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We consider the drawing of a hollow Newtonian fibre with temperature-dependent
viscosity. The drawing is affected by surface tension, inertia, hole pressurisation and
externally applied cooling. We apply long-wavelength techniques to determine the steady
states and examine their stability. In the presence of surface tension but with no cooling
or internal hole pressure, we show the counter-intuitive result that the hole radius at the
outlet of the device is a non-monotonic function of the hole radius at the inlet. We also
show that if the internal hole is pressurised and the hole size at the inlet is sufficiently
large, then the exit temperature of the fibre is a non-monotonic function of the applied
cooling rate. We have found a number of surprising mechanisms related to how the various
physical effects influence the stability of drawing. For the isothermal case, we show that
increasing the internal hole pressure has a destabilising effect for non-zero surface tension
while the stability is completely independent of the internal hole pressure for zero surface
tension. We further show that there is a complicated interplay between internal hole
pressure, external cooling and surface tension in determining the stability and that it is
possible that increasing the hole size at the inlet can act to destabilise, then stabilise and
finally destabilise the flow. We discuss the mechanisms that determine the counter-intuitive
steady-state behaviour and stability.
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1. Introduction
Optical fibre technology represents the foundation of modern information transmission.
The fibres used to transmit the data are typically very narrow (hundreds of microns
in diameter) but can be many kilometres in length. In recent years the importance
of microstructured optical fibres has been realised. These fibres have complicated
patterns of holes that run along the entire length of the fibre that can generate highly
customisable optical properties with important applications in high-accuracy sensing and
long-distance laser transmission (Monro et al. 2001; Monro & Ebendorff-Heidepriem
2006). The manufacturing process typically involves taking a relatively large preform and
stretching it until the desired diameter is achieved. There are a number of challenges that
must be faced in this process: firstly, relatively high temperatures are required to maintain
the materials at sufficiently low viscosity that they can be stretched with moderate forces;
secondly, surface tension changes the hole structure during stretching and may cause
holes to close; and thirdly, it may be necessary to pressurise the air in the holes in the
fibre during the stretching process. Moreover, the stretching process can be inherently
unstable if the rate of stretching is too rapid. In this case, the instability gives rise to
axisymmetric kinematic waves that propagate along the fibre and results in a periodic
oscillatory behaviour in the radius (Kim et al. 1996). This instability is known as ‘draw
resonance’ (Denn 1980) and, in some circumstances, can represent a big manufacturing
challenge (Demay & Agassant 2014). Therefore, a solid theoretical understanding of the
instability can be invaluable in improving the uniformity of the fibre. In this paper, we will
consider how the presence of holes interacts with thermal effects, surface tension, internal
hole pressurisation and inertia to affect the manufacturing process and its stability.

The earliest theoretical work on drawing dates back to Matovich & Pearson (1969a,b),
who considered isothermal solid fibres without internal holes. They proposed a quasi-
one-dimensional model that they used to determine the steady-state stretching flows and
their linear stability. Also in the case of solid fibres, the effects of inertia, surface tension,
gravity, cooling and heating have been considered by various authors (Shah & Pearson,
1972a; Geyling 1976; Geyling & Homsy 1980; Yarin 1986; Forest & Zhou 2001; Forest &
Zhou 2001; Wylie et al. 2007; Suman & Kumar 2009; Taroni et al. 2013). These authors
carefully considered how the various forces act to stabilise or destabilise the flow. In recent
years, important advances have continued to be made and recently Bechert & Schield
(2017) and Philippi et al. (2022) showed that surface tension can completely destabilise
the flow.

All of the above studies only considered solid fibres. But as explained above, the
fabrication of microstructured fibres has become increasingly important and this has led
to a number of studies of the drawing of such fibres. The earliest work dates back to
Pearson & Petrie (1970), Yarin et al. (1994) and Fitt et al. (2001, 2002). Fitt et al. (2002)
developed a model for an axisymmetric hollow fibre and determined the steady states.
This was generalised to a fibre with a large number of arbitrarily arranged holes by Stokes
et al. (2014) who obtained the steady-state solutions using a modification of a variable
transformation introduced by Cummings & Howell (1999) for solid fibres, under which the
transverse flow decouples from the axial flow. Steady states with internal pressurisation
of holes were obtained using related techniques by Chen et al. (2015) and the results
were compared with experiments in Chen et al. (2016a,b). A steady-state inverse problem
that is useful in obtaining the desired output fibre geometry was considered by Buchak
et al. (2015). The approach of Stokes et al. (2014) was extended to explicitly model
thermal effects by Stokes et al. (2019). Gravitational extension (Tronnolone et al. 2016)
and extrusion (Tronnolone et al. 2017) have also been considered. The vast majority of
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these studies were focused on steady-state drawing of hollow fibres and did not consider
stability. Of the papers mentioned in this paragraph Yarin et al. (1994) and Fitt et al.
(2002) considered stability. They noted that if inertia, gravity, surface tension and internal
hole pressurisation are ignored then the stability results for a hollow fibre are identical
to the stability results for a solid fibre. They noted that the situation is significantly more
complicated if surface tension and internal hole pressurisation are included and posed the
question of how these effects modify the stability of drawing. Wylie et al. (2023) showed
that internal holes are always destabilising in the presence of surface tension. However, the
issue of how internal hole pressurisation affects the stability remained open. Moreover, the
way in which thermal effects combine with surface tension and internal hole pressurisation
in the presence of holes remained open. Addressing these open problems represents one
of the main goals of this paper and we will show that the interactions of these effects lead
to surprisingly complicated behaviour.

In this paper, we will use asymptotic techniques to develop the equations that describe
the evolution of a Newtonian hollow fibre subjected to drawing, with surface tension,
internal hole pressurisation, inertia and cooling. We will obtain the steady-state solutions
and show the surprising result that the hole size at the outlet of the device is a non-
monotonic function of the hole size at the inlet. Another counter-intuitive result is that the
temperature at the outlet is a non-monotonic function of the applied cooling rate for hollow
fibres with internal hole pressurisation. We will then determine the stability and show that
the stability characteristics are determined by a complicated interaction between surface
tension, internal hole pressurisation, inertia and cooling. For example, we will show that
internal hole pressurisation is always destabilising for isothermal drawing with non-zero
surface tension but has no effect on stability for isothermal drawing with zero surface
tension. Furthermore, for non-zero cooling, the internal hole pressurisation can be either
stabilising or destabilising depending on the hole size at the inlet. We will also explain the
mechanisms that underlie the steady-state behaviour and the stability characteristics.

2. Model formulation
We consider the axisymmetric drawing of a viscous fibre with a single hole that runs
parallel to the axis of the fibre. We assume that the fluid is fed through an input aperture
of radius rin with speed uin and that the hole is of size αrin , where 0 ≤ α < 1. The fibre
is pulled by a take-up roller that is a large distance from the aperture and is rotated with a
constant speed so that the fibre has speed uout . The inlet and outlet are aligned vertically
so that the axis of the fibre is parallel to gravity (see figure 1).

We define the coordinate x to be the distance along the axis of the fibre, with x = 0
denoting the input aperture and x = L denoting the device outlet at which the fibre attains
its final geometry before winding onto the take-up roller i.e. below this point there is no
further stretching or other deformation of the fibre. We define r to be the radial distance
measured from the centreline of the fibre and t to be the time. We denote the pressure in
the fluid as p(x, r, t) and the flow velocities in the axial and radial directions, as u(x, r, t)
and v(x, r, t), respectively. We denote the outer radius and inner radius of the fibre by
h2(x, t) and h1(x, t), respectively. We note that the input boundary conditions imply
that h2(0, t) = rin and h1(0, t) = αrin . We denote the pressure in the ambient air that
surrounds the fibre to be pa and the air pressure in the hole of the fibre to be pa + pH ,
where pH represents the ‘over-pressure’applied in the hole. When the fluid enters through
the aperture we denote its temperature by θhot . As the fluid passes through the device it
experiences cooling to the environment whose temperature we denote as θcold . We denote
the temperature in the fibre as θ(x, r, t).
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x = 0

x = L

Input nozzle

Output to take-up

roller

h2

h1

uoutuout

uinuin

Figure 1. Schematic of the drawing process for a hollow axisymmetric fibre.

