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Abstract
We define a new class of enumerative invariants called k-leaky double Hurwitz descendants, generalizing both
descendant integrals of double ramification cycles and the k-leaky double Hurwitz numbers introduced in [CMR25].
These numbers are defined as intersection numbers of the logarithmic DR cycle against 𝜓-classes and logarithmic
classes coming from piecewise polynomials encoding fixed branch point conditions. We give a tropical graph sum
formula for these new invariants, allowing us to show their piecewise polynomiality in any genus. Investigating the
piecewise polynomial structure further (and restricting to genus zero for this purpose), we also show a wall-crossing
formula. We also prove that in genus zero the invariants are always nonnegative and give a complete classification
of the cases where they vanish.
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2 R. Cavalieri et al.

1. Introduction

The goal of this paper is to study enumerative invariants of the (logarithmic) double ramification cycles,
giving an overview of the existing landscape of results and defining new invariants using techniques
from logarithmic and tropical geometry.

1.1. The double ramification cycle and its intersection numbers

Inside the moduli space M𝑔,𝑛 of smooth curves, the double ramification locus is a closed substack cut
out by an equality of line bundles

DRL𝑔 (x) =
{
(𝐶, 𝑝1, . . . , 𝑝𝑛) : (𝜔log

𝐶 )⊗𝑘 � O𝐶

(
𝑛∑
𝑖=1

𝑥𝑖 𝑝𝑖

)}
⊆ M𝑔,𝑛 , (1.1)

where x = (𝑥1, . . . , 𝑥𝑛) ∈ Z𝑛 is an integer vector with |x| =
∑

𝑖 𝑥𝑖 = 𝑘 (2𝑔 − 2 + 𝑛). The (virtual)
fundamental class of DRL𝑔 (x) admits a natural extension

DR𝑔 (x) ∈ CH2𝑔−3+𝑛 (M𝑔,𝑛), (1.2)

in the Chow group of dimension 2𝑔−3+𝑛 cycles on M𝑔,𝑛, called the double-ramification cycle (class).1
For 𝑘 = 0, this class can be defined as the pushforward of the virtual fundamental class of the space
M∼

𝑔,x of stable maps to rubber [GV05, Li01, Li02]. This is a compactification of the space of maps

𝑓 : (𝐶, 𝑝1, . . . , 𝑝𝑛) → P
1 with 𝑓 ∗([0] − [∞]) =

𝑛∑
𝑖=1

𝑥𝑖 𝑝𝑖 , (1.3)

with ramification profile over 0,∞ given by the positive and negative parts of x (and taken modulo the
C∗-action on P1). For the history and general properties of the double ramification cycle, we refer the
reader to [JPPZ17].

An established approach to extract intersection numbers from the cycle DR𝑔 (x) is to calculate its
descendant invariants ∫

M𝑔,𝑛

DR𝑔 (x) · 𝜓𝑒1
1 · · ·𝜓𝑒𝑛

𝑛 , (1.4)

for a vector e = (𝑒1, . . . , 𝑒𝑛) ∈ (Z≥0)
𝑛 of exponents with |e| = 2𝑔 − 3 + 𝑛. An explicit formula

for these numbers was calculated in [BSSZ15] for 𝑘 = 0 and in [CSS21] for arbitrary k, but with
e restricted to vectors with only a single nonzero entry. A separate direction of study is the double
ramification hierarchy, which studies intersection numbers of DR𝑔 (x) against Hodge classes, a (partial)
cohomological field theory and 𝜓-classes as above (see [Bur15, BR21]).

There are natural enumerative questions concerning the double ramification geometry which have
no known expression via intersection numbers of DR𝑔 (x) on M𝑔,𝑛. A prominent example is the double
Hurwitz numbers H𝑔 (x) [GJV05]. These count covers f as in (1.3) with 𝑏 = 2𝑔 − 3 + 𝑛 simple branch
points at fixed positions in P1. The double Hurwitz numbers can be defined by intersection theory: the
space M∼

𝑔,x of rubber maps has a natural branch morphism

br : M∼

𝑔,x → [LM(𝑏)/𝑆𝑏] (1.5)

to a (stack quotient of a) Losev-Manin space, which remembers the position of the simple branch points
and allows them to coincide away from 0,∞ [CM14]. Then we have

1Since k can be uniquely reconstructed from 𝑔, 𝑛 and x, we omit it from the notation.
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H𝑔 (x) =
∫
[M∼

𝑔,x ]
vir

br∗ [pt] . (1.6)

Since the branch morphism (1.5) does not factor through the forgetful morphism 𝐹 : M∼

𝑔,x → M𝑔,𝑛,
there is no obvious way to express the intersection number (1.6) as a product of DR𝑔 (x) = 𝐹∗ [M

∼

𝑔,x]
vir

with a class on M𝑔,𝑛.

