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1. Introduction. In the study of certain prime Noetherian rings it is natural to
consider the set C of elements which are regular modulo all height-1 prime ideals of R.
For R commutative, this set C is simply the set of units. In general this is not the case,
though with certain additional conditions we can state non-commutative versions of the
Principal Ideal Theorem.

We start by giving some equivalent forms of the classical principal ideal theorem of
commutative algebra. For an ideal / of a ring R we use C(I) to denote the set of elements
of R which are regular (i.e. not zero-divisors) modulo /. For general background
information and terminology we refer to Chatters-Hajarnavis [3].

The second author would like to thank J. T. Stafford and J. C. McConnell for their
help and encouragement, and the Science and Engineering Research Council for their
financial support.

Standard notation: C = f~) C(P), when P ranges over all the height-1 primes of R.

THEOREM 1.1. Let R be a commutative Noetherian integral domain. Then the
following statements are true:

(a) (Classical Principal Ideal Theorem) if a is a non-zero non-unit element of R and P
is a prime ideal minimal over a then height(P) = 1;

(b) the elements of C are units;
(c) every non-zero prime ideal of R is the union of the height-1 prime ideals it

contains;
(d) if P is a non-zero prime ideal of R then C(P) = H C{Q), where the intersection

ranges over those height-1 prime ideals Q cP;
(d') in the notation of\d), C]C(Q) £ C(P).

Proof. See, for example, Theorem 142, Commutative Rings, Irving Kaplansky.

It is trivial to show that the five statements are all equivalent for commutative
Noetherian rings, and that they suggest non-commutative generalizations which are likely
to be inequivalent and not generally true. Some non-commutative versions of (a) have
been proved, but they require a to satisfy a special condition such as aR = Ra, or the
prime P is chosen minimal with respect to containing all the ideals contained in aR (see,
for example, Jategaonkar [7], [9] or Chatters-Hajarnavis [3, Chapter 3]).

We shall prove that statement (b) is true for all prime Noetherian PI rings and we
shall also prove some results similar to (d'). The reason for concentrating on (d') rather
than (d) is that if P and Q are prime ideals of a non-commutative ring then it is possible
to have Q c P and C(P)£C(Q). Statement (c) is often false even in very well-behaved
non-commutative Noetherian rings, as is illustrated by the next two examples.
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EXAMPLE 1.2. Let S - F[xu . . . ,xn], the commutative polynomial ring in n
indeterminates xux2,- • • ,xn over a field F, and set R = M,,(S). Then R is a prime
Noetherian P.I. ring which is a maximal order and module-finite over its centre.

If P = XiS +. . . +xnS then Mn(P) is a prime ideal of R of height n. Let
a = diag(x,, . . . ,xn) e R. Then RaR = Mn(P). Thus Mn(P) is the only prime ideal of R
containing a, and hence (a) and (c) of Theorem 2.1 are false. The height-1 primes of R
are of the form Mn{Q) where Q is a height-1 prime ideal of 5, and an easy argument
using determinants shows that (b), (d) and (d') of Theorem 1.1 are true.

EXAMPLE 1.3. Let R be the universal enveloping algebra of the 2-dimensional
non-Abelian solvable Lie algebra over the field F of complex numbers. Thus R is the
F-algebra with generators x and y subject to xy — yx = y. It is well known that R is a
Noetherian domain with a unique height-1 prime ideal yR = Ry and the maximal ideals of
R all have height 2 and are of the form (JC - a)R + yR with a e F. In this case C = R\Ry.
In particular x eC and x is not a unit of R, and RxR =xR + yR. Hence all the
statements in Theorem 1.1 are false for R.

EXAMPLE 1.4. Let R be a prime Noetherian ring with a unique proper ideal P (e.g.
Robson [13, Example 7.3]). We have P = P2 and P = xxR + . . . +xnR for some x,- e P.

n

Then in Mn{R) the only height-1 prime ideal is Mn{P). Now x( = E Jtyariy, for some ai} e P.
7 = 1

Thus, setting A = {atl), A- Ine C(Mn{P)), but clearly A - 1 , , is not regular in Mn{R).
In the next section, we shall work in the context of a ring R which is prime

Noetherian fully bounded and every non-zero ideal of R contains a non-zero central
element. The reason for considering this class of rings is that it includes all prime
Noetherian rings which either satisfy a polynomial identity or are integral over their
centre. This class is also closed under localisations at Ore sets.

2. The elements of C. We recall our standard, notation C = (~]C(P), where the
intersection ranges over all height-1 prime ideals P of R. In the cases which concern us
here it will turn out that all the elements of C are always regular, and this is certainly the
case in a prime Noetherian ring with an infinite number of height-1 prime ideals.

The following lemma is known, but is not readily available in the literature, so we
include a proof for the readers' convenience.

