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This paper was inspired by comments by H. L. Seal in a series of
lectures given to the Actuaries Club in New York and by a paper of
his recently published in the Swiss Actuarial Journal (Seal, 1972
[6]). In his lectures he showed that the probability U(w, t) that a
risk reserve at every epoch T, where 0 < T ^ t will be non negative
when the initial risk reserve is w is related to F{w + 1 + •/)•£, t),
the probability that the aggregate claim outgo through epoch t does
not exceed w + 1 + Y) • t by the relationship

•U(w, t)=F{w+i + y] t, t) — {i + Tri) J U(o,t^)f(w+'i+y)-v,T)dr (1)
0

where yj is the security loading a.ndf(x, t) = (<)/<)#) F(x, t).

It is assumed that the d.f. F(x, t) is differentiable eith regard to
x with a possible exception at the point x = 0.

Using an extension of the "ballot theorem" in Chapter III of
1 (i+i)<

Feller (1968 [4]) he showed that U(o, t) = -—•—- f F(x, t)dx
I1 + W 0

and observed that if numerical values of F(x, t) were available
values of U(w, t) could be computed.

His paper in the Swiss Journal applied this technique to the
Poisson/Exponential case and provided some numerical results
obtained by quadrature. The formal simplicity of relation (1) sug-
gested that it might be worth while investigating the problem in
terms of the moments of the various functions with the object of
finding approximations to U(w, t) which could be useful in practice,
particularly where the large scale computing facilities required for
the quadrature were not available and under more general as-
sumptions regarding the claim process. Furthermore, the numerical
values provided by Seal formed a useful control at various stages.
It may first be noted that the moments of the distribution of total
claims about the mean in the Poisson/Exponential case are:

wi = t, [za = 2t, [j.3 = 6t and [u = 24̂  + I2t2
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from which it follows that (3i = 4-5r1 and p2 = 3 -f- 6t~1. These
values of (3i and p2 are fairly close to the Pearson type III (Gamma
function) values—(for a (3a value of 3 + 6i"1 the (3i value would be
Aft'1) and a useful starting approximation is to assume that F(x, t)
can be approximated by a type III curve with the parameter
p = (4/P1) — 1 — 8t — 1. The approximation will clearly be worst
for low values of t, apart from the error from ignoring the dis-
continuity at t = 0, but will improve as t increases. A few values for
t = 10 give some idea of the closeness of the approximation:
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F(x0, io)

.00234

•1547°
•54489
.84384
.96236
.99308
.99897
.99987

1(]/P + 1 +
•00371

•15274
•54461
.84499
.96248
.99290
.99888
.99984

These are, of course, values of the "non-ruin" probability and
normally the values in the lower part of the table are those required
in practical conditions.

A more useful model is however the Polya case in which the
parameter of the Poisson distribution is assumed to be a random
variable, distributed in gamma form. In this case the cumulants of
the total claim distribution are:

I2t3m2

32
xi = t, v.% = tmi + — , y.3 = tmz + —z— + — , X4 = tm* -f-

where k is the dispersion coefficient of the claim frequency and the
mean claim is the basic unit. If k is small, i.e. wide dispersion, and 2
not too small these cumulants are dominated by the last terms and
we find pi ~ (4/A), P2 ~ 3 + (6/A), again the values for a type III
tribution and, incidentally approximating an exponential distribu-
tion when k ~ 1. Thus the type III could be expected to be a
useful approximation in the Polya case.
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If, instead of a single negative exponential term for the claim
distribution, we substitute the sum of a series of negative ex-
ponential terms, the cumulants become more complicated as they
involve the convolution of the component terms but here again the
type III would seem to be a useful approximation. This feature has,
of course, been well known for some time—see e.g. Bohman and
Esscher, 1964 [2].

Thus it would seem that in the generalised case where the claim
frequency follows a Polya distribution and the claim distribution
is a practical case defined by its moments, a reasonable assumption
would be that F(x, t) can be represented by an incomplete gamma
function so that a reasonable approximation is available for the
first term on the R.H.S. of relation (1).

The next step is to consider the calculation of U(o, t) =

By noting the relation J I(u} p) du = b I (u, p) — )//> + i

P +i \
h—, —, p -\-11 it will be found that U(o, t) can be expressed in

terms of 4 incomplete gamma functions. Two of these arise from the
lower limit (x = 0) and can be ignored. A few representative values
were calculated and found to be in close agreement with Seal's
calculation. However, our ultimate object is the second term in (1)
and the calculations of many values of U(o, w) would be laborious.
Accordingly, noting that this term is in the form of a convolution
integral it was decided to try and find expressions for the moments
of U(o, t) a n d / ( w -f 1 + -q • t,t).

