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Abstract

The analysis of stochastic loss networks has long been of interest in computer and
communications networks and is becoming important in the areas of service and
information systems. In traditional settings computing the well-known Erlang formula for
blocking probabilities in these systems becomes intractable for larger resource capacities.
Using compound point processes to capture stochastic variability in the request process,
we generalize existing models in this framework and derive simple asymptotic expressions
for the blocking probabilities. In addition, we extend our model to incorporate reserving
resources in advance. Although asymptotic, our experiments show an excellent match
between derived formulae and simulation results even for relatively small resource
capacities and relatively large values of the blocking probabilities.
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1. Introduction

The problem of satisfying a stream of customer (user) requirements from resources of finite
capacities for some random processing time has long been present in many areas such as
telephone and communication networks, inventory control (rental industry), and, recently,
workforce management. For all of these applications, the system dynamics can be described
as follows. Requests for resources arrive according to some point process in time. If there
are enough available (nonengaged) resources to satisfy their requirements at the moment of
arrival, required resources are committed for some random time that represents their processing
duration (holding time) after which they are released and become available to accommodate
future requests. If there is an insufficient amount of available resources at the moment of a
request’s arrival, the request is lost. The previously described system is usually referred to
as a loss network, and one of the commonly analyzed performance metrics is the blocking
probability, i.e. the probability that an incoming request is lost owing to an insufficient amount
of available resources to satisfy its requirements.

Loss networks with fixed resource requirements have been intensively analyzed in the context
of circuit-switched networks. Let requests require resources of K < ∞ different types for
some random generally distributed processing time with finite mean. Furthermore, assume that
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Asymptotic blocking probabilities in the loss networks 1089

requests belong to M different classes characterized by their resource requirements, processing
durations, and arrival rates. Then, assuming that requests of different types arrive according to
mutually independent Poisson processes, by the PASTA (Poisson arrivals see time averages)
property [25], the blocking probability of an incoming request of type 1 ≤ l ≤ M is equal
to the sum of probabilities of blocking states for an l-type request and is computed using the
generalized Erlang formula (see, e.g. [15]), i.e.

1 − G(C)−1G(C − Ael ),

where

G(C) =
( ∑

n∈S(C)

M∏
l=1

ρ
nl

l

nl !
)

and
S(C) := {n ∈ Z

M+ : An ≤ C}, (1)

where n = (n1, . . . , nM) and C = (C1, . . . , CK). In the previous expressions Ck , 1 ≤ k ≤ K ,
is the capacity of resource type k, A = [Akl] is a K × M matrix, where Akl represents the
amount of resources of type 1 ≤ k ≤ K required by a request of type 1 ≤ l ≤ M , and ρl ,
1 ≤ l ≤ M , represents traffic intensities of l-type requests (computed as ρl = λl/µl , where λl

denotes the arrival rate of l-type requests and 1/µl is the corresponding mean processing time).
Furthermore, el is an M-dimensional vector with the lth component equal to 1 and the rest equal
to 0. In the case of a single resource type and a single request class with exponentially distributed
processing times, the blocking probability was first expressed by Erlang [7]. Later on, it was
shown that Erlang’s formula holds under more general assumptions on the call holding-time
distributions (see [21]) and holds in the case of Poisson arrivals with retrials (see [4]). It is
noteworthy to point out the difference between the Erlang loss network and a queue with finite
buffer. The two systems follow very different dynamics resulting in a different behavior and,
therefore, analysis; see, e.g. [1] and [11].

It is easy to see that the cardinality of the state space S(C) in (1) increases exponentially
in the norm of vector C, i.e. |C| ≡ ∑K

i=1 |Ci |. In [18] it was shown that the calculation of
G(C) is a �P -complete problem, which belongs to a class of problems that are at least as
hard as NP -complete problems. To this end, many approximation techniques for evaluating
blocking probabilities in large loss networks have been proposed. One of the most popular
ones is known as the Erlang fixed-point method. The main idea of this approximation is to
assume that deficiencies of different resource types occur independently. The application of the
Erlang fixed-point method can be traced back as early as the 50s; see, e.g. [24]. In [14] Kelly
studied the performance of the Erlang fixed-point method and established its relationship with a
nonlinear optimization problem. He also proved uniqueness of the fixed point and its asymptotic
exactness when resource capacities and arrival rates grow with the same rate; see [15]. Some of
the related practical aspects of Kelly’s analysis were investigated in [23]. The Erlang fixed-point
method is further refined in [26]. There are also many other types of approximations such as
the recursive algorithm investigated in [13], or the unified approach based on large deviations
for all (light, critical, and heavy) traffic regimes investigated in [8]. Overall, except for the
bounds in [8], these methods make use of the structural properties of the Erlang formula and,
hence, largely rely upon the Poisson assumption for call arrivals. Another restriction of the
above models is that the amount of resource requirements are assumed to be fixed; in fact, it is
assumed that they are (0, 1) parameters in most of the cases considered. Meanwhile, in many
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applications we see that resource requirements could be highly variable and their distributions
possibly long tailed; for specific examples, see [10], [12], and [16]. Furthermore, more recently,
loss network models have been applied in the context of workforce management applications
(see [20]), where the requests’ behavior is even more volatile and extreme.