LEMMA 2.1. Let R be a fully bounded Noetherian ring with nilpotent radical N, and let
c e C(N). Then cR contains a non-zero ideal of R.

REMARK. This is a consequence of Krause-Lenagan-Stafford [10, Lemma 3].

Proof. Since R is fully bounded Noetherian, N has weak ideal invariance (Stafford
[17]). That is, if K is a right ideal of R, and \M\ denotes the Krull dimension of an
i?-module At, then \R/K\ < \R/N\ implies that \N/KN\ < \R/N\.

Now suppose cR contains no non-zero ideal of R. Then \R/cR\ = \R\ = \R/N\
(Jategaonkar [8, Lemma 2.1]). But c e C(N); so \R/cR + N\< \R/N\. So we proceed to
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show by induction that \R/cR + Nk\ < \R/N\ for k = l,2,.... Suppose that
\R/cR + Nk~l\ < \R/N\. Then, by weak ideal invariance, \N/(cR + Nk-')N\ < \R/N\. Hence

\cR + N/cR + Nk\ < \N/cN + Nk\ < \N/(cR + Nk~l)N\ < \R/N\.

Thus combining these we have

\R/cR + Nk\ = sup{\R/cR + N\, \cR + N/cR + Nk\} < \R/N\.

But for some m, N"' = Q. Hence \R/cR\ < \R/N\, a contradiction.

Recall that the bound of a right ideal / of R is the largest two-sided ideal contained
in/ .

THEOREM 2.2. Let R be a prime fully bounded Noetherian ring such that every
non-zero ideal of R contains a non-zero central element. Then the elements of C are units
ofR.

Proof. Suppose first that R contains an infinite number of height-1 prime ideals.
Then c e C implies that c is regular. Now suppose that c is not a unit. Let B be the bound
of cR. Thus cRIB contains no non-zero ideal of RIB. Therefore, by Lemma 2.1, there is
a prime ideal minimal over B such that c ̂  C{P). Then, by the proof of the Principal Ideal
Theorem (Chatters-Goldie-Hajarnavis-Lenagan [2]), height (P) = 1. Since c eC, this is
a contradiction.

Suppose now that R has only finitely many height-1 prime ideals P,, . . . ,Pn. Set
I = P, D . . . ("I Pn f 0. We note that C = C(/). Let c e C(I). Then c + x is regular for some
x e / by Robson [14]. Therefore c + x is a unit of R as above. Hence RII is Artinian and /
is the Jacobson radical of R. Thus R is semilocal and 1-dimensional, and c is a unit of R.

Note that the P.I. case when R has only finitely many height-1 prime ideals is due to
Amitsur-Small [1].

Note also that the assumption that R is fully bounded cannot be dropped. For
example, if R is the universal enveloping algebra of any non-Abelian nilpotent Lie
algebra then not all the elements of C are units even though every ideal of R has a
centralising set of generators.

3. The height-1 prime ideals related to a given prime ideal. We now consider some
generalizations of statement (d1) of Theorem 1.1.

THEOREM 3.1. Let R be a prime fully bounded Noetherian ring and suppose that every
non-zero ideal of R contains a non-zero element of the centre Z of R. Let P be a non-zero
prime ideal of R. Then C(P) fl C(0) D f| C(2), where the intersection ranges over those
height-1 prime ideals Q such that Q n Z c P n Z .

Proof. Write P' = PC\Z and let S be the partial quotient ring of R formed by
inverting the elements of Z\P'.

Let c e P | C(Q) as above. The height-1 prime ideals of 5 are of the form QS when Q
is a height-1 prime ideal of R with QHZcP'. Thus c is regular modulo all height-1
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prime ideals of 5, and hence c is a unit of S by Theorem 2.2. So 1 = cad~l for some a e R
and d e Z\P'. That is d = ca e C(P) n C(0). Thus c e C(P) n C(0).

EXAMPLE 3.2. We shall construct a prime Noetherian P.I. ring which is a maximal
order and a non-zero prime ideal P and a height-1 prime ideal Qc.P such that

Let fc be a field of characteristic zero. Let R be the ring generated by 2 x 2 generic
matrices X and Y over k (see, for example, Cohn [4, Section 12.6]). Let T = T(R) be the
trace ring of R. Then we know T is a Noetherian P.I. domain and a maximal order
(Small-Stafford [15]).

Further, let tr( ) denote the trace of a given matrix and det( ) the determinant. Then
we know that T . (XY - YX) is a height-1 prime ideal of T and that TIT . (XY - YX) is a
polynomial ring over k generated by the images of X, Y, tr(X), tr(Y) (Formanek-
Halpin-Li [51).