However, since U(o, t) has a limit T)/(I + TJ) when t ->• 00, it is
necessary to consider U(o, t) — YJ/(I + v\) and, making the lower
limit zero, this can be shown to have the value
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By expanding the integral in an Euler-Maclaurin series, noting
that the terms involving the successive differential coefficients were
relatively small and using the expansion (see, e.g. Bromwich
IO47 [3]. P- 160)

a(a + 2b) a (a + 3W2

eax = 1 -f ay + j y2 + j y2 + .. .where y = xe~bx

" I ~n \it was found that J U(o, t) — dt was approximately
0 \ ! + 1\ j

(i + ,)fi-*) )̂
where x is found from x = e^x~^ and p = 1 -\- .757)

If J f * U(o, t) — ~37~ ( dt be denoted by Sr then it can be

1.125* d I
shown that Sr = — — Sr_1 and the moments of U(o, t) —

1 — fix dx r \
thus determined.

The expressions rapidly become complicated but the first few are
as follows:

(I + Y)) (I—*)

1.125.1.5*
•Jl —

S2 =
(I + 7)) (I — *)3 (I - P ^

(1.125)3
 I .5* ( I + 4x + 2$x + x2

For 7) = .1, * = .8638 and the moment functions derived from
the foregoing are mean = 99.908, <J = 178.94, (3i = 15.409, 2̂ =
27.251.

The (3i, (32 values are appropriate for a Pearson Type VI, although
they are close to the Type III values. However, both of these curves
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start at a small positive value of t so that representation for small t
would be poor. The type III curve from these moments is .01713

x \--74041

-.0028473a;+
\ 91.171
leads to the following values for U(o,t)

t Type III True
20 .1682 -1976
50 .1284 .1264
100 .1100 .1080

1000 .0911 .0910

The Type III starts with an infinite ordinate at about t = g
whereas the U(o, t) curve starts with a zero ordinate at t = o. For
the higher values of t the representation is fairly close but other
methods of estimating the curve would be needed for low values.
These values are, of course, not needed by the present approach.

The next stage is to find the moments (with respect to t) of
f(w -4- 1 + 7)£i t) where

Using the same method as for I U{o, t) — ~——! it can be shown

that approximately

e
a(x -1

•>] f f{w + I + t\t> t) dt = Io = .75vj — . x where a = 6w (4)

and
1.125% d

Thus

7 1 =

Now the function whose value we are seeking is the second term
on the R.H.S. of relation (1) which may be written as

* + r h i " H <5»
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We know the moments of the second term and we can find the
appropriate values of the moments of the first term by convolution,
i.e. from the product of the two moment generating functions, which
are both known. These can be added to obtain the moments of the
whole expression (5).

Calculations were made using w = 10 which led to the following
result:

+ j
ga (x -1) x

mean = 2.OII6.IO2

a = 2.761.io2

Pi = 9-323
p2 = 16.287

These are the moments of a Pearson Type I curve, but close to a
type III. The final stage is to find values of the distribution function
for values of t, having given these moments. The values of (3i and P2
are within the range of the tables of percentage points calculated by
Amos (1971) but the results will again be poor for low values of t
because the type I curve starts with an infinite ordinate at a small
positive value of t. A Type III curve (with a negative value of p)
could be used, but interesting values are crowded together at a very
inconvenient part of the tabulated values in Pearson's tables of the
Incomplete Gamma function.

For |/(3i = 3.0 and 2̂ = 16.4 Amos gives the following values:

p .0000 .0010 .0025 .0050 .0100 .0250 0.500 .1000 .2500 .500
— .6617 —6617 —6617 —6617 —6617 •—6615 —6606 —6559 —6130 —397'

291.6617 7.1421 5.9025 4.9746 4.0585 2.8737 2.0071 1.1802 .1924

x being measured in units of standard deviation from the mean.

This curve starts at t = 18 approximately. By interpolation for
selected values of t the following values are found for U(w, t)
where F(-) is calculated from the type III approximation and the
true values of U are interpolated from Seal's values of U(io, t):
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t
2 0

50
1 0 0

2 0 0

1000

F(-)

•956
.921
.911
.921
.982

adj

•°37
•135
.194
•753
•357

f/(10, -)

.919

.786

.717

.678
.625

True Value
.918
.816
•738
.681
•634

The accuracy is sufficient for many practical purposes so that the
primary object of this paper is achieved.

I am conscious that paper is very untidy and that there are a
number of directions in which improvement is possible or further
research is indicated. Probably the most untidy aspect is the
inadequacy of the Pearson system to cope with the distribution for
low values of t. There is some indication that a functional form
t"(t -f a)(a + r) e~&t, i.e. a confluent hypergeometric function,
would be suitable but the simplicity of the numerical inversion
using Amos' table would be lost. The evaluation of the integrals is also
incomplete, the form of the answers suggesting that there is an
approach via. the calculus of residues. Finally, the moments of the
"adjustment" terms derived numerically from the moment generat-
ing functions may possibly be obtained in a more direct fashion.
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