Assuming that the fluid is incompressible and Newtonian, the flow is described by the
Navier–Stokes equations and the heat equation (Fitt et al. 2001, 2002; He et al. 2016)

ρ (ut + uux + vur ) = −px + 1
r

(μ(θ)rur )r + (2μ(θ)ux )x + 1
r

(μ(θ)rvx )r +ρg, (2.1)

ρ (vt + uvx + vvr ) = −pr + (μ(θ)ur )x + (μ(θ)vx )x

+ 1
r

(2rμ(θ)vr )r − 1
r2 (2μ(θ)v) , (2.2)

ux + 1
r

(rv)r = 0, (2.3)

ρcp (θt + uθx + vθr ) = kθxx + k

r
(rθr )r , (2.4)

where subscripts denote differentiation with respect to the subscript variable, ρ is the
density of the fluid, μ is the viscosity, g is the acceleration due to gravity, k is the thermal
conductivity and cp is the specific heat capacity. The materials that are typically used in
the drawing of optical fibres are glasses whose rheology is well-approximated as being
Newtonian and having viscosities that increase extremely rapidly as the material is cooled.
We model this using an exponential law (He et al. 2016)

μ(θ) = μhot e
−B(θ−θhot ), (2.5)

where B is a positive constant that describes how quickly viscosity decreases with
temperature and μhot is the viscosity of the material at the input temperature θ = θhot .
We note that although the viscosity typically varies dramatically with temperature, the
variations in density, surface tension and thermal conductivity with temperature are much
weaker (Scholze 1990; Huang et al. 2003). We therefore approximate them as constants.
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Assumptions of this type have been widely used in the glass drawing literature (Shah &
Pearson, 1972a,b; Fitt et al. 2002; Huang et al. 2003; Wylie et al. 2007; Taroni et al. 2013;
He et al. 2016; Philippi et al. 2022).

The normal stress boundary conditions balance viscous stresses, surface tension and
pressure from the gas on the inner and outer surfaces of the fibre, and are given by

nT
1 (−p I + σ )·n1 = −γ κ1 − (pa + pH ) on r = h1(x, t), (2.6)

nT
2 (−p I + σ )·n2 = −γ κ2 − pa on r = h2(x, t), (2.7)

where γ is the surface tension coefficient. The tangential stress boundary conditions are
given by

τ T
i (−p I + σ ) · ni = 0 on r = hi (x, t) for i = 1, 2. (2.8)

In the above boundary conditions, I is the identity matrix, σ = μ(θ)(∇u + ∇uT ) is the
viscous stress tensor, γ is the surface tension coefficient, κi is the mean curvature of the
ith free surface, given by

κi = (−1)(i+1)

⎡
⎣ hixx(

1 + h2
i x

) 3
2

− 1

hi
(
1 + h2

i x

) 1
2

⎤
⎦ for i = 1, 2, (2.9)

and the unit normal vectors ni and unit tangent vectors τ i on these free surfaces are given
by

nT
i = (−1)(i+1)√

1 + h2
i x

(hix , −1, 0) for i = 1, 2, (2.10)

τ T
i = (−1)(i+1)√

1 + h2
i x

(1, hix , 0) for i = 1, 2. (2.11)

The kinematic conditions on the free surfaces are

hit + uhix = v on r = hi (x, t) for i = 1, 2. (2.12)

We assume that the heat losses to the surrounding air at the outer surface are described
by

−kn2 · ∇θ = FC (θ) on r = h2(x, t), (2.13)

where FC (θ) is the rate of heat loss to the surroundings. We model the heat loss to the
surroundings using Newton’s heat transfer law

FC (θ) = hw(θ − θcold), (2.14)

where hw is the heat transfer coefficient. We assume heat losses into the internal hole are
negligible

−kn1 · ∇θ = 0 on r = h1(x, t). (2.15)

The boundary conditions at the inlet x = 0 are given by

u = uin, h2 = rin, h1 = αrin, θ = θhot . (2.16)

The boundary conditions at the outlet x = L are

u = uout and θx = 0. (2.17)
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Here, we have assumed that the fibre temperature has very nearly reached the ambient
air temperature at the outlet such that the conductive heat flux is negligible. It is important
to mention that, to solve the full axisymmetric problem, we would need extra boundary
conditions for v at the inlet and outlet. However, we will derive a set of long-wavelength
equations that neglect the highest-order derivatives in the r direction. This represents a
singular perturbation and so we will not need boundary conditions on v to solve our
system. Nevertheless, at the inlet and outlet there will be thin boundary layers in which
the solutions of the long-wavelength equations adapt to the omitted boundary conditions.
These boundary conditions also neglect die swell effects (Trabelssi et al. 2016). These
assumptions are used in almost all of the mathematical modelling studies that apply
long-wave techniques.

2.1. Non-dimensionalisation and long-wave model
We proceed by non-dimensionalising the equations using the following scalings:{

x = Lx ′, r = rinr ′, h2 = rinh′
2, h1 = rinh′

1, t = L
uin

t ′, p = pa + μhot uin
L p′,

u = uinu′, v = rinuin
L v′, μ(θ) = μhotμ

′(θ), θ = θcold + (θhot − θcold)θ ′,
(2.18)

where primes denote the non-dimensional variables. After a straightforward substitution
of these scalings into the governing equations and boundary conditions (2.1)–(2.17) we
find that the system is described by the following dimensionless parameters:

ε = rin

L
, D = uout

uin
, Re = ρuin L

3μhot
, P = pH L

μhot uin
, Γ = γ L

μhotrinuin
,

(2.19)

Pe = ρcpuin L

k
, b = B(θhot − θcold), G = ρgL2

μhot uin
, C = 2hw L

ρcprinuin
.

(2.20)

Here, ε is a measure of the slenderness of the fibre, D is the draw ratio that represents
the ratio of the output speed to the input speed, Re is the Reynolds number which measures
the ratio of inertial forces to viscous forces, P is dimensionless internal hole pressurisation
which measures the ratio of internal pressure forces in the hole to viscous forces, Γ is the
inverse capillary number which measures the ratio of surface tension to viscous forces,
Pe is the Péclet number which measures the ratio of heat advection to heat conduction,
b measures the relative change in the logarithm of the viscosity between the cold and hot
temperatures, G measures the ratio of gravitational to viscous forces and C is a measure
of the strength of the convective cooling relative to heat advection along the fibre.

The parameter values that occur in fibre drawing vary significantly between different
applications. This is because drawing techniques are used for a broad range of fluids with
very different material properties and for devices that have very different scales. A detailed
description of parameter ranges that can occur can be found in Bechert (2017). He showed
that the largest value of ε that occurs is O(10−1) and it is often much smaller. In fibre
drawing, D is chosen to obtain the required area reduction from preform to fibre and is typ-
ically O(103) − O(104). However, there are other types of extrusional flows (Tronnolone
et al. 2017) for which such large values of D are not appropriate and the effective draw
ratio can be O(1). In applications, the value of P will be zero if no internal pressure is
applied. On the other hand, if internal pressure is applied, there will be a critical value of
P above which the hole will expand rapidly and burst (Chen et al. 2015). The parameters
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Re, Γ , Pe and G can each take a broad range of both small and large values for various
applications (Tronnolone et al. 2016; Bechert 2017; Tronnolone et al. 2017). In practice,
the dimensionless cooling C cannot be too large otherwise the viscosity of the fibre will
become extremely large and enormous forces will be required to extend the fibre. The
parameter α is the ratio of the hole radius to the fibre radius at the inlet. In applications
this can vary widely since the optical properties of fibres differ over a very broad range of
hole sizes. In extreme cases the area fraction of the glass in microstructured optical fibres
may be less than 10 % (Argyros & Pla 2007). Due to this wide variation we perform a
broad parameter study and focus on results that are unexpected or counter-intuitive.

Since the number of parameters is quite large and much of the behaviour is qualitatively
similar to previous results for a solid fibre, we focus on the cases in which the presence
of the hole in the fibre leads to surprising or counter-intuitive behaviour. In particular, we
strongly focus on the role played by the relative size of the hole at the inlet, α, and the
internal hole pressurisation, P . With this in mind, we note that the role of axial thermal
conduction in our system is to transport heat from the input aperture along the fibre. This
effectively just reduces the effective cooling rate and thereby decreases the viscosity. Since
this does not lead to any surprising behaviour, we consider the limit in which Pe � 1 and
neglect the axial conduction terms. Since this represents a singular perturbation to the
equations we also drop the boundary condition on the temperature at x = 1. In addition,
the gravitational stretching term G simply acts to modify the effective stretching rate
along the axis of the fibre. This also does not lead to any new qualitative behaviour and
hence we consider the limit G � 1 and neglect gravitation stretching. We note that these
simplifications do not qualitatively change the interesting behaviour that we have found.