Now det(Z) = X. (tr(A') - A") by the Cayley-Hamilton Theorem. Let

P = T. X + T. (XY - YX).
Then P is a height-2 prime ideal of T with det(A') e P and det(A') is central. Thus, by
Jategaonkar's Principal Ideal Theorem (Jategaonkar [9]), there exists a height-1 prime
ideal Q^P such that det(X) e Q. But then X-tr(X) e C(P)D C(0) and X-
tr(*) t C(Q).

THEOREM 3.3. Let R be as in Theorem 3.1 and let P be a non-zero localisable prime
ideal of R. Then C(P) = (~) C(Q), where the intersection ranges over those height-1 prime
ideals QcP.

Proof. We have that R satisfies the Ore condition with respect to C(P) and it is
well known (Smith [16, Lemma 4.1]) that this implies that C(P) c C(Q) for every prime
ideal Qc.P. The proof is now very similar to that of Theorem 3.1, except that S is taken
to be the localisation of R at P.

We have been unable to answer the following question: If R is the type of ring which
we are considering and P is a non-zero prime ideal of R, is it true that C(P) 3 (~) C(Q),
where the intersection ranges over those height-1 prime ideals Qc.Pl

A positive answer to the above question would imply that if height (P) > 2 then P
contains infinitely many height-1 prime ideals, a result which is known to be true in the
P.I. case (Resco-Small-Stafford [12]), but is an open question for fully bounded
Noetherian rings. We shall in the next section show that the answer is "Yes" if R is also a
maximal order.

4. Prime Noetherian maximal orders. The questions we are considering can also be
answered for prime Noetherian bounded maximal orders. Let R be a prime Noetherian
ring with full quotient ring Q. Then R is a maximal order if given q e Q such that q . I c /
or / . q c / for some non-zero ideal I of R then q eR. In the commutative case this is
equivalent to R being integrally closed. For further details we refer to Maury-Raynaud
[11].
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If R is a maximal order and / an ideal of R, we set /* = {q e Q such that ql c.R}.
Since R is a maximal order I* = {q eQ such that Iq c i?} .

Recall that the bound of cfl is the largest two-sided ideal contained in cR.

LEMMA 4.1. Let R be a prime Noetherian maximal order and let c be a regular element
of R such that the bound B of cR is non-zero. Let P be a prime ideal minimal over B.
Then ct£C(P), P is reflexive and height(P) = 1.

Proof. Wehavec - 'Sc f l so tha t c - ' e f i* . Thus c~xB** c /? , i.e. B**ccR. It follows
that B = B**. From Hajarnavis-Williams [6, Lemma 3.2], P is reflexive and height(P) =
1. Finally, c e C(P) implies that cRC\P = cP^B. But then B . P* ccP. P* = cR which
implies that P* = R, a contradiction. Hence c£ C(P).

THEOREM 4.2. Let R be a prime Noetherian bounded maximal order. Then the
elements of C are units of R.

Proof. Suppose first that R has infinitely many height-1 primes. Then c e C is regular
and hence cR has a bound B. If c is not a unit then pick a minimal prime ideal P over B.
By Lemma 4.1, P has height(P) = 1 and c£ C(P), a contradiction.

If R has only finitely many height-1 primes Q\,. . . ,Qn, set / = Q, n . . . D Qn =f 0.
We note that C = C(I). Let c 6 C(/). Then c + x is regular for some x e I by Robson [14].
Therefore c + x is a unit of R by Lemma 4.1. Hence R/I is Artinian and / is the Jacobson
radical of R. So R is 1-dimensional and semi-local and the result follows.

THEOREM 4.3. Let R be a prime Noetherian bounded maximal order and let P be a
non-zero prime ideal of R. Then C(P) 2 f~] C(Q), where the intersection ranges over those
height-1 primes Q c P.

Proof. Let cef lC{Q) as above. If P contains infinitely many such Q then clearly c
is regular. If P contains only finitely many height-1 primes Qu . . . , Qn then, by Robson
[14], we have c + x regular for some x e Qx C\. . . n Qn. Further, c + x e C(P) if and only
if c e C{P). Therefore, without loss of generality, we may suppose c regular.

Let B be the bound of cR and suppose that c£C(P). Then we must have Be.P.
Hence, by Lemma 4.1, there exists a height-1 prime Q such that B c.Qc.P and c ̂  C(Q),
a contradiction.

COROLLARY 4.4. Let R be a prime Noetherian bounded maximal order and let P be a
prime ideal of R with height(P) s 2 . Then P contains infinitely many height-1 primes.

Proof. Suppose that P contains only finitely many height-1 primes Q\, • • • ,Qn and
let / = Q, D . . . D Qn. Thus PI I is a non-minimal prime ideal of the semiprime
Noetherian ring R/l. Therefore, by Goldie's theorem, there exists c e P such that c e C(/).
But then c e C(P) by Theorem 4.3, a contradiction.

Note that in view of Example 1.3, the word "bounded" cannot be deleted from the
statements of the results in this section.
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