1.2. Logarithmic double ramification cycles and double Hurwitz numbers

The failure of M𝑔,𝑛 in supporting a class that restricts to br∗ [pt] is part of a broader picture that emerged
in recent years, and which can be summarized as follows:

M𝑔,𝑛 is not the right ambient space for the double ramification cycle.

The first hint of this appeared in a construction of DR𝑔 (x) [Hol19, MW20], which proceeds by con-
structing a cycle D̂R𝑔 (x) on a log blowup2 M̂x

𝑔,𝑛 of M𝑔,𝑛 and then obtains DR𝑔 (x) as the pushforward
of D̂R𝑔 (x) under the map M̂x

𝑔,𝑛 → M𝑔,𝑛. This construction works for arbitrary 𝑘 ∈ Z (compared to the
one via stable maps to rubber when 𝑘 = 0) and gives a natural lift of DR𝑔 (x) to a log blowup of M𝑔,𝑛.
While the blowup M̂x

𝑔,𝑛 is not unique, the resulting cycle stabilizes on sufficiently fine blowups: given
another (sufficiently fine) choice of blowup M̃x

𝑔,𝑛, the cycle D̃R𝑔 (x) constructed there pulls back to the
same cycle as D̂R𝑔 (x) on any blowup dominating M̂x

𝑔,𝑛 and M̃x
𝑔,𝑛. Thus, one obtains a well-defined

element in the logarithmic Chow ring

logCH∗(M𝑔,𝑛) = lim
−−→

M̂→M𝑔,𝑛

CH∗(M̂), (1.7)

defined as the direct limit of Chow rings of smooth log-blowups M̂ → M𝑔,𝑛, with maps given by
pullback. The constructed lift

logDR𝑔 (x) = [M̂x
𝑔,𝑛, D̂R𝑔 (x)] ∈ logCH∗(M𝑔,𝑛) (1.8)

is called the logarithmic double-ramification cycle.
One immediate advantage of logDR𝑔 (x) compared to DR𝑔 (x) is that we can recover the double

Hurwitz numbers from logDR𝑔 (x). Indeed, as shown in [CMR25, Theorem A], there exists a cycle
Br𝑔 (x) ∈ logCH2𝑔−3+𝑛 (M𝑔.𝑛) such that

H𝑔 (x) =
∫
M𝑔,𝑛

logDR𝑔 (x) · Br𝑔 (x). (1.9)

To see where the cycle Br𝑔 (x) comes from, recall from equation (1.6) that we want to pair the virtual
fundamental class of M∼

𝑔,x with br∗ [pt]. For a suitable choice of blowup M̂x
𝑔,𝑛 → M𝑔,𝑛, one can

ensure that the map M∼

𝑔,x → M𝑔,𝑛 factors via an embedding 𝜄 into M̂x
𝑔,𝑛 as illustrated on the left-hand

side of Figure 1 (see Proposition 2.3). Moreover, the pushforward of the virtual class of M∼

𝑔,x under 𝜄
gives the lifted double ramification cycle D̂R𝑔 (x) (see, for example, [Hol19, Proposition 7.1]).

While the map br does not immediately factor through M̂x
𝑔,𝑛, we can nevertheless get a proxy for

the cycle br∗ [pt] using an auxiliary space: the stack Ex of expansions parameterizes chains of rational

2See e.g. [Bar19, Section 2] for a definition of log blowups. In the context of our paper, the reader can think of log blowups of
M𝑔,𝑛 as iterated blowups at smooth boundary strata and their strict transforms.
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br∗ [pt] [pt] [𝑇𝑏]

[M∼

𝑔,x]
vir M∼

𝑔,x [LM(𝑏)/𝑆𝑏] Ex

D̂R𝑔 (x) M̂x
𝑔,𝑛

DR𝑔 (x) M𝑔,𝑛

br∗ 𝐹 ∗
𝑏

𝜄∗ 𝜄

br 𝐹𝑏

𝑞∗ 𝑞

t

Figure 1. Factoring the branch morphism to the stack Ex of expansions through the log blowup M̂x
𝑔,𝑛.