Following many previous studies (Yarin et al. 1989; Dewynne et al. 1994; Cummings
& Howell 1999; Stokes et al. 2000; Fitt et al. 2002; Wylie et al. 2007; He et al. 2016;
Stokes et al. 2019) we use the fact that the aspect ratio is a small parameter, that is ε � 1,
and expand all quantities in terms of ε. The derivation of the equations satisfied by the
leading-order quantities is straightforward, although relatively involved, and since it is
contained in a number of previous papers we omit the details and refer the reader to Fitt
et al. (2002) and Stokes et al. (2019). Under the assumption that ε2 Pe � 1 and ε2 Re � 1
we obtain the following system of equations for the leading-order quantities:

Re
(
h2

2 − h2
1
)
(ut + uux ) = [μ(θ)

(
h2

2 − h2
1
)
ux ]x + Γ [h2 + h1]x , (2.21)

μ(θ)
(
h2

2 − h2
1
)[(h2

1)t + (h2
1u)x ] = P[h2

1h2
2] − Γ h1h2[h2 + h1], (2.22)(

h2
2 − h2

1
)

t + [(h2
2 − h2

1
)
u]x = 0, (2.23)(

h2
2 − h2

1
)
(θt + uθx ) = −Ch2θ, (2.24)

where μ(θ) = e−bθ . The leading-order boundary conditions are given by

u = 1, h2 = 1, h1 = α, θ = 1 at x = 0, (2.25)

and

u = D at x = 1. (2.26)

Here, for convenience, we have dropped the primes that denote dimensionless variables.
This system of equations has the same form as those derived by Fitt et al. (2002) and will
represent our main system of equations in this paper.
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2.2. Steady-state solutions
To obtain the steady-state solutions, we set ∂/∂t ≡ 0 in (2.21)–(2.24) and denote the
dependent variables in the solutions, which no longer depend on time, with hats.
Integrating the mass conservation equation (2.23) and using the boundary condition (2.25)
at x = 0 we obtain

û
(
ĥ2

2 − ĥ2
1
)= (1 − α2). (2.27)

Using (2.27) to eliminate û from (2.21) and integrating with respect to x we obtain

Re
(1 − α2)2

ĥ2
2 − ĥ2

1

− Γ [ĥ2 + ĥ1] + (1 − α2)μ(θ̂)
(
ĥ2

2 − ĥ2
1
)

x

ĥ2
2 − ĥ2

1

= −F, (2.28)

where F is a constant that represents the pulling tension in the fibre. This constant must
be chosen to satisfy the boundary conditions. Using (2.27) and (2.28) to simplify the
remaining equations we obtain

ĥ1x = −Fĥ1

2μ(θ̂)(1 − α2)
− Γ

(
ĥ2

2 − ĥ2
1
)

2μ(θ̂)(1 − α2)
+ Pĥ1ĥ2

2

2μ(θ̂)(1 − α2)
− Re(1 − α2)ĥ1

2μ(θ̂)
(
ĥ2

2 − ĥ2
1
) , (2.29)

ĥ2x = −Fĥ2

2μ(θ̂)(1 − α2)
+ Γ

(
ĥ2

2 − ĥ2
1
)

2μ(θ̂)(1 − α2)
+ Pĥ2

1ĥ2

2μ(θ̂)(1 − α2)
− Re(1 − α2)ĥ2

2μ(θ̂)
(
ĥ2

2 − ĥ2
1
) , (2.30)

θ̂x = − C

(1 − α2)
ĥ2θ̂ . (2.31)

The boundary conditions at the inlet x = 0 are given by

ĥ1 = α, ĥ2 = 1, θ̂ = 1. (2.32)

Using (2.27) the boundary condition at the outlet x = 1 is

ĥ2
2 − ĥ2

1 = (1 − α2)D−1. (2.33)

We note that the above system of equations is only valid if the hole size ĥ1 > 0. If
hole closure occurs (ĥ1 = 0) at a location x = x∗ in the domain, then for values of x >

x∗ we must solve the system of equations appropriate for a solid fibre that are given by
substituting ĥ1 ≡ 0 into (2.30) and (2.31).

In general, one must resort to numerical methods to solve the above system. However,
there are some special cases in which we can obtain analytical results that shed significant
light on some of the key mechanisms that govern the mechanics. In order to achieve this
we make the following transformation:

A = ĥ2
2 − ĥ2

1, H = ĥ2 + ĥ1 and x = (1 − α2)

∫ y

0
μ(θ̂(y̌))dy̌. (2.34)

Here, A is the dimensionless cross-sectional area, H is the dimensionless total arclength
in a cross-section and y is a scaled axial distance. Under this transformation the system
(2.29)–(2.33) simplifies dramatically and we obtain

Ay = −F A + Γ H A − Re(1 − α2)2, (2.35)

Hy = −F H

2
+ P(H4 − A2)

8H
− Re(1 − α2)2 H

2A
, (2.36)

θ̂y = −C(H2 + A)θ̂μ(θ̂)

2H
. (2.37)
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The boundary conditions at the inlet are given by

A = 1 − α2, H = 1 + α, θ̂ = 1 at y = 0. (2.38)

Using (2.27) the boundary condition at the outlet is

A = (1 − α2)D−1 at y = Y, (2.39)

where Y must be determined by solving (1 − α2)
∫ Y

0 μ(θ̂(y̌))dy̌ = 1. These equations are
only valid before hole closure occurs in which case H2 > A. If hole closure occurs in the
domain then we must solve (2.35) and (2.37) with H2 ≡ A.

This transformation represents a simplification because θ̂ does not explicitly appear
in (2.35) and (2.36). However, in order to determine A and H one needs to know the
constant of integration F and this must be found using the boundary condition (2.39)
which does depend explicitly on θ̂ . Nevertheless, this transformation will help us to obtain
some analytical expressions in some special cases that we will examine in detail.

2.3. Linear stability analysis
In order to determine the stability of the steady-state solutions there is no significant
advantage in using the transformation to A and p and so we use the original variables.
We add small perturbations of the form

u = û(x) + ũ(x)eλt ,
h1 = ĥ1(x) + h̃1(x)eλt ,
h2 = ĥ2(x) + h̃2(x)eλt ,

θ = θ̂ (x) + θ̃ (x)eλt ,

⎫⎪⎪⎬
⎪⎪⎭ (2.40)

where λ is the growth rate of perturbations and tildes are used to represent the perturbation
quantities. Substituting (2.40) into (2.21)–(2.24) and linearising in the perturbation
quantities gives the following linear eigenvalue problem:

Re
[(

ĥ2
2 − ĥ2

1
)
(λũ + ûũx + ũûx ) + 2(ĥ2h̃2 − ĥ1h̃1)ûûx

]= Γ
[
h̃2 + h̃1

]
x

+ [
μ(θ̂)

(
ĥ2

2 − ĥ2
1
)
ũx + 2μ(θ̂)(ĥ2h̃2 − ĥ1h̃1)ûx − bμ(θ̂)θ̃

(
ĥ2

2 − ĥ2
1
)
ûx
]

x , (2.41)

μ(θ̂)
(
ĥ2

2 − ĥ2
1
)[

2λĥ1h̃1 + (ĥ2
1ũ + 2ĥ1h̃1û)x

]
+ [

2μ(θ̂)(ĥ2h̃2 − ĥ1h̃1) − bμ(θ̂)θ̃
(
ĥ2

2 − ĥ2
1
)]

(ĥ2
1û)x

= 2P
(
ĥ2

1ĥ2h̃2 + ĥ1h̃1ĥ2
2
)− Γ

(
ĥ2

1h̃2 + 2ĥ1h̃1ĥ2 + 2ĥ1ĥ2h̃2 + h̃1ĥ2
2
)
, (2.42)

2λ
(
ĥ2h̃2 − ĥ1h̃1

)+ [(
ĥ2

2 − ĥ2
1
)
ũ + 2(ĥ2h̃2 − ĥ1h̃1)û

]
x = 0, (2.43)

ûθ̂x
(
2ĥ2h̃2 − 2ĥ1h̃1

)+ (
ĥ2

2 − ĥ2
1
)(
λθ̃ + ûθ̃x + ũθ̂x

)= − C
[
ĥ2θ̃ + h̃2θ̂

]
. (2.44)

The boundary conditions are

ũ = 0, h̃1 = 0, h̃2 = 0, θ̃ = 0 at x = 0,

ũ = 0 at x = 1. (2.45)

Equations (2.41)–(2.44) along with the boundary conditions (2.45) represent an
eigenvalue problem for λ. We note that these equations are only valid for steady-state
solutions in which the hole does not close. However, in the study of stability, we will focus
on cases in which hole closure does not occur.
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3. Steady-state solutions

3.1. Obtaining steady-state solutions
The system (2.29)–(2.31), or equivalently (2.35)–(2.37), represents three first-order
ordinary differential equations with an undetermined constant of integration F . There
are three boundary conditions at the inlet and a condition at the outlet that allows us to
determine the value of F . As we will see below, in some special cases it is possible to
obtain explicit expressions for the solutions using (2.35)–(2.37). However, in general, this
is not possible and we must resort to numerical methods in which case we have solved
(2.29)–(2.31). For a given value of F it is straightforward to use the MATLAB routine
‘ode45’, which represents a fourth-order Runge–Kutta method, to accurately solve the
system of ordinary differential equations (2.29)–(2.31). We employ this within a function
whose input is F and that outputs the cross-sectional area

(
ĥ2

2 − ĥ2
1
)

at x = 1. This forms
the basis of a shooting technique in which one selects the value of F to satisfy the boundary
condition (2.33). The value of F was determined using the MATLAB routine ‘fzero’ which
uses a method based on bisection, secant and inverse quadratic interpolation techniques.
The implementation of this method was very straightforward and obtaining the results did
not pose any particular problems.