In this paper we analyze loss networks that have renewal arrivals and random resource
requirements. In particular, we assume that request arrivals follow a compound renewal process,
with the corresponding holding times being arbitrarily distributed with finite mean. In addition,
we assume that holding times corresponding to different arrivals are mutually independent
and independent of the arrival points as well. In order to cope with variability in resource
requirements, we model them as subexponential random variables. We obtain a simple and
explicit asymptotic expression for the blocking probabilities when the capacities of resources
grow. For the case of a single resource loss network, we show that the stationary blocking
probability is approximately equal to the tail of the resource requirement distribution. In addi-
tion, we extend our results to allow advance reservations of resources. Finally, we investigate
general (multiple resources and arbitrary topology) loss networks and show that the asymptotic
blocking probability behaves as the tail of the heaviest-tailed resource requirement. Although
asymptotic, our numerical experiments show an excellent accuracy of the derived formulae
even for relatively small capacities and relatively large values of the blocking probabilities,
suggesting wide applicability of the obtained results.

Our paper is organized as follows. In Section 2 we introduce our model in the context of a
single resource type. Then, in Subsection 2.1 we state and prove our main result in Theorem 1,
while in Subsection 2.2 we extend it to the case of advance reservations. Further extension to
the analysis of the stationary blocking probability in the case of general loss networks is stated
and proved in Theorem 2 of Section 3. Our simulation experiments for some specific cases of
arrival processes and resource requirements are presented in Section 4. Finally, we conclude
our paper in Section 5. A discussion and the proof of existence of the stationary blocking
probability is presented in the Appendix of [19].

2. Systems with one resource type

Let requests for resources from a common resource pool of capacity C < ∞ arrive at
time points {τn, −∞ < n < ∞}, which represent a renewal process with rate 0 < λ < ∞,
i.e. E[τn − τn−1] = 1/λ. At each point τn, Bn amount of resources is requested. If available
capacity is less than Bn, this request is rejected (blocked); otherwise, it is accepted and Bn

amount of resources will be occupied for the length of time θn. Sequences {Bn} and {θn}
of independent and identically distributed (i.i.d.) random variables (RVs) are assumed to be
mutually independent and independent of the arrival points {τn}; furthermore, E θn < ∞ for
all n. Let B and θ denote RVs that represent {Bn} and {θn}, respectively, i.e. P[B > x] =
P[Bn > x] and P[θ > y] = P[θn > y] for any n ∈ Z, x ≥ 0, and y ≥ 0.

In this paper we assume that B is a subexponential RV defined as follows; see, e.g. [9].

Definition 1. Let {Xi} be a sequence of positive i.i.d. RVs with distribution function F such
that F(x) < 1 for all x > 0. Denote by

F̄ (x) = 1 − F(x), x ≥ 1,

the tail of F and by

F̄ n∗ = 1 − Fn∗(x) = P[X1 + · · · + Xn > x]
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the tail of the n-fold convolution of F . The distribution function F is subexponential, denoted
as F ∈ S, if one of the following equivalent conditions holds:

•
lim

x→∞
F̄ n∗(x)

F̄ (x)
= n for some (all) n ≥ 2,

•
lim

x→∞
P[X1 + · · · + Xn > x]

P[max(X1, . . . , Xn) > x] = 1 for some (all) n ≥ 2.

For a brief introduction to subexponential distributions, the reader is referred to a recent
survey [9]. This class of distributions is fairly large and well-known examples include regularly
varying (in particular Pareto), some Weibull, log-normal, and ‘almost’exponential distributions.

Next, let N (C)
n denote the set of indices i < n of resource requirements that arrive prior to

τn, are accepted, and are still active by time τn. Furthermore, define

N(C)
n � |N (C)

n |
to be a cardinality of the set N (C)

n . Thus, the total amount of resources Q
(C)
n that an arrival at

time τn finds engaged can be expressed as

Q(C)
n =

∑
i∈N (C)

n

Bi .