0 ∞

Figure 2. A point in the stack of expansions Ex.

curves with marked points 0,∞ at the opposite ends of the chain (see Figure 2 and [CMR25, Section
2.8] for a discussion).

For any 𝑐 ≥ 0, the stack Ex has a closed codimension c stratum 𝑇𝑐 parameterizing chains of length
at least c. Then for the map 𝐹𝑏 : [LM(𝑏)/𝑆𝑏] → Ex forgetting the 𝑏 = 2𝑔 − 3 + 𝑛 unordered points, it
is easy to see that the class [𝑇𝑏] of the codimension b stratum pulls back to the class of a point in the
Losev-Manin space. However, by Proposition 2.3, the composition 𝐹𝑏 ◦ br factors through a map t as
illustrated in Figure 1. Then defining Br𝑔 (x) = t∗ [𝑇𝑏], we conclude

H𝑔 (x) =
∫
[M∼

𝑔,x ]
vir

br∗ [pt] =
∫
[M∼

𝑔,x ]
vir

br∗𝐹∗
𝑏 [𝑇𝑏] =

∫
M̂x

𝑔,𝑛

(𝜄∗ [M
∼

𝑔,x]
vir) · t∗ [𝑇𝑏]

=
∫
M̂x

𝑔,𝑛

D̂R𝑔 (x) · Br𝑔 (x) =
∫
M𝑔,𝑛

logDR𝑔 (x) · Br𝑔 (x) .

1.3. Generalized double Hurwitz numbers

In the previous section, we saw a formula for the double Hurwitz numbers in terms of intersection
numbers of logDR𝑔 (x). Now, turning the story around, one may define a generalization of these Hurwitz
numbers by pairing logDR𝑔 (x) with more general cycle classes.

The first step in this direction was already discussed in [CMR25]: while the double Hurwitz numbers
require the entries of the ramification profile x to sum to zero (corresponding to setting 𝑘 = 0), the
formula (1.9) can be extended to arbitrary values of 𝑘 ∈ Z. More precisely, by Proposition 2.3, we have
the commutative diagram depicted in Figure 3.

Thus, the definition Br𝑔 (x) = t∗ [𝑇𝑏] still makes sense, and the paper [CMR25] defines the k-leaky
double Hurwitz numbers3

H𝑔 (x) = H𝑔 (x, 𝑘) =
∫
M𝑔,𝑛

logDR𝑔 (x) · Br𝑔 (x) . (1.10)

3Again, since k is determined by g and x, we will in general omit the parameter k in the notation for generalized double Hurwitz
numbers.
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[M∼

𝑔,x]
vir M∼

𝑔,x Ex

D̂R𝑔 (x) M̂x
𝑔,𝑛

DR𝑔 (x) M𝑔,𝑛

𝜄∗ 𝜄

b

𝑞∗ 𝑞

t

Figure 3. Maps to the stack of expansions.

While the enumerative meaning of the k-leaky Hurwitz numbers is less clear, they share many
properties of classical double-Hurwitz numbers ([CMR25, Theorem B and Section 5]):

◦ they are nonnegative rational numbers, piecewise polynomial in x and given by polynomials of degree
4𝑔 − 3 + 𝑛 on the chambers of polynomiality,

◦ there is a tropical graph sum formula calculating them as a weighted count of tropical covers of the
real line,

◦ they arise as matrix elements for powers of the k-leaky cut and join operator on the Fock space.

1.4. Results

The main object of study of the present paper generalizes k-leaky Hurwitz numbers by introducing
descendant insertions.

Definition 1.1. Given a vector e ∈ Z𝑛
≥0 with 0 ≤ |e| ≤ 2𝑔 − 3 + 𝑛, let 𝑐 = 2𝑔 − 3 + 𝑛 − |𝑒 | and consider

the branch class

Br𝑐𝑔 (x) = t∗ [𝑇𝑐] ∈ logCH𝑐 (M𝑔,𝑛) . (1.11)

Then we define the k-leaky double Hurwitz descendants

H𝑔 (x, e) =
∫
M𝑔,𝑛

logDR𝑔 (x) · 𝜓
𝑒1
1 · · ·𝜓𝑒𝑛

𝑛 · Br𝑐𝑔 (x) . (1.12)

For e = 0, we recover the k-leaky double Hurwitz numbers, whereas for |𝑒 | = 2𝑔 − 3 + 𝑛 by the
projection formula, we obtain the descendant invariants (1.4) of the double ramification cycle. Thus,
these numbers form a natural interpolation between two previously studied enumerative invariants.