3.2. Steady-state solutions for isothermal drawing
We begin by presenting some basic results that neglect inertia, pressure and cooling, and
compare how surface tension affects the steady-state solutions for a solid fibre and a hollow
fibre (figure 2). In the first column of figure 2 we see the results for the axial velocity û and
outer radius ĥ2 for a solid fibre for different values of the dimensionless surface tension
Γ . We note that this calculation is for a solid fibre and there is no profile for the radius of
the hole ĥ1. The results for the different values of Γ use the same draw ratio D and so û
and ĥ2 adjust from û = ĥ2 = 1 at x = 0 to û = D and ĥ2 = D−1/2 at x = 1 in all cases. The
main effect of surface tension is to localise the thinning towards the outlet. The mechanism
underlying this has been presented in Wylie et al. (2023). In fact, for a solid isothermal
fibre with zero inertia an analytic solution may be obtained from (2.34), which becomes

Ay = −F A + Γ A3/2. (3.1)

This is a Bernoulli differential equation that can be solved subject to the boundary
condition A = 1 at y = 0 to give

A =
[
Γ

F
+
(

1 − Γ

F

)
eFy/2

]−2

. (3.2)

In the isothermal case with no hole, we have μ ≡ 1 and α = 0 and so (2.39) becomes
A = D−1 at y = 1. Hence, we obtain an equation for F given by

D1/2 = Γ

F
+
(

1 − Γ

F

)
exp

(
F

2

)
. (3.3)

For finite values of Γ this equation can only be solved numerically. However, in the large
Γ limit, asymptotic calculations show that F − Γ must be exponentially small. Hence,
in this limit, (3.2) implies that there will be relatively little thinning over the bulk of the
region, but there will be a layer of width O(1/Γ ) near the outlet where most of the thinning
occurs.

In the second column of figure 2 we present the results for a hollow fibre with α = 1/2.
If the surface tension Γ = 0, then one can use (2.29) and (2.30) to readily see that ĥ2ĥ1x −
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û

Γ = 0

Γ = 2

Γ = 4

Γ = 6

Γ = 8

Γ = 10

Γ = 0

Γ = 2

Γ = 4

Γ = 6

Γ = 8

Γ = 10

Γ = 0

Γ = 1

Γ = 2

Γ = 3

Γ = 4

Γ = 5

Γ = 0

Γ = 1

Γ = 2

Γ = 3

Γ = 4

Γ = 5

Γ = 0

Γ = 1

Γ = 2

Γ = 3

Γ = 4

Γ = 5

2

4

6

8

10

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

ĥ2
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Figure 2. The effect of varying surface tension on the steady-state solution for a solid fibre and a hollow fibre
is shown in columns (a) and (b), respectively. In column (a) the steady-state velocity û and outer radius ĥ2
of a solid fibre are plotted as a function of x for different values of the surface tension Γ . In column (b) the
same quantities are plotted along with the hole radius ĥ1 for a fibre with α = 1/2. In both cases the draw ratio
D = 10, heat transfer coefficient C = 0, Reynolds number Re = 0 and internal hole pressure P = 0.

ĥ1ĥ2x = 0. This implies that the ratio ĥ1/ĥ2 remains constant throughout the domain and
so the hole will never close (Fitt et al. 2002). However, for sufficiently large surface tension
the hole will close before the fibre reaches the outlet and ĥ1 ≡ 0 between the closure point
and the outlet. The stronger the surface tension the more rapidly the hole closes. We note
that for cases in which the hole closes, the conservation of mass dictates that the radius
of the fibre at the outlet is given by ĥ2 = (1 − α2)D−1. On the other hand, if hole closure
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û

ĥ2
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Figure 3. The effect of varying inertia on the steady-state solution for hollow fibres without surface tension
(Γ = 0) and with surface tension (Γ = 1) is shown in columns (a) and (b), respectively. In both cases the draw
ratio D = 10, inlet hole radius α = 1/2, heat transfer coefficient C = 0, and internal hole pressure P = 0.

does not occur the outer radius of the fibre will be bigger than this value. In all cases, û
adjusts from û = 1 at x = 0 to û = D at x = 1 and the increase in û becomes more localised
towards x = 1 as the surface tension increases. If the surface tension is sufficiently large
that the hole closes then ĥ2 adjusts from ĥ2 = 1 at x = 0 to ĥ2 = (1 − α2)1/2 D−1/2 at
x = 1 and the decrease in ĥ2 becomes more localised towards x = 1 as the surface tension
increases. However, if the surface tension is sufficiently small that the hole does not close,
then increasing surface tension makes ĥ2 uniformly smaller throughout the domain.
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In figure 3 we examine how inertia affects the dynamics of hollow fibres in the absence
of pressure and cooling; both with and without surface tension. In the first column of this
figure we present the results for a hollow fibre with zero surface tension for different values
of Re and in the second column we present similar results when the surface tension is non-
zero. As explained above, in this negligible surface tension case the ratio ĥ1/ĥ2 remains
constant throughout the domain and so the hole can never close. Moreover, the variation
in û, ĥ1 and ĥ2 becomes more localised towards x = 1 as inertia is increased (see the first
column of figure 3). This phenomenon was explained by Wylie et al. (2023). However,
when the surface tension is non-zero the ratio ĥ1/ĥ2 is not constant and increasing Re can
cause the hole to close. This is shown in the second column of figure 3. In the presence of
surface tension the variation in the velocity and the outer radius becomes more localised
towards x = 1 as the inertia increases. However, increased inertia makes the hole close
more slowly with x near the inlet and more rapidly with x near the outlet.

In figure 4 we examine how the size of the hole affects the dynamics of hollow fibres in
the absence of inertia, pressure and cooling; both with and without surface tension. In the
first column we present the results for a hollow fibre with zero surface tension for different
values of α and in the second column we present similar results when the surface tension is
non-zero. When the surface tension is zero the ratio ĥ1/ĥ2 remains constant throughout the
domain and the velocity is independent of the hole size (see the first column of figure 4).
In this case one can readily see that the outer radius ĥ2 is also independent of the hole size
if surface tension and pressure are zero. However, when the surface tension is non-zero, the
dynamics is significantly more complicated. For small inlet hole radii the surface tension
will cause the hole to close. For intermediate inlet hole radii the surface tension will not
be strong enough to close the hole during the time that the fibre is in the domain. However,
surprisingly, for inlet hole radii close to the inlet outer radius (α close to unity) the hole
will close very rapidly. There are some other interesting features of the dynamics. As α

becomes close to unity and the hole closes very rapidly, the speed of the fibre decreases
to conserve mass. There is also an associated decrease in the outer radius. After the hole
closes the resulting fibre has to increase its speed from a low value up to D. This is shown
in the second column of figure 4. The rapid hole closure occurs because as α tends to
unity the cross-sectional area becomes small and so offers little resistance to the surface
tension force that remains finite. For negligible pressure, inertia and cooling, and assuming
that hole closure does not occur, (2.35) and (2.36) can be solved explicitly to give further
insight. After applying the boundary conditions (2.38) we obtain

H = (1 + α)e−Fy/2, (3.4)

A = (1 − α2) exp
[
−Fy + 2Γ (1 + α)

F
(1 − e−Fy/2)

]
. (3.5)

We note that this solution is only valid if H2 > A, which corresponds to hole closure
not occurring. In this case we can apply the boundary condition A = (1 − α2)D−1 at y =
(1 − α2)−1 to obtain an equation for F given by

ln D = F

1 − α2 − 2Γ (1 + α)

F

(
1 − exp

[
− F

2(1 − α2)

])
. (3.6)

This equation cannot be solved explicitly and we must use numerical methods to obtain
F . Having obtained F , we can construct the solutions using (3.4) and (3.5).
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Figure 4. The effect of varying the inlet hole radius on the steady-state solution for hollow fibres without
surface tension (Γ = 0) and with surface tension (Γ = 1) is shown in columns (a) and (b), respectively. In
both cases the draw ratio D = 10, heat transfer coefficient C = 0, Reynolds number Re = 0 and internal hole
pressure P = 0.

If hole closure occurs at a location y∗ with H = H∗ and A = A∗ = H2∗ , then for values
of y > y∗ we need to solve (3.1) subject to the boundary condition A = H2∗ at y = y∗. This
can be solved explicitly to obtain

A =
[
Γ

F
+
(

1
p∗

− Γ

F

)
eF(y−y∗)/2

]−2

. (3.7)

Applying the boundary condition A = (1 − α2)D−1 at y = (1 − α2)−1, we obtain an
equation for F given by
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Figure 5. The hole size at the outlet, ĥ1(1), is plotted against the hole size at the inlet, ĥ1(0) ≡ α, for different
values of surface tension Γ for two different draw ratios, (a) D = 5 and (b) D = 25. In both plots the heat
transfer coefficient C = 0, internal hole pressure P = 0 and Reynolds number Re = 0.

