sciences
U.A.E. University
P. O. Box 15551
Al-Ain
United Arab Emirates

https://doi.org/10.1017/S1446788700030020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030020