Our first result establishes a correspondence theorem between k-leaky double Hurwitz descendants
numbers and certain tropical counts.

Theorem 1.2. The k-leaky double Hurwitz descendants equal the count of tropical k-leaky covers
satisfying Psi-conditions (Definition 3.5):

Htrop
𝑔 (x, e) = H𝑔 (x, e).

The graphs that are being counted are leaky covers as in [CMR25] (i.e., piecewise linear maps
from tropical curves to the real line satifying the leaky condition (2.2)). The valence, and genus at a
given vertex, depends on the degree of the descendant insertions at its incident legs (3.1). Each graph
is counted with a multiplicity which is a product of various local factors: besides automorphism, and
edge factors, there are now multiplicities assigned to each vertex, which consist of double-ramification
descendants (1.4) with no appearence of the branch class (Definition 3.3). The key ingredient in proving
this result is expressing the pushforward to M𝑔,𝑛 of the product logDR𝑔 (x) · Br𝑐𝑔 (x) as a linear
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6 R. Cavalieri et al.

combination of boundary classes that are described by dual graphs decorated with vertex terms given
by smaller-dimensional double ramification cycles.

The correspondence theorem provides a combinatorial approach to the computation of k-leaky double
Hurwitz descendants that allows to observe and characterize their structural properties.

Theorem 1.3 (Piecewise polynomiality, see Theorem 5.1). The k-leaky double Hurwitz descendant
numbers H𝑔 (x, e) are piecewise polynomial in k and x of degree 4𝑔 − 3 + 𝑛 − |e|.

As in the case for double Hurwitz numbers [CJM11], the wall-crossing formulas are modular, in the
sense that they are expressed as sums of products of descendant leaky numbers with smaller discrete
invariants. We do not work out general wall-crossing formulas in this paper, as the combinatorial
complexity seems to outweight the benefits, but we do present the result in genus zero, where the
formulas are succint and elegant.

Theorem 1.4 (Wall-crossing in genus zero). Fix a wall 𝛿 :=
∑

𝑖∈𝐼 𝑥𝑖 − 𝑘 · (♯𝐼 − 1) = 0 and denote by
𝑃𝛿

1 the polynomial expression for Htrop
0 (x, e) we have on one side of the wall and by 𝑃𝛿

2 the expression
on the other side of the wall.

Define e𝐼 = (𝑒𝑖)𝑖∈𝐼 . Let 𝑟 = 𝑛 − 2 − |e|, 𝑟1 = ♯𝐼 − 1 − |e𝐼 | and 𝑟2 = ♯𝐼𝑐 − 1 − |e𝐼 𝑐 |.
Then the wall-crossing (i.e., the difference between the two polynomial expressions on both sides of

the wall) equals

𝑃𝛿
1 − 𝑃𝛿

2 =

(
𝑟

𝑟1, 𝑟2

)
· 𝛿 · H0(x𝐼 ∪ {𝛿}, e𝐼 ) · H0(x𝐼 𝑐 ∪ {−𝛿}, e𝐼 𝑐 ).

The tropical correspondence formula in Theorem 1.2 reduces the computation of all descendant
leaky double Hurwitz numbers to the case (1.4) where the branch insertion is trivial. We seek to further
improve the situation by shrinking the class of initial conditions needed. We observe that any descendant
insertion is equivalent to a linear combination of boundary divisors together with the class 𝜅1, thanks
to a second splitting formula for the double ramification cycle (essentially proven in [CSS21]). It shows
that the cycles

𝑥𝑖𝜓𝑖 · DR𝑔 (x) and
𝑘

2𝑔 − 2 + 𝑛
𝜅1 · DR𝑔 (x)

differ by a sum over graphs with two vertices carrying DR-cycles (see Proposition 4.2). Using this
relation, we can calculate the intersection number (1.4) by exchanging one 𝜓-class after the other for
either a multiple of 𝜅1 or a term supported in the boundary. After performing this procedure 2𝑔 − 3 + 𝑛
times, we are left with a graph sum with vertex terms only involving powers of the class 𝜅1.