(1 − α2)−1/2 D1/2 = Γ

F
+
(

1
p∗

− Γ

F

)
exp

(
F

[(
1 − α2

)−1 − y∗
]/

2
)

. (3.8)

If α is close to one then one can readily show that F − Γ H∗ must be exponentially small.
Using the approximation F = Γ H∗, evaluating (3.4) and (3.5) at y = y∗, and eliminating
y∗, we obtain an expression for H∗ given by

H∗ = 2(1 + α)

2 + ln(1 + α) − ln(1 − α)
. (3.9)

We now reinterpret this solution in terms of the original variables for α close to one. The
hole closure occurs on a scale y ∼ 1/F ∼ 1/(H∗Γ ) ∼ − ln(1 − α)/Γ as α → 1. Since
x = (1 − α2)y, this corresponds to a scale of x ∼ −(1 − α) ln(1 − α)/Γ which becomes
small as α → 1. This shows that there will be a narrow region near x = 0 in which the hole
rapidly closes. After the hole closes, we need to solve (3.1) with F = Γ H∗ and a boundary
condition A = H2∗ at y = y∗. In the limit as α → 1 the surface tension forces become strong
and the analysis is similar to that for a solid thread and large Γ that we derived above.
Therefore, after the hole closes most of the thinning will occur in a narrow region near the
exit of width y ∼ − ln(1 − α)/Γ or equivalently x ∼ −(1 − α) ln(1 − α)/Γ . Hence, there
will be very little thinning between the location of hole closure and a narrow region near
the exit. This behaviour can clearly be observed in the curve for α = 0.99 in figure 4(b)
that has an obvious plateau region after hole closure occurs. In the original variables, the
height of the plateau can be obtained by recalling that H = ĥ2 + ĥ1 and noting that at the
point at which hole closure occurs we have ĥ2 = H∗ and ĥ1 = 0. Hence, the height of the
plateau is simply ĥ2 = H∗.

In figure 5 we plot ĥ1(1), the size of the inner hole at the outlet, as a function of α, the
size of the inner hole at the inlet, for different values of the surface tension Γ . Since A =
(1 − α2)D−1 at the outlet, these results can be obtained using (3.6) and (3.4) evaluated
at the outlet. The two plots are for two different values of the draw ratio D. In both cases
the inertia and hole pressurisation are negligible. For Γ = P = 0 the ratio of ĥ1/ĥ2 is
a constant throughout the entire length of the drawing. In this case, we can readily use
(2.17) to see that ĥ1 = αD−1/2 at x = 1. That is, for Γ = P = 0 the curve in figure 5 is
a straight line. For small values of Γ we see that both very small holes and very large
holes will close, there is a range of hole sizes for which the hole does not close and there
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is a maximum achievable value of the hole size at the outlet. On the other hand, if the
value of Γ is sufficiently large then the hole will close no matter what the size of the
hole at the inlet. This is consistent with the mechanism explained above since small inlet
hole sizes close rapidly because the surface tension has very little work to do to close the
hole, whereas large holes close rapidly because the surface tension induces very large hole
closure rates when the hole radius approaches the outer radius. We note that the locations
where the curves intersect with the horizontal axis correspond to hole closure occurring
(i.e. ĥ1 = 0 or A = H2) exactly at x = 1 or y = (1 − α2)−1. Evaluating (3.4) and (3.5)
at y = (1 − α2)−1, using A = H2, and simplifying the result using (3.6) we obtain F =
(1 − α2) ln[(1 + α)D/(1 − α)]. Substituting this back into (3.6) we obtain an expression
for the critical value of Γ above which hole close occurs

Γcri t =
(1 − α)(1 + α)1/2 ln

(
1+α
1−α

)
ln
(

(1+α)D
1−α

)
2
[
(1 + α)1/2 − (1 − α)1/2 D−1/2

] . (3.10)

This expression is consistent with the numerical results shown in figure 5.
In figure 6 we examine how the size of the hole affects the steady states of hollow fibres

in the absence of inertia and cooling, but include the effects of internal hole pressurisation
and surface tension. In the first column of figure 6 we present the results for a hollow fibre
with zero surface tension for different values of P and in the second column we present
similar results when the surface tension is non-zero. If Γ = 0 we can use (2.28) to see
that the cross-sectional area ĥ2

2 − ĥ2
1 does not depend on P . Using (2.27) we can, hence,

deduce that û is also independent of P if Γ = 0. This can be seen in the first column of
figure 6. On the other hand, both ĥ1 and ĥ2 are affected by P and both quantities uniformly
increase as P is increased. However, there is a finite value of P at which both ĥ1 → ∞
and ĥ2 → ∞ in such a way that ĥ2

2 − ĥ2
1 and hence û remains finite. This phenomenon was

noted by Fitt et al. (2002) and Chen et al. (2015), who described it as an ‘explosion’. For
values of P above the critical value no steady-state solutions exist.

In fact, the case of Re = Γ = 0 is another situation in which the solution can be
obtained analytically. Putting Γ = Re = 0 in (2.35), integrating and applying the boundary
condition (2.38) we obtain

A =
(

1 − α2
)

e−Fy . (3.11)

Substituting (3.11) into (2.36) and putting Re = 0 we obtain

Hy = −F H

2
+

P
(

H4 − (
1 − α2)2 e−2Fy

)
8H

. (3.12)

This equation can be made separable by considering the combination H2eFy and after
integrating and applying the boundary condition (2.38) we obtain

H = e−Fy/2
(

1 − α2
)1/2

(
1 + α exp

[(
1 − α2) P

(
1 − e−Fy

)
/(2F)

]
1 − α exp

[(
1 − α2

)
P
(
1 − e−Fy

)
/(2F)

]
)1/2

. (3.13)

In the isothermal case, μ ≡ 1 and applying (2.39) and (3.11) we obtain F = (1 −
α2) ln D. An explosion will occur when the denominator in (3.13) becomes zero. The
lowest value of P for which this occurs can be obtained by setting y = (1 − α2)−1 and
yields

Pcrit = −2D ln D ln α

D − 1
. (3.14)
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Figure 6. The steady-state solution for the velocity û, outer radius ĥ2 and the inner radius ĥ1 are plotted as a
function of x for different values of internal hole pressure P and for surface tension Γ = 0 in column (a) and
Γ = 0.3 in column (b). In both cases the draw ratio D = 10, heat transfer coefficient C = 0, Reynolds number
Re = 0, and inlet hole radius α = 1/2.

Using this expression for the parameters α = 0.5, D = 10 of figure 6 we see that the value
at which an explosion first occurs for the case of zero surface tension (Γ = 0, left column)
is approximately 3.55. Results for Γ �= 0 are shown in the second column of figure 6.
In this case û depends weakly on P . The quantities ĥ1 and ĥ2 also uniformly increase
as P is increased, but the surface tension acts to reduce the rate of increase with P .
The phenomenon of ‘explosion’ also occurs, but it happens at a larger value of P than
in the Γ = 0 case.
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3.3. Steady-state solutions for non-isothermal drawing
In figure 7 we examine how cooling affects the steady-state solution in the absence of
inertia, surface tension and pressure. The first column shows the solution for different
values of the heat transfer coefficient C and a fixed value of the inlet hole radius α = 1/2.
As C is increased the temperature decreases uniformly along the fibre. This temperature
variation means that the viscosity near the inlet is lower than the viscosity near the outlet.
Therefore, it is easier for the fibre to deform in the region near the inlet. This is reflected
in the profiles for û, ĥ1 and ĥ2. In the second column of figure 7 we examine how the inlet
hole radius α affects the solution for a fixed value of the heat transfer coefficient C = 0.5.
We immediately see that the temperature in the fibre decreases as the size of the hole
increases. This can be easily understood by considering (2.24). The heat flux due to cooling
to the environment is proportional to the outer radius, whereas the thermal mass (i.e. the
amount of fluid to be heated) is proportional to ĥ2

2 − ĥ2
1. So, as the size of the inner hole,

ĥ1, increases the convective flux is unaffected but the thermal mass decreases. This leads to
the observed more rapid effective cooling as the size of the inner hole increases. The cooler
temperatures for larger hole sizes mean that the viscosity increases more dramatically and
the deformation becomes more localised near the inlet.