In this paper our goal is to estimate the stationary blocking probability, i.e. to estimate

P[Q(C)
n + Bn > C] (2)

for large C. It can be shown that for the model introduced above there exists a unique stationary
distribution for Q

(C)
n and, therefore, the quantity in (2) is well defined. The proof of this

result is based on constructing a Markov chain with general state space, of which Q
(C)
n is a

functional. Then, by using a discrete version of Theorem 1 of [21], we show that there exists
a unique stationary distribution for the constructed Markov chain (and, therefore, Q

(C)
n ) which

is ergodic. This proof is not the main focus of this paper and an interested reader is referred to
the Appendix of [19] for its details.

In this paper we use the following standard notation. For any two real functions a(t) and
b(t), and fixed t0 ∈ R ∪ {∞}, let a(t) ∼ b(t) as t → t0 denote limt→t0 [a(t)/b(t)] = 1.

2.1. The blocking probability in a system with one resource type

In this section we estimate the stationary blocking probability P[Q(C)
n + Bn > C] in a loss

network with a single resource pool when its capacity C grows large.

Theorem 1. Let {Bn, −∞ < n < ∞} denote a sequence of subexponential RVs with finite
mean. Then, the stationary blocking probability satisfies

P[Q(C)
n + Bn > C] ∼ P[B > C] as C → ∞.

Proof. First, observe that a request will be lost if it requires more than the total capacity C

and, therefore,
P[Q(C)

n + Bn > C] ≥ P[B > C] for all C > 0. (3)
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In order to prove the asymptotic upper bound for P[Q(C)
n +Bn > C], we start by conditioning

on the size of Bn as

P[Q(C)
n + Bn > C] = P[Q(C)

n + Bn > C, Bn > C] + P[Q(C)
n + Bn > C, Bn ≤ C]

� I1 + I2. (4)

Note that I1 is upper bounded by P[B > C]. Next we prove that I2 = o(P[B > C]) as C → ∞.
In view of the definition of N (C)

n from above,

I2 = P

[ ∑
i∈N (C)

n

Bi + Bn > C, Bn ≤ C

]
. (5)

Observe that, for i ∈ N (C)
n , the Bis are mutually dependent which makes direct analysis of

the expression in (5) complex. For this reason we sample the original process of arrivals at
the points τi , at which the requested amount of resources Bi is smaller than or equal to C, and
observe another system of unlimited capacity with the sampled arrivals. Let Nn,s denote a set
of request indices i < n that belong to the sampled process and are still active at time τn, i.e.

Ns,n = {i < n | Bi ≤ C, θi > τn − τi}.
Note that the sampled process is also a renewal process with rate λ P[B ≤ C]/ P[B > C], and
that the resource requirements Bi , i ∈ Ns,n, are mutually independent. Furthermore, since
N (C)

n ⊂ Ns,n, we can upper bound I2 in (5) by the probability that the total amount of required
resources in a new system exceeds capacity C, i.e.

I2 ≤ P

[ ∑
i∈Ns,n

Bi + Bn > C, Bn ≤ C

]
. (6)

Now, in view of the results derived in [6], for every integer n and for i.i.d. subexponential RVs
B1, . . . , Bn,

P

[ n∑
i=1

Bi > C

]
∼ P[max(B1, B2, . . . , Bn) > C] as C → ∞,

implying the asymptotic relation

P

[ n∑
i=1

Bi > C, Bi ≤ C for every 1 ≤ i ≤ n

]
= o(P[B > C]) as C → ∞.

In order to show that n can be replaced by Ns,n in the above inequality, we need to integrate it
with respect to the density of Ns,n, i.e.

P

[ ∑
i∈Ns,n∪{n}

Bi > C, Bi ≤ C for every i ∈ Ns,n ∪ {n}
]

=
∞∑

k=0

P[Ns,n = k] P

[k+1∑
i=1

Bi > C, Bi ≤ C for every i = 1, . . . , k + 1

]
.
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Note that on the left-hand side of the previous equation index i can take negative values. Next,
owing to the lemma stated by Kesten (see [3, Lemma 7]), for any ε > 0, there exists a positive
constant K(ε) such that

P
[ ∑k

i=1 Bi > C, Bi ≤ C for every 1 ≤ i ≤ k
]

P[B > C] ≤ P
[ ∑k

i=1 Bi > C
]

P[B > C] ≤ K(ε)(1 + ε)k

for any integer k and for all capacity values C < ∞. Then, since the probability generating
function E zNs,n is finite for any z ∈ C (see [17, Theorem 5] and [22, Theorem 1] for the detailed
proof), we have

∞∑
k=0

P[Ns,n = k](1 + ε)k < ∞.

Therefore, by applying the dominated convergence theorem we conclude that

lim
C→∞

P
[ ∑

i∈Ns,n
Bi + Bn > C, Bi ≤ C for every i ∈ Ns,n ∪ {n}]

P[B > C]
= lim

C→∞

∞∑
k=0

P[Ns,n = k] P
[ ∑k+1

i=1 Bi > C, Bi ≤ C for every 1 ≤ i ≤ k + 1
]

P[B > C]
= 0,

which, in conjunction with (3) and (4), completes the proof.