To state a formal recursion, we introduce the notation

H𝑔 (x, e, 𝑓 ) =
∫
M𝑔,𝑛

DR𝑔 (x) · 𝜓𝑒1
1 · · ·𝜓𝑒𝑛

𝑛 · 𝜅
𝑓
1 (1.13)

mixing 𝜓-insertions with a power of 𝜅1.

Theorem 1.5. The numbers H𝑔 (x, e, 𝑓 ) can be recursively computed (see (4.6)) from the intersection
numbers

H𝑔′ (x′, 0, 2𝑔′ − 3 + 𝑛′) =
∫
M𝑔′,𝑛′

(𝑘𝜅1)
2𝑔′−3+𝑛′ · DR𝑔′ (x′) . (1.14)

Combined with the tropical graph sum formula from Theorem 1.2, this uniquely determines the
k-leaky double Hurwitz descendants from the initial data of the numbers (1.14). These intersection
numbers with powers of 𝜅1 in turn have been characterized explicitly in upcoming work [Sau] by
Sauvaget. In fact, Sauvaget’s paper will give a full formula for the integrals 𝐻𝑔 (x, e) with |𝑒 | = 2𝑔−3+𝑛
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Table 1. The landscape of known results on double Hurwitz descendants H𝑔 (x, e) . Here, [CMS24] denotes the present paper..

Br𝑔 (x) Br𝑐𝑔 (x) · 𝜓e 𝜓e

e = 𝑒1 𝛿1 e arbitrary

𝑔 = 0 tot. ram. 𝑘 = 0 formula [GJ92] [CMS] classical formula
(𝑛−2

e
)

𝑘 > 0 formula [CMS] [CMS]
arb. ram. 𝑘 = 0 wall-crossing [SSV08]

𝑘 > 0 wall-crossing
[CMS24]

𝑔 > 0 tot. ram. 𝑘 = 0 one-part double Hurwitz
numbers [GJV05]

[CMS] see below

𝑘 > 0 see below
arb. ram. 𝑘 = 0 double Hurwitz numbers

wall-crossing [CJM11]
generating function

[BSSZ15]
𝑘 > 0 k-leaky double Hurwitz

numbers piecew.
polynomiality [CMR25]

piecewise
polynomiality
[CMS24]

generating function
[CSS21] for e = 𝑒1 𝛿1,
[Sau] for all e

appearing as the vertex multiplicities of our tropical graph sum formula. After the initial publication of
the paper, a second recursive procedure for calculating the numbers (1.4), reducing them to a formula
given in [CSS21, Theorem 1.1], was pointed out to us by the referee (see Remark 4.5). We thank them
for sharing the suggestion!

Lastly, we turn our attention to unexpected vanishings of leaky descendant double Hurwitz numbers.
Thinking of such enumerative invariants as generalization of Hurwitz numbers, this problem is analo-
gous to the yet unsolved question in Hurwitz theory of characterizing what discrete data satisfying the
Riemann-Hurwitz condition does not yield any corresponding covering. In genus 0, we compute leaky
double Hurwitz descendants as weighted graph sums where each graph carries a nonnegative contribu-
tion. (This is not true in higher genus; see Example 6.1.) This gives a blunt but powerful tool to show
nonvanishing, and in fact positivity: it suffices to exhibit a single graph with a nonzero contribution.

If 𝑘 = 0, an easy argument shows that 𝐻0 (x, e) > 0 unless x = 0 and 𝑛 > |e| + 3; see Remark 6.2. For
the more interesting case 𝑘 ≠ 0, we are able to witness and classify some exotic vanishing behavior, as
summarized in the following theorem.

Theorem 1.6. Let 𝑔 = 0 and 𝑘 ≠ 0. Let |x| = (𝑛 − 2)𝑘 and 0 ≤ |e| ≤ 𝑛 − 3.
The k-leaky descendant 𝐻0(x, e) vanishes if and only if k is even, 𝑥𝑖 = 𝑚𝑖 ·

𝑘
2 for 𝑚𝑖 ∈ N>0, and for

every subset 𝐼 ⊂ {1, . . . , 𝑛}, we have ∑
𝑖∈𝐼

𝑒𝑖 <
∑
𝑖∈𝐼

𝑚𝑖 − |𝐼 | + 1.