We next examine how the interplay of cooling and internal hole pressure affects the
steady-state profiles. The first column of figure 8 shows the solution for different values
of the internal hole pressure P with a fixed non-zero heat transfer coefficient and in the
absence of inertia and surface tension. Here, we see that increasing P acts to increase
the effective cooling. This is because pressure (in the absence of surface tension) acts
to increase the outer radius ĥ2 and therefore the surface area over which heat is lost to
the environment. As temperature decreases with x the viscosity increases dramatically so
that the deformation becomes more localised near the inlet, but the effect is relatively
weak compared with the effect observed in figure 7. In the second column of figure 8 we
examine how changing the cooling coefficient with a fixed non-zero pressure and in the
absence of inertia and surface tension affects the steady-state solution. We have chosen a
pressure and an inlet hole size sufficiently large that the hole would explode if the cooling
rate were zero, so that we need to choose cooling coefficients in excess of a critical value
in order to obtain solutions. The cooling acts to increase the viscosity, thereby preventing
the pressure from causing an explosion of the inner hole. In the profiles for ĥ2 we see
that at small cooling coefficient C ≤ 0.06 the pressure has a dramatic effect in making
the hole expand near the outlet. This larger outer radius means that the area over which
cooling to the environment occurs is increased and so the temperature is smaller and the
temperature gradient is larger near the outlet for smaller C . Increasing C above this range
(C = 0.07) increases the cooling rate near the inlet and therefore the viscosity. Therefore
the pressure has a weaker effect in expanding the hole leading to a smaller outer radius
and smaller surface area through which heat is lost. This in turn results in weaker effective
heat loss and an increase in the temperature at the outlet. However, as the cooling rate
increases further (C > 0.07) the temperature decreases rapidly and the viscosity increases
dramatically. This makes deformation significantly more difficult, and hence pressure has
a relatively small effect. Moreover, while the temperature gradient decreases towards the
outlet, the temperature now decreases with increasing C , due predominantly to the more
rapid temperature drop near the inlet.

In figure 9 we plot the temperature at the outlet as a function of the heat transfer
coefficient for different initial hole sizes with pressure. For sufficiently small inlet hole
sizes, the inner hole does not explode even in the case of no cooling (C = 0). For the
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Figure 7. The steady-state solution for the temperature θ̂ , velocity û, outer radius ĥ2 and inner radius ĥ1 are
plotted as a function of x for (a) different values of heat transfer coefficient C with inlet hole radius α = 1/2
and (b) different values of inlet hole radius α with heat transfer coefficient C = 0.5. In both cases the draw
ratio D = 10, the viscosity parameter b = 6.3, Reynolds number Re = 0, surface tension Γ = 0 and internal
hole pressure P = 0.
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û

θ̂

ĥ2
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Figure 8. The steady-state solution for the temperature θ̂ , velocity û, outer radius ĥ2 and inner radius ĥ1 are
plotted as a function of x for (a) different values of internal hole pressure P with fixed heat transfer coefficient
C = 0.5 and inlet hole radius α = 1/2, and (b) different values of heat transfer coefficient C with fixed internal
hole pressure P = 1 and inlet hole radius α = 0.95. In both cases the draw ratio D = 10, the viscosity parameter
b = 6.3, Reynolds number Re = 0 and surface tension Γ = 0.
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Figure 9. The temperature at the outlet θ̂ (1) plotted against the heat transfer coefficient C for different values
of inlet hole radius α. The draw ratio D = 10, internal hole pressure P = 1, surface tension Γ = 0, Reynolds
number Re = 0 and viscosity parameter b = 6.3.

parameters used in figure 9, this is true for values of α less than approximately 0.83.
For these values of α the temperature at the outlet decreases monotonically with the heat
transfer coefficient C . However, if the inlet hole size is large enough and the heat transfer
coefficient C is low enough, the hole will explode and there will be no solution. For values
of C just above the critical value, the hole will expand very dramatically, and the heat flux
will be large enough to almost cool the fibre down to the temperature of its surroundings
by the time that it reaches the outlet. Further small increases in C cause the hole to expand
less dramatically and thus reduce the heat flux, so the temperature at the outlet increases.
This continues until the temperature at the outlet reaches a maximum value, and for larger
values of C the temperature at the outlet decreases.

We note that the results presented in figures 7, 8 and 9 all have Γ = Re = 0. Therefore,
the solutions (3.11) and (3.13) also hold for these cases. However, in this case, C �= 0, the
viscosity μ will vary and so the y location at which we have to apply the outlet boundary
condition depends on the cooling rate. This means that one has to numerically solve a
nonlinear equation to obtain the value of F . This, in turn, implies that the profiles in the
second column of figure 8 are not simple rescalings of one another as C varies.

There are many other possible results for combinations of surface tension, inertia,
cooling and hole pressure that we could present, for example, the interplay of the effects
of surface tension and cooling. However, we have performed an extensive search of the
parameter space and, in terms of steady states, all of the interesting and counter-intuitive
behaviour that we have found has been detailed in the above figures.

4. Stability of steady-state solutions
Before presenting the results for the stability of a hollow fibre, we briefly remind the reader
of the previous results for a solid fibre. The classical stability result for the drawing of a
solid fibre in the absence of surface tension, inertia and cooling was obtained by Matovich
& Pearson (1969b), who found that steady states at draw ratios above a critical value
of approximately 20.218 are unstable. Shah & Pearson (1972a) showed that cooling is
stabilising in the sense that it increases the critical draw ratio, that inertia is stabilising and
that surface tension is destabilising. Wylie et al. (2023) analysed the eigenfunctions and
determined how internal holes plays a role in the instability mechanism.
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In considering the stability of the case of drawing hollow fibres, we have conducted
a wide-ranging parameter study, but in what follows we focus on results relating to the
presence of the hole, which have not been considered before. In particular we show that
the hole leads to surprising or non-monotonic stabilisation effects. We will therefore not
present results for which the stabilisation effect is qualitatively similar to the case of the
solid fibre (Shah & Pearson 1972a; Bechert & Schield 2017; Philippi et al. 2022). We also
do not present results for the eigenfunctions which are similar to those found by Wylie
et al. (2023).

We begin by considering the role of the hole when surface tension is non-negligible.
Fitt et al. (2002) showed that the equations for stability for a hollow fibre are identical to
the equations for stability for a solid fibre if surface tension, inertia, cooling and internal
hole pressurisation are not important. They also noted that although it had been shown that
surface tension was destabilising for a solid fibre its effect on stability was not clear in the
presence of a hole.

4.1. Numerical methods for linear stability
For the most simple problem of a solid fibre with no hole, constant viscosity, no surface
tension and no inertia, the most unstable eigenvalue is known to be complex (Matovich &
Pearson, 1969a,b). We therefore should also expect that, in general, the most unstable
eigenvalue for our problem will be complex. A very accurate and efficient method to
numerically determine eigenvalues of (2.41)–(2.44) with the boundary conditions (2.45)
is to apply a shooting technique in which one supplements the boundary conditions ũ = 0,
h̃1 = 0, h̃2 = 0 and θ̃ = 0 at x = 0 with an additional condition ũx = 1 at x = 0. The value
of ũx = 1 is arbitrary as a consequence of the linearity of the eigenvalue problem. Given a
value of λ, one can then easily solve the system (2.41)–(2.44) from x = 0 to x = 1 using the
MATLAB routine ‘ode45’. For an arbitrary value of λ, the solution of this computation
will not satisfy the condition ũ = 0 at x = 1. However, we can create a function whose
input is λ and that outputs the value of ũ at x = 1. This will form the basis of a shooting
technique in which one selects the value of λ satisfying ũ = 0 at x = 1. However, we note
that in this case, the value of λ will be a complex number. We therefore cannot use the
MATLAB routine ‘fzero’ which only works for real-valued functions. Instead we use
the MATLAB routine ‘fsolve’ which applies the Levenberg–Marquardt method and trust-
region techniques. Although this method is fast and accurate it has the drawback that the
operator may have an infinite number of eigenvalues and so it requires a good ‘initial
guess’ for λ to find the eigenvalue with the largest real part. One might naively imagine
that one can overcome this difficulty by starting with a well-established value in a simple
setting and using a continuation technique that slowly varies the values of the parameters
until the desired result is obtained. However, it has been shown that for drawing problems
with thermal effects the eigenvalue with the largest real part can change discontinuously
with changes in the parameters (Wylie et al. 2007). We therefore have validated all of our
results using a second-order finite difference method which converts (2.41)–(2.45) into a
matrix eigenvalue problem. This method gives an approximation of the entire spectrum,
but has the drawbacks that it is much slower and less accurate than the shooting method
and also may give spurious results. Nevertheless, using the two techniques in combination
we can confidently obtain the most unstable eigenvalue. In figure 10 we present a typical
eigenvalue spectrum obtained using the finite difference method. The values of the most
unstable eigenvalues can be accurately obtained using moderately small values of the grid
spacing. However, the rapidly decaying modes are highly oscillatory and hence much
smaller grid spacings are required to accurately resolve them. The spurious modes are
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Figure 10. The most unstable few eigenvalues, plotted in the complex plane. These eigenvalues were obtained
using a finite difference method. However, the stability results shown in the subsequent figures were obtained
using a high accuracy shooting method that takes the most unstable eigenvalue given by the finite difference
method as an ‘initial guess’. The parameters for generating this plot are D = 10, Γ = 1, α = 1/2, P = 0, Re = 0
and C = 0 and the number of grid points was N = 400.

always deep in the left half of the complex plane. Since we are only interested in the most
unstable mode, it is straightforward to extract a good estimate of this mode from the finite
difference method to use as an initial guess in the shooting method.