Remark. It may appear surprising that the performance of the loss network from above does
not depend on engagement durations, as long as they have finite mean. In addition, the result is
quite general and provides the asymptotic result for a large (subexponential) class of possible
resource requirement distributions.

2.2. Advance reservations

Using the result of Theorem 1 and observations from the previous remark, we extend the
loss networks model to allow requests to become effective with some delay with respect to
the moments of their arrivals. In particular, a request that arrives at time τn and requires Bn

amount of resources for some random time θn starting from the moment τn + Dn is accepted if
previously admitted resource requirements allow that; otherwise, it is rejected. In other words,
a request arriving at τn is lost if at any moment of time in the interval (τn + Dn, τn + Dn + θn)

the total amount of active requirements requested prior to τn exceeds C − Bn. First, note that
Bn > C implies the loss of the nth request and, therefore, it is straightforward to conclude
that the blocking probability in the system with advance reservations can be lower bounded by
P[B > C].

Next we discuss the idea behind proving the upper bound on the blocking probabilities.
By applying sample path arguments we can show that, at any moment of time, the amount of
active resources in the previously described system with advance reservations can be bounded
from above by the amount of active resources in another system of unlimited capacity, without
advance reservations, with resource holding times Dn + θn for every n, and with requests for
resources being sampled from the original process {Bn} whenever the corresponding require-
ments are less than or equal to C. Equivalently, the blocking probability in the system with
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advance reservations can be bounded from above by

P

[ ∑
i∈N (C)

s,n (θ+D)

Bi + Bn > C

]
,

where N (C)
s,n (θ+D) is a set of request indices i < n that are active at time τn, whose requirements

are less than or equal to C and holding times last throughout the interval (τi, τi + Di + θi),
assuming that there is an unlimited resource capacity.

Finally, using the previous discussion, the properties of {Bn}, {θn}, and {τn}, introduced at
the beginning of this section, assuming that the reservation times {Dn}, E Dn < ∞, are i.i.d.
and independent from {Bn}, {θn}, and {τn}, and applying the identical arguments used in the
proof of Theorem 1, we obtain the following result.

Corollary 1. The blocking probability in the system with advance reservations approaches
P[B > C] as C → ∞.

3. Acquiring resources of different types (loss networks case)

Assume that there are K ∈ N resource types with capacities C1, . . . , CK . Again, requests
arrive at {τn, −∞ < n < ∞}, which represent a renewal process with rate

0 < λ = 1

E[τ1 − τ0] < ∞.

There are M < ∞ request types and, given an arrival, the request is of type l, 1 ≤ l ≤ M ,
with probability pl , where p1 + · · · + pM = 1, independent of {τn}. We will use RVs Jn ∈
{1, 2, . . . , M} to denote the type of request arriving at τn. Furthermore, let B(Jn,1)

n , . . . , B
(Jn,K)
n

represent the amounts of required resources of each type at time τn, and let θ
(Jn)
n , E θ

(Jn)
n < ∞,

denote the corresponding random duration. We assume that the sequences {(B(Jn,1)
n , . . . ,

B
(Jn,K)
n )} and {θ(Jn)

n } are mutually independent and independent of {τn}. Given the event
{Jn = l}, resource requirements B

(l,i)
n , 1 ≤ i ≤ K , are mutually independent, nonnegative

RVs drawn from distributions Fl,i , 1 ≤ i ≤ K; if a request does not require resources of type i

then B
(l,i)
n = 0 almost surely (a.s.), −∞ < n < ∞. Only if there is enough capacity available,

will the request arriving at time τn be accepted and all of the engaged resources occupied for
the duration of θ

(Jn)
n ; otherwise, the request is rejected.

Our goal is to estimate the blocking probability in the system described above. Let
Q

(1)
n , . . . , Q

(K)
n denote the amounts of resources of each type that a request arriving at time τn

finds engaged. Note that Q
(i)
n , 1 ≤ i ≤ K , are mutually dependent and, as pointed out in the

introduction, it is hard to compute the blocking probability of this system explicitly. Applying
the same arguments used for the case of a single resource type (see the Appendix of [19]), we
can show that the stationary distribution of Q

(i)
n , 1 ≤ i ≤ K , exists. The probability that the

request arriving at time τn is blocked equals

P

[ ⋃
1≤i≤K

{Q(i)
n + B(Jn,i)

n > Ci}
]
, (7)

and again our goal is to estimate its value as mini Ci grows large.
Asymptotic estimates derived in this section hold under the following assumptions.
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Assumption 1. For each resource type 1 ≤ i ≤ K , let Li and Hi be two disjoint sets of request
types (|Li ∪ Hi | = M) satisfying the following.