In all other cases, we have 𝐻0(x, e) > 0.

1.5. Current landscape and future directions

The k-leaky descendant double Hurwitz numbers are a large family of enumerative invariants rich in
combinatorial structure and closely tied to the geometry of double ramification cycles, and have been
studied and progressively generalized over the last few decades. In Table 1, we list the known results on
the numbers H𝑔 (x, e).

Depending on the parameters 𝑔, x, e they have been characterized to different extents, ranging from
structural properties to explicit formulas:

◦ explicit formulas for (non-leaky) double Hurwitz numbers have been found mostly in the special case
where all but one entry of e have the same sign (the case of total ramification; see [GJ92, GJV05]).
In the forthcoming paper [CMS], we extend these formulas to k-leaky double Hurwitz numbers and
even to the case of 𝜓-insertions at the marking of total ramification;
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◦ for k-leaky double ramification descendants (without branch conditions), explicit generating functions
have been found in [BSSZ15] (for 𝑘 = 0) and [CSS21] (for 𝑘 > 0 and insertions given by a power of
a single 𝜓-class). The forthcoming paper [Sau] proves a full formula for the generating function;

◦ the piecewise polynomiality of H𝑔 (x, 0) and wall-crossing formulas for different values of x were
found in [SSV08, CJM11] for 𝑘 = 0 and [CMR25] for 𝑘 > 0. In our paper, we show the piecewise
polynomiality in full generality and work out the wall-crossing structure for 𝑔 = 0.

As illustrated in Table 1, there is lots of room for progress. In particular, in the total ramification case,
it seems feasible to hope for an explicit formula in genus 0, and an approach via generating functions in
arbitrary genus.

A second direction of study is the enumerative interpretation of k-leaky double Hurwitz numbers.
As explained before, for 𝑘 = 0, the number H𝑔 (x, 0) counts covers of the projective line with fixed
ramification profiles over 0,∞ and simple ramification over 2𝑔 − 2 + 𝑛 other points. It is natural to
expect that for arbitrary k, the number H𝑔 (x, 0) could be a count of k-differentials with given zero and
pole-orders together with 2𝑔 − 2 + 𝑛 further conditions reducing the dimension to zero.

One approach in this direction is studied by [GT22, BR24, CP23] in the case of 𝑔 = 0, 𝑘 = 1 and
total ramification. More precisely, consider a vector

x = (𝑑,−𝑎1, . . . ,−𝑎𝑛) ∈ Z
𝑛+1 (with 𝑑, 𝑎1, . . . , 𝑎𝑛 > 0)

such that |x| = 𝑛−1. In the notation of our paper, the authors study the moduli spaceH0 (x) parameterizing
tuples

(𝐶, 𝑞, 𝑝1, . . . , 𝑝𝑛, 𝜂)

of a smooth genus 0 curve C with 𝑛 + 1 distinct marked points and a 𝑘 = 1 differentials 𝜂 on C with
zeros and poles of orders 𝑥𝑖 − 1 at the marked points. Given a fixed vector �𝑟 = (𝑟1, . . . , 𝑟𝑛) ∈ C

𝑛 \ {0}
satisfying

∑
𝑟𝑖 = 0, the subset H0(x) �𝑟 ⊆ H0(x) where the differential 𝜂 has residue 𝑟𝑖 at 𝑝𝑖 is a finite

set. The papers above count the number of points in dependence of �𝑟 . As an example, for a general
vector �𝑟 , the count is given by the formula

|H0 (x) �𝑟 | = (𝑑 − 1) · (𝑑 − 2) · · · (𝑑 − (𝑛 − 2)).

However, in [CMS], we show that the k-leaky double Hurwitz number is given by

H0 (x) = (𝑛 − 1)!(𝑑 −
1
2
) · (𝑑 −

2
2
) · · · (𝑑 −

𝑛 − 2
2

).

While the formulas do not agree, they bear a strong resemblance and share structural properties (such
as being a polynomial of degree 𝑛 − 2 in the entries of x). It seems interesting to explore whether the
setup in [GT22, BR24, CP23] can be modified to give an enumerative interpretation for the number
H0 (x). This could also show a path to extending their counting problem to higher genus, where fixing
the residues at poles no longer cuts the dimension to zero.