4.2. Stability of isothermal hollow fibres
We begin by considering the effect of the hole when surface tension is non-zero, but
inertia, cooling and internal hole pressurisation are absent. Although this case was
considered by Wylie et al. (2023), here, we present the results in a different format that
will be useful for comparing with other results in which inertia, cooling and internal
hole pressure are non-zero. Recall from sub§ 2.4 that the eigenvalue λ indicates whether
perturbations to a steady state grow (Re(λ) > 0) or decay (Re(λ) < 0) and hence shows
the stability of the steady-state solution.

Figure 11(a) shows the real part of the eigenvalue associated with the most unstable
mode against the draw ratio D for various values of the surface tension Γ in the case that
the inlet hole size is α = 1/2. For Γ = 0 we see that draw ratios above a critical value
of approximately 20.218 are unstable, consistent with the classical result of Matovich &
Pearson (1969b). As Γ increases the flow becomes less stable in the sense that instability
occurs at lower values of the critical draw ratio. We also note that for sufficiently large
values of Γ the flow becomes unstable even for D = 1 which indicates that no stable
drawing to a slender fibre can occur. We denote the critical draw ratio by Dcr , which has
the property

Re(λ)

⎧⎨
⎩

< 0 for D < Dcr ,

= 0 for D = Dcr ,

> 0 for D > Dcr .
(4.1)

Figure 11(b) shows the critical value of the draw ratio Dcr as a function of the inlet
size of the hole α for various values Γ ≥ 0. We see that the role of the hole is always
destabilising with Dcr decreasing as α increases for any Γ > 0.

Next we investigate the effect of adding internal hole pressure. In figure 12(a) we
plot the results for Γ = 0. In the case of zero surface tension (Γ = 0) and no cooling
(C = 0) the critical draw ratio remains independent of both the hole size α and the hole
pressurisation P . This is because if Γ = 0 and C = 0 then the temperature and hence the
viscosity remain constant and (2.21) and (2.23) form a pair of equations for the quantities
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Figure 11. (a) The real part of the eigenvalue Re(λ) versus the draw ratio D for different values of the surface
tension Γ and inlet hole size α = 1/2. (b) The critical draw ratio (Dcr ) plotted against the inlet hole size (α) for
different values of surface tension Γ . In both plots Reynolds number Re = 0, heat transfer coefficient C = 0
and internal hole pressure P = 0.

û and ĥ2
2 − ĥ2

1 that decouple from (2.22). Since P only appears in (2.22) and this is a
first-order ordinary differential equation that advects information from the inlet towards
the outlet, we can expect that the eigenvalue spectrum will be independent of α and P if
Γ = 0 and C = 0. However, the structure is different for Γ > 0. In figure 12(b) we plot Dcr
versus α for Γ = 0.1 and different values of P . In this case (2.21)–(2.23) are fully coupled
and the stability depends on both α and P . The main result is that both increasing the hole
size or increasing the hole pressure act to destabilise the flow. This directly addresses the
question raised by Fitt et al. (2002). However, it is important to note that the destabilisation
by pressure is only really significant for relatively large inlet hole sizes.

Figure 13 shows the critical draw ratio Dcr as a function of hole size α for various values
of the surface tension with hole pressurisation P = 0.5 but in the absence of inertia and
cooling. As explained above, the critical draw ratio is a constant in the case of no surface
tension regardless of pressure. However, when the surface tension is non-zero, the critical
draw ratio decreases with increasing inlet hole radius for P ≥ 0.

It is interesting to see if the stabilising effect of inertia can combine with the
destabilising effect of surface tension to give a critical draw ratio that is a non-monotonic
function of the inlet hole radius α. We consider this in figure 14, which gives results
for Γ = 0 and Γ = 0.1 with P = C = 0. In the case of Γ = 0, the critical draw ratio is
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Figure 12. The critical draw ratio (Dcr ) versus the inlet hole size (α) for different values of internal hole
pressure P for surface tension (a) Γ = 0 and (b) Γ = 0.1. In both cases C = Re = 0.

independent of α as seen in figure 14(a). As explained above, this is because (2.21) and
(2.23) decouple from (2.22) and the equations of linear stability are identical to those
for a solid fibre. This is also true in the case P �= 0, Γ = 0, C = 0. However, for Γ �= 0
the results depend on α with an increase in α acting to destabilise the flow. Inertia still
stabilises the flow, but its stabilising effect gets weaker as α increases. This shows that the
stabilising effect of inertia cannot combine with the destabilising effect of surface tension
to give non-monotonic behaviour with respect to α. In fact, this is true for other parameter
combinations with inertia that we have examined. Therefore, in what follows, we will only
consider Re = 0 and will focus on combinations of parameters that give more complicated
and unexpected non-monotonic behaviour.

4.3. Stability of non-isothermal hollow fibres
In figure 15 we show how the heat transfer coefficient C affects stability when Re = Γ =
P = 0. As already seen, if C = 0 the critical draw ratio is independent of the inlet hole size
α. However, the heat flux term in (2.24) is proportional to h2 and the viscosity in (2.21)
depends on θ , so if C �= 0 then all four equations (2.21)–(2.24) are fully coupled. We see
that increasing C acts to increase Dcr and hence stabilise the flow. This is the same effect
as found for the case of a solid fibre by Shah & Pearson (1972a). Furthermore, increasing
α also acts to stabilise the flow. This can be understood in terms of the mechanism that we
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Figure 13. The critical draw ratio (Dcr ) versus the inlet hole size (α) for different values of surface tension Γ

with P = 0.5, Re = 0 and C = 0.
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Figure 14. The critical draw ratio (Dcr ) versus the inlet hole size (α) for different values of Reynolds number
Re for surface tension (a) Γ = 0 and (b) Γ = 0.1. In both cases P = C = 0.

explained in the steady-state results, namely an increase in the size of the hole decreases
the thermal mass while leaving the heat flux term unchanged which increases the rate at
which the temperature decreases, so stabilising the drawing of hollow fibres.

Figure 16 shows how the interplay of cooling and surface tension affects stability for
drawing of hollow fibres with different inlet hole sizes in the absence of pressure and
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Figure 15. The critical draw ratio (Dcr ) versus the inlet hole size (α) for different values of heat transfer
coefficient C with P = 0, Re = 0, Γ = 0 and b = 6.3.
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Figure 16. The critical draw ratio (Dcr ) versus the inlet hole size (α) (a) for different values of surface tension
Γ with heat transfer coefficient C = 0.1, (b) for different values of heat transfer coefficient C with Γ = 0.1. In
both cases P = 0, Re = 0 and b = 6.3.

1010 A67-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

38
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.381


N.N. Papri, J.J. Wylie and Y.M. Stokes

20

21

22

23

24

25

26
P = 0
P = 0.25
P = 0.3
P = 0.35
P = 0.4
P = 0.5
P = 0.6
P = 0.7
P = 0.8
P = 0.9
P = 1

20.50

20.55

20.60

20.65

20.70
P = 0
P = 0.25
P = 0.3
P = 0.35
P = 0.4
P = 0.5
P = 0.6
P = 0.7
P = 0.8
P = 0.9
P = 1

D
cr

D
cr

0 0.1 0.10.2 0.3 0.30.4 0.5 0.50.6 0.7 0.8 0.9 1.0

α
0 0.2 0.4 0.6

α

(a) (b)

Figure 17. The critical draw ratio (Dcr ) versus the inlet hole size (α) for different values of internal hole
pressure P for heat transfer coefficient C = 0.05, Γ = 0, Re = 0 and b = 6.3. Panel (a) shows a close-up of the
small-α behaviour of (b).

inertia. In figure 16(a), we see that in the case of zero surface tension the critical draw
ratio increases monotonically with increasing α. This stabilisation is as a result of the
enhanced cooling effect described above. On the other hand, for non-zero surface tension,
we see that increasing α acts to destabilise for most values of α, but acts to stabilise at
very large values of α. This is because, for small values of α, the effect of increasing
α on the thermal mass of the fibre is rather weak (the variation is quadratic in α) and
thus the enhanced cooling and consequent thermal stabilisation are rather weak. On the
other hand, increasing α results in a more pronounced increase (linear in α) in the surface
area over which surface tension acts. Therefore, the destabilising effect of surface tension
dominates. For values of α close to unity the surface area approaches a constant whereas
the thermal mass becomes very small. This means that the thermal stabilisation effect
will dominate the destabilising effect of surface tension. This interplay is also seen in
figure 16(b). The critical draw ratio monotonically decreases with increasing inlet hole
size in the absence of cooling because of the destabilising effect of surface tension. If the
cooling is sufficiently small, this situation remains, excepting for very large α when the
small thermal mass and fast cooling stabilises the flow. However, if cooling is sufficiently
large, then its stabilising effect can dominate for all values of α.