• At least one resource type is accessed by subexponentially distributed resource require-
ments, implying that |Hi | > 0 for some 1 ≤ i ≤ K .

• For every l ∈ Hi �= ∅, there exists a subexponential distribution Fi ∈ S such that
F̄l,i (x) ∼ cl,i F̄i (x) as x → ∞ with cl,i > 0.

• There exists a subexponential random variable L ∈ S that satisfies

P[L > x] ≥ max
1≤i≤K,l∈Li

P[B(Jn,i)
n > x | Jn = l] for all x > 0

and P[L > x] = o(F̄i(x)) as x → ∞ for all i ∈ {j | Hj �= ∅}.
Remark. In Assumption 1 we require the resource requirement distributions to be asymptoti-
cally comparable. For each 1 ≤ i ≤ K , Hi contains tail-dominant subexponential distributions
that are asymptotically proportional to each other. Conversely, the only assumption imposed
on the distributions in Li , 1 ≤ i ≤ K , is that there is a subexponential tail that asymptotically
dominates them. This asymptotic tail comparability is necessary for our main result to hold. In
particular, these conditions are extensively used in (13)–(18) of the proof of Theorem 2, below.

Next we prove the following lemma, which investigates summations of RVs with different
tail distributions.

Lemma 1. Suppose that Xi, 1 ≤ i ≤ n, are independent RVs with corresponding tail distri-
butions F̄i(x), 1 ≤ i ≤ n. If there exists F ∈ S such that F̄i(x) ∼ ciF̄ (x) as x → ∞ with
ci ≥ 0, 1 ≤ i ≤ n, and

∑n
i=1 ci > 0, then the following asymptotic relation holds:

P

[ n∑
i=1

Xi > x, Xi ≤ x, 1 ≤ i ≤ n

]
= o(F̄ (x)) as x → ∞. (8)

Proof. Note that

P

[ n∑
i=1

Xi > x

]
= P

[ n∑
i=1

Xi > x, Xi ≤ x, 1 ≤ i ≤ n

]
+ P

[ n∑
i=1

Xi > x,

n⋃
i=1

{Xi > x}
]
.

Then, the previous expression, the fact that
⋃n

i=1{Xi > x} ⊂ {∑n
i=1 Xi > x}, the independence

of the Xis, as well as Lemmas 4.2 and 4.5 of [2], imply (8).

First we estimate the asymptotic lower bound for the expression in (7). Using our model
assumptions, {B(Jn,i)

n > Ci} ⊂ {Q(i)
n + B

(Jn,i)
n > Ci} and independence, we obtain

P

[ ⋃
1≤i≤K

{Q(i)
n + B(Jn,i)

n > Ci}
]

≥ P

[ ⋃
1≤i≤K

{B(Jn,i)
n > Ci}

]
∼

K∑
i=1

∑
l∈Hi

plF̄l,i (Ci) (9)

as mini Ci → ∞.
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Next we estimate the asymptotic upper bound for the expression in (7). Using the union
bound, we obtain

P

[ ⋃
1≤i≤K

{Q(i)
n + B(Jn,i)

n > Ci}
]

≤
K∑

i=1

P[Q(i)
n + B(Jn,i)

n > Ci].

Similarly as in (6) of Theorem 1, for each resource 1 ≤ i ≤ K ,

P[Q(i)
n + B(Jn,i)

n > Ci] ≤ P

[∑
l∈Li

∑
j∈N

(l,Ci )
s,n

B
(l,i)
j +

∑
l∈Hi

∑
j∈N

(l,Ci )
s,n

B
(l,i)
j + B(Jn,i)

n > Ci

]
, (10)

where N (l,Ci )
s,n , 1 ≤ l ≤ M , are sets of indices j < n defined as

N (l,Ci )
s,n � {j < n | Jj = l, B

(l,i)
j ≤ Ci, θ

(l)
j > τn − τj }.

In the previous expressions we bounded the amount of allocated resources that are active at time
τn by the corresponding quantity in another system of infinite capacity, where the corresponding
request process is sampled from the original {B(Jn,i)

n }, 1 ≤ i ≤ K , whenever the corresponding
requirements are less than or equal to Ci , 1 ≤ i ≤ K .