2. Background

2.1. Tropical curve counts

An abstract tropical curve is a connected metric graph Γ with unbounded edges (called ends) which
have infinite length, together with a genus function 𝑔 : Γ → Z≥0 with finite support. Locally around a
point p, Γ is homeomorphic to a star with r halfrays. The number r is called the valence of the point p
and denoted by val(𝑝). The minimal vertex set of Γ is defined to be the points where the genus function
is nonzero, together with points of valence different from 2. The vertices of valence greater than 1 are
called inner vertices. Besides edges, we introduce the notion of flags of Γ. A flag is a pair (𝑣, 𝑒) of a
vertex v and an edge e incident to it (𝑣 ∈ 𝜕𝑒). Edges that are not ends are required to have finite length
and are referred to as bounded or internal edges.
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A marked tropical curve is a tropical curve whose leaves are labeled. An isomorphism of a tropical
curve is an isometry respecting the leaf markings and the genus function. The genus of a tropical curve
Γ is given by

𝑔(Γ) = ℎ1 (Γ) +
∑
𝑝∈Γ

𝑔(𝑝).

The combinatorial type is the equivalence class of tropical curves obtained by identifying any two
tropical curves which differ only by edge lengths.

We want to examine covers of R by graphs up to additive translation, and equip R with a polyhedral
subdivision to ensure the result is a map of metric graphs (see, for example, Section 5.4 and Figure 3
in [MW20]). A metric line graph is any metric graph obtained from a polyhedral subdivision of R. The
metric line graph determines the polyhedral subdivision up to translation. We fix an orientation of a
metric line graph going from left to right (i.e., from negative values in R to positive values).

Definition 2.1 (Leaky cover, [CMR25]). Let 𝜋 : Γ → 𝑇 be a surjective map of metric graphs where T
is a metric line graph. We require that 𝜋 is piecewise integer affine linear; the slope of 𝜋 on a flag or
edge e is a positive integer called the expansion factor 𝜔(𝑒) ∈ N≥0.

For a vertex 𝑣 ∈ Γ, the left (resp. right) degree of 𝜋 at v is defined as follows. Let 𝑓𝑙 be the flag of
𝜋(𝑣) in T pointing to the left and 𝑓𝑟 the flag pointing to the right. Add the expansion factors of all flags
f adjacent to v that map to 𝑓𝑙 (resp. 𝑓𝑟 ):

𝑑𝑙
𝑣 =

∑
𝑓 ↦→ 𝑓𝑙

𝜔( 𝑓 ), 𝑑𝑟𝑣 =
∑
𝑓 ↦→ 𝑓𝑟

𝜔( 𝑓 ). (2.1)

We say that the k-leaky condition is satisfied at 𝑣 ∈ Γ if

𝑑𝑙
𝑣 − 𝑑𝑟𝑣 = 𝑘 (2𝑔(𝑣) − 2 + val(𝑣)). (2.2)

We impose a stability condition: Γ → 𝑇 is called stable if the preimage of every vertex of T contains
a vertex of Γ in its preimage which is of genus greater than 0 or valence greater than 2.

Furthermore, we stabilize the source tropical curve further by passing to its minimal vertex set
(containing only the points where the genus function is nonzero, together with points of valence different
from 2). The outcome 𝜋 : Γ → 𝑇 is called a k-leaky cover.

By our stabilization procedure, we lose the property that the cover is a map of graphs; however, this
vertex structure is relevant to determine valencies correctly for the purpose of Psi-conditions.

Definition 2.2 (Left and right degree). The left (resp. right) degree of a leaky cover is the tuple of
expansion factors of its ends mapping asymptotically to −∞ (resp. +∞). The tuple is indexed by the
labels of the ends mapping to −∞ (resp. +∞). When the order imposed by the labels of the ends plays
no role, we drop the information and treat the left and right degree only as a multiset.

By convention, we denote the left degree by x+ and the right degree by x−. In the right degree, we
use negative signs for the expansion factors, in the left degree positive signs. We also merge the two to
one vector which we denote x = (𝑥1, . . . , 𝑥𝑛) called the degree. The labeling of the ends plays a role:
the expansion factor of the end with the label i is 𝑥𝑖 . In x, we distinguish the expansion factors