In figure 17 we show how the interplay between internal hole pressurisation and cooling
affects the stability for different inlet hole sizes when inertia and surface tension are zero.
We recall that for a given pressure there is a maximum value of α above which the hole will
explode. This is the reason that the curves terminate at values α < 1. Figure 17(a,b) gives
results for weak cooling. Recall that in figure 12(a) we saw that the critical draw ratio
is not affected by internal pressurisation or the inlet hole size if the cooling coefficient
C and surface tension Γ are zero. Similarly, for weak cooling the graphs show that for
small inlet hole sizes the presence of the hole has a very weak effect and the critical
draw ratio is almost independent of α. In figure 17(a,b) we see that for weak cooling
the flow is stabilised with increasing α up to a critical value of α which depends on the
pressure, beyond which further increases in α act to destabilise. This is because cooling
is the dominant effect for small values of α and this acts to stabilise the flow while for
large values of α the destabilising effect of internal hole pressure is dominant. We also see
that internal hole pressurisation can play both a stabilising and destabilising role. On the
one hand, for values of α below the critical value the internal hole pressurisation stabilises
as seen in figure 17(b). This is because it acts to increase the outer radius of the fibre,
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Figure 18. The critical draw ratio (Dcr ) versus the inlet hole size (α) for different values of heat transfer
coefficient C with P = 1, Re = 0, Γ = 0 and b = 6.3.

enhances the effective cooling rate and hence stabilises. On the other hand, for values of
α above the critical value the internal hole pressurisation destabilises as a result of the
mechanism that we observed in the isothermal case.

In figure 18 we further examine how the interplay between cooling and hole
pressurisation affects the stability for different inlet hole sizes when inertia and surface
tension are zero. We immediately see that if C = 0 the critical draw ratio is independent of
the hole size and is given by the classical value of approximately 20.218 that corresponds
to a solid fibre with no inertia and surface tension. This was explained above in discussing
figure 15. For small values of α the critical draw ratio increases with increasing α because
of reduced thermal mass and faster cooling as seen for P = 0 in figure 15. However, as
α approaches the value at which explosion occurs there is a competition between the
stabilising effect of cooling and the destabilising effect of internal pressure. For large
values of α and small to moderate values of C the destabilising effect of internal pressure
dominates and the critical draw ratio decreases rapidly with increasing α. For larger values
of C the stabilising effect of cooling wins and the critical draw ratio is an increasing
function of α over the whole range of α.

Figure 19(a) shows how small and non-zero surface tension (Γ = 0.03) changes the
results shown in figure 18 for which surface tension was zero. In the zero surface tension
case, the critical draw ratio was independent of α for C = 0, but as seen in figure 19(a),
the presence of surface tension destabilises the flow and the critical draw ratio is a
monotonic decreasing function of α. When cooling is non-zero, surface tension continues
to destabilise but cooling stabilises, therefore figure 19(a) shows similar qualitative
behaviour to that shown in figure 18. In figure 19(b) we fix the cooling coefficient
(C = 0.05) and show how surface tension affects the stability. For very small values of
α surface tension is the dominant effect and this acts to destabilise the flow. This effect
becomes weaker as C increases or Γ decreases, but for all values of Γ �= 0 the destabilising
effect can still be observed even though it is very localised near α = 0 for large C or
small Γ . For small surface tension the interplay between the stabilising effects of cooling
and the destabilising effects of internal pressure mean that the critical draw ratio increases
and then decreases as α is increased. However, if the surface tension is large enough its
destabilising effect will overcome the stabilising effect of cooling and so the critical draw
ratio is a monotonic decreasing function of α.

In summary, we have shown that there is a complicated interplay between the
destabilising effects of internal pressure and surface tension and the stabilising effects
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Figure 19. The critical draw ratio (Dcr ) versus the inlet hole size (α) (a) for different values of heat transfer
coefficient C with Γ = 0.03, (b) for different values of surface tension Γ with C = 0.05. In both cases P = 1,
Re = 0 and b = 6.3.

of cooling and inertia. As the inlet hole size α increases the stabilising effect of cooling
increases and the destabilising effects of surface tension and pressure increase. Internal
pressure has a weak effect excepting near α = 1 when the fibre is close to ‘exploding’(or
bursting). It is ‘then’ the interplay between surface tension and cooling that are most
important. The destabilising effect of surface tension increases with α because the amount
of surface area increases. At the inlet the combined arclengths of the inner and outer
surfaces are 2π(1 + α) and this gives an indication of how important the effect of surface
tension can be near the inlet. In the limit α → 1 the arclength near the inlet is double the
value for α = 0. The stabilising effect of cooling has a very different relationship with α.
As the hole size increases the thermal mass of the hollow fibre is proportional to ĥ2

2 − ĥ2
1.

This quadratic dependence on the inner hole radius means that small holes have a very
small thermal stabilising effect. However, as α → 1 the thermal mass tends to zero and
so the temperature of the fibre will very rapidly decrease to the ambient temperature.
This means that the thermal stabilising effect will be very strong for large values of α.
Nevertheless, since the temperature must ultimately saturate we expect that there will be
a limit to the largest thermal stabilising effect that we can achieve. The weak destabilising
effect of internal pressure for small α is also due to the small (internal) boundary length
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Figure 20. The critical draw ratio (Dcr ) versus the inlet hole size (α) for large values of heat transfer
coefficient C with large P = 2, large Γ = 1, Re = 0 and b = 6.3.

on which it acts. It is difficult to assess how large the destabilising effects of internal
pressure are in the limit as the explosion is approached. Nevertheless, our results indicate
that the stabilising effects of cooling can overcome the destabilising effects of internal
pressure even very close to explosion. Since, it is clear that the thermal stabilising effect
is bounded, this indicates that the destabilising effects of internal pressure must also be
bounded.

Figure 20 illustrates how sufficiently large cooling coefficient influences the critical
draw ratio for large pressure and large surface tension in the absence of inertia. This
graph clearly shows there are two distinct effects. Because of the interaction of sufficiently
large surface tension with pressure, the critical draw ratio decreases as inlet hole size α

increases, for small to moderate α. However, when α becomes sufficiently large, the action
of sufficiently large cooling coefficient due to large C and expansion of the hole under
large pressure resulting in increased external boundary length, brings a rapid increase in
the critical draw ratio as α increases.

5. Conclusion
The Navier–Stokes equations and the heat equation serve as the basis for our derivation
of the long-wavelength equations for the drawing of a Newtonian axisymmetric hollow
fibre. We derived the equations by applying asymptotic techniques to identify the leading-
order equations for the mass, momentum, temperature and hole radius. Inertia, surface
tension, internal hole pressurisation and cooling are effects that are included in these
equations. After deriving the equations, we solved them to obtain steady-state solutions for
different parameters. We were able to isolate a number of surprising results. In particular,
we were able to show that the hole radius at the outlet is a non-monotonic function of
the hole radius at the inlet, even in the simple case in which pressure, cooling and inertia
are negligible. This is because the role of surface tension acting on the inner and outer
surfaces of the fibre becomes very strong as the radius of the hole becomes larger. We have
also demonstrated that the temperature of the fluid at the outlet can be a non-monotonic
function of the cooling coefficient if the internal hole is pressurised. This is true even if
inertia and surface tension are negligible because, for small values of the cooling rate, the
fibre is readily deformed, so that the internal pressure in the hole expands the inner and
outer radii. This enhances the heat flux by increasing the surface area over which heat is
lost to the surroundings. On the other hand, if the cooling rate is large, the viscosity will
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increase dramatically, and hence prevent the outer radius of the fibre increasing. This leads
to a lower heat flux and hence, higher temperatures at the outlet.

We examined the linear stability of axisymmetric hollow fibre drawing and obtained
results for a variety of parameters for both isothermal and non-isothermal cases. We have
analysed how the presence of the hole influences the stability under the influence of
internal hole pressure, inertia, surface tension and cooling. We have shown that surface
tension acts to destabilise while cooling acts to stabilise the flow, and that both of these
effects increase as the inlet hole size increases. On the other hand, if surface tension
and cooling are zero, then stability is completely independent of internal hole pressure.
Nevertheless, when combined with either surface tension or cooling, internal hole pressure
acts to destabilise the flow, and the effect increases as the hole size increases. This directly
addresses the question raised by Fitt et al. (2002) who noted that ‘the role of internal
pressure in stability calculations is opaque ’.

We further showed that there is a complicated interplay between surface tension, cooling
and internal hole pressure. For sufficiently small inlet hole sizes, the destabiling effect
of surface tension always dominates, but for larger values of inlet hole size, there is a
competition between all three effects that can give rise to complicated non-monotonic
behaviour.

Although we have considered axisymmetric hollow fibres, we expect that the behaviour
will be qualitatively similar for non-axisymmetric fibres with multiple holes. In this case,
one can adopt the formalism derived by Wylie et al. (2023) which shows that steady states
and stability only depend on the evolution of the total boundary length in a given cross-
section.
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