In the rest of the proof we derive an asymptotic estimate for the expression in (10). After
conditioning on {N(1,Ci )

s,n = n1, . . . , N
(M,Ci)
s,n = nM}, (N(l,Ci)

s,n � |N (l,Ci )
s,n |, 1 ≤ l ≤ M), we

obtain

P[Q(i)
n + B(Jn,i)

n > Ci]
≤

∑
0≤n1,...,nM<∞

P[N(1,Ci )
s,n = n1, . . . , N

(M,Ci)
s,n = nM ]

× P

[∑
l∈Hi

nl∑
j=1

B
(l,i)
(j) +

∑
l∈Li

nl∑
j=1

B
(l,i)
(j) + B(Jn,i)

n > Ci, B
(l,i)
(j) ≤ Ci,

1 ≤ j ≤ nl, 1 ≤ l ≤ M

]
, (11)

where B
(l,i)
(j)

d= B
(l,i)
k , k ∈ N (l,Ci )

s,n , j = 1, . . . , nl , are independent replicas of requests in
N (l,Ci )

s,n (where ‘
d=’ denotes equality in distribution). Next, after conditioning on {Jn = m},

m = 1, . . . , M , and then on B
(m,i)
n being smaller or larger than Ci , we can further upper bound

the conditional blocking probability in (11) as

P

[∑
l∈Hi

nl∑
j=1

B
(l,i)
(j) +

∑
l∈Li

nl∑
j=1

B
(l,i)
(j) + B(Jn,i)

n > Ci, B
(l,i)
(j) ≤ Ci, 1 ≤ j ≤ nl, 1 ≤ l ≤ M

]

≤
M∑

m=1

pm P

[∑
l∈Hi

nl∑
j=1

B
(l,i)
(j) +

∑
l∈Li

nl∑
j=1

B
(l,i)
(j) + B(m,i)

n > Ci, B
(l,i)
(j) ≤ Ci,

1 ≤ j ≤ nl, 1 ≤ l ≤ M, B(m,i)
n ≤ Ci

]

+
M∑

m=1

pm P[B(m,i)
n > Ci]. (12)
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Thus, the probabilities in the first term on the right-hand side of (12) can be expressed in the
form

P

[∑
l∈Hi

n′
l∑

j=1

B
(l,i)
(j) +

∑
l∈Li

n′
l∑

j=1

B
(l,i)
(j) > Ci, B

(l,i)
(j) ≤ Ci, 1 ≤ j ≤ n′

l , 1 ≤ l ≤ M

]
, (13)

where n′
l = nl for l �= m and n′

l = nl + 1 for l = m.
Next, in order to estimate the asymptotic upper bound of the term in (13), Assumption 1

enables us to distinguish between the following two cases: (i) Hi = ∅ or
∑

l∈Hi
n′

l = 0, and
(ii) Hi �= ∅ and

∑
l∈Hi

n′
l > 0.

Case (i): If Hi = ∅ or
∑

l∈Hi
n′

l = 0, we find that the probability in (12) can be upper bounded
as

P

[∑
l∈Li

n′
l∑

j=1

B
(l,i)
(j) > Ci

]
≤ P

[∑
l∈Li

n′
l∑

j=1

L
(l,i)
(j) > Ci

]
,

where we have used Assumption 1 and introduced L
(l,i)
(j) to be independent RVs equal in

distribution to L. Hence, since the L
(l,i)
(j) are subexponential, we obtain

lim
Ci→∞

P
[ ∑

l∈Li

∑n′
l

j=1 B
(l,i)
(j) > Ci

]
P[L > Ci] ≤

∑
l∈Li

n′
l . (14)

Case (ii): If Hi �= ∅ and
∑

l∈Hi
n′

l > 0, using Assumption 1 and Lemma 1, we derive the
following asymptotic upper bound:

P

[∑
l∈Hi

n′
l∑

j=1

B
(l,i)
(j) +

∑
l∈Li

n′
l∑

j=1

B
(l,i)
(j) > Ci, B

(l,i)
(j) ≤ Ci, 1 ≤ j ≤ n′

l , 1 ≤ l ≤ M

]
= o(F̄i(Ci))

(15)
as Ci → ∞.

Thus, in (13)–(15) we obtained upper bounds and their asymptotic estimates for the con-
ditional blocking probabilities in the first term of (12) that hold for any finite nonnegative
integers n1, . . . , nM . Thus, in view of (11), in order to estimate an asymptotic upper bound of
P[Q(i)

n +B
(Jn,i)
n > Ci], we need to integrate the probabilities in (13) with respect to the densities

of the RVs N
(l,Ci)
s,n , l = 1, . . . , M . In this regard, note that in the case in which Hi �= ∅, by

Assumption 1, the term in (13) can be upper bounded as

P

[∑
l∈Hi

n′
l∑

j=1

B
(l,i)
(j) +

∑
l∈Li

n′
l∑

j=1

B
(l,i)
(j) > Ci, B

(l,i)
(j) ≤ Ci, 1 ≤ j ≤ n′

l , 1 ≤ l ≤ M

]

≤ P

[∑
l∈Hi

n′
l∑

j=1

B
(l,i)
(j) +

∑
l∈Li

n′
l∑

j=1

L
(l,i)
(j) > Ci

]
, (16)

where, as before, the L
(l,i)
(j) are independent RVs equal in distribution to L. Furthermore, since

P[L > x] = o(F̄i(x)) as x → ∞, there exists a large enough finite integer H such that
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P[L > x] ≤ HF̄i(x) for all x ≥ 0. Therefore, for any x ≥ 0, we can write

P[L > x] ≤ HF̄i(x) = P

[ ⋃
1≤r≤H

{B̂(i)
r > x}

]
≤ P

[ H∑
r=1

B̂(i)
r > x

]
, (17)

where B̂
(i)
r , 1 ≤ r ≤ H , are independent RVs having cumulative distribution function Fi .

Now, in view of (17), each of the RVs L
(l,i)
(j) in (16) can be stochastically upper bounded by a

random variable that is equal in distribution to
∑H

r=1 B̂
(i)
r . Thus, if we introduce Yj , j ≥ 1, to

be independent RVs equal in distribution to
∑H

r=1 B̂
(i)
r , we obtain

P

[∑
l∈Hi

n′
l∑

j=1

B
(l,i)
(j) +

∑
l∈Li

n′
l∑

j=1

L
(l,i)
(j) > Ci

]
≤ P

[∑
l∈Hi

n′
l∑

j=1

B
(l,i)
(j) +

∑
l∈Li

n′
l∑

j=1

Yj > Ci

]
,

which in conjunction with point (b) of Lemma 4.2 of [2] implies that, for any ε > 0, there
exists a finite constant Kε such that

P

[∑
l∈Hi

n′
l∑

j=1

B
(l,i)
(j) +

∑
l∈Li

n′
l∑

j=1

L
(l,i)
(j) > Ci

]
≤ P

[∑
l∈Hi

n′
l∑

j=1

B
(l,i)
(j) +

∑
l∈Li

n′
l∑

j=1

Yj > Ci

]

≤ Kε(1 + ε)
∑

l∈Hi
n′

l+
∑

l∈Li
n′

l F̄i (Ci) (18)

for any Ci < ∞. Similarly, in cases where Hi = ∅, we could apply the stochastic dominance

B
(l,i)
(j)

d≤ L
(l,i)
(j) , l ∈ Li ,

where the L
(l,i)
(j) are, as before, independent, subexponential RVs equal in distribution to L.

Then, by Kesten’s lemma (see [3, Lemma 7]), the analogous bound to the one in (18) follows.
Finally, since (18) bounds uniformly probabilities in (13) for all Ci < ∞ and n′

l , 1 ≤ l ≤ M ,
in conjunction with (12), (11), N

(l,Ci)
s,n ≤ N

(l,∞)
n a.s., and the existence of E zN

(l,∞)
n for all

z ∈ C, 1 ≤ l ≤ M , (see [17, Theorem 5] and [22, Theorem 1]), we can apply the dominated
convergence theorem and conclude that

lim
Ci→∞

P[Q(i)
n + B

(Jn,i)
n > Ci]∑

l∈Hi
plF̄l,i (Ci)

≤ 1[Hi �= ∅].

Next, by adding asymptotic estimates for all 1 ≤ i ≤ K , in conjunction with (9), we complete
the proof of the following result.

Theorem 2. For the request model introduced in this section, under the conditions imposed by
Assumption 1, the stationary blocking probability for general loss networks satisfies

P

[ ⋃
1≤i≤K

{Q(i)
n + B(Jn,i)

n > Ci}
]

∼
K∑

i=1

∑
l∈Hi

plcl,i F̄i (Ci) as mini Ci → ∞.
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4. Numerical examples

In this section, with two simulation experiments, we demonstrate the accuracy of our
asymptotic formulae, proved in Theorems 1 and 2. Our goal is to show that even though
our results are asymptotic, the derived estimates match experiments with high accuracy even
for systems with finite support demand distributions and moderately large capacities.

In each experiment, in order for the system to reach stationarity, we let the first 108 arrivals
be a warm-up time. By repeating many experiments we observed that longer warm-up times
did not lead to improved results. Then we counted the number of blocked requests among
the next 109 arrivals. In both of the experiments below, measurements were conducted for
capacities C = 500 + 100j , 0 ≤ j ≤ 9, where the starting value of C = 500 was set to be
slightly larger than the effective system’s load λ E[θn] E[Bn]. In Figures 1 and 2 simulation
results are represented by circular data points, while our approximations, estimates obtained in
Theorems 1 and 2, are represented by solid lines. In order to emphasize the difference between
the simulations and approximation formulae, we present base 10 logarithms of the obtained
values.

Example 1. Consider the case of a single resource type of capacityC. Let requests for resources
arrive at Poisson time points with rate λ = 1. In addition, assume that engagement durations
are exponentially distributed with mean 1/µ = 1. Next, let request requirements Bn be
drawn from a finite support distribution, where P[Bn = i] = 0.3/i1.5, 1 ≤ i ≤ 1999, and
P[Bn = 2000] = 1 − P[Bn < 2000] (a power law distribution). The effective load in this
example is λ E[θn] E[Bn] ≈ 485.8. Experimental results are presented in Figure 1. Even though
we start measuring rejections at capacities that are slightly larger than the mean requirement
value, our approximation P[Bn > C] is very close to the experimental results. In particular, the
relative approximation error is less than 1% for C = 500 and, for capacity values larger than
or equal to C = 1400, this error is less than 0.3%.

Example 2. In this example we consider the case of two resource and two request types.
Furthermore, we assume that the resource capacities are the same, i.e. C = C1 = C2. The
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Figure 1: Illustration for Example 1.

https://doi.org/10.1239/jap/1197908827 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908827


1100 Y. LU AND A. RADOVANOVIĆ
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Figure 2: Illustration for Example 2.

frequencies of requests of types 1 and 2 are p1 = 0.3 and p2 = 0.7, respectively. Assume
that the arrival points are separated by a fixed, unit length of time, i.e. τn − τn−1 = 1 for all n.
Type 1 request durations satisfy θ

(1)
i ∼ exp(4) and type 2 request holding times are drawn

from the uniform distribution on [0, 40], i.e. θ
(2)
i ∼ Unif([0, 40]). Resource requirements

corresponding to engagements of type 1 are distributed as

P[B1,1 = 1] = 0.8, P[B1,1 = i] = 0.15e−√
i , 2 ≤ i ≤ 1999,

and

P[B1,1 = 2000] = 1 − P[B1,1 < 2000] for type 1 resources,

and P[B1,2 = 50] = 1 for type 2 resources.

Requests of type 2 require resources according to

P[B2,1 = i] = geomi−1(1 − geom), 1 ≤ i ≤ 1999

and P[B2,1 = 2000] = 1 − P[B2,1 < 2000],
where geom = 0.6 for type 1 resources and

P[B2,2 = i] = 0.3/i1.5, 1 ≤ i ≤ 1999, P[B2,2 = 2000] = 1 − P[B2,2 < 2000]
for type 2 resources. Our asymptotic results suggest that the blocking probability should be
characterized by the heaviest-tailed demand distributions. The results of this experiment are
presented in Figure 2. As in the previous case, we obtain a very accurate agreement between
our approximation and the simulation. The relative approximation error in this case does not
exceed 2% and becomes smaller as the resource capacities grow.

Remark. (i) We would like to point out that the accuracy of experimental results directly
depends on the approximation errors (6) and (15), depending on the simulated scenarios. These

https://doi.org/10.1239/jap/1197908827 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908827


Asymptotic blocking probabilities in the loss networks 1101

errors highly depend on the tail properties of the resource requirement distributions. More
specifically, under fairly general assumptions, the heavier the dominant tail of the resource
requirement distribution is, the smaller the relative approximation error is. For detailed expla-
nations, the reader is referred to [5, Section 1.3.2].

(ii) Note that our main results estimate the stationary blocking probability and, as we commented
earlier, are indifferent to distributional properties of holding times. For this reason, as long as
we can claim that the measurements are conducted in stationarity, the transience should not
affect experimental results.

5. Concluding remarks

In this paper we have considered loss networks with reusable resources and finite resource
capacities and estimated the probability that a request is rejected due to an insufficient amount
of resources at points of their arrivals. Assuming a renewal process of request arrivals, subexpo-
nential resource requirements, and generally distributed activity durations, we have shown that
the asymptotic blocking probability for a wide class of analyzed systems can be fully estimated
using a resource requirement distribution, independent of the other system’s properties. In
particular, we have shown that the blocking probability behaves as the asymptotically dominant
tail of the resource requirement distribution.

The model we have studied can be applied to a wide range of applications. Historically, loss
networks (in particular Erlang loss networks) are widely used for modeling communication
networks. Later, through the development of new service applications such as workforce
management with similar modeling properties, the importance of accurately estimating block-
ing probabilities of general loss networks has become significant. In this regard, we have
investigated loss networks with various request types and possibly highly variable random
amounts of required resources. In addition, we have researched the possibility of incorporating
random-advance reservations for incoming requests. These results should be of great interest
to an emerging research community. Although our results are intended mainly for qualitative
purposes, numerical examples demonstrate an excellent match between derived formulae and
simulated systems performance, hence, strongly suggesting their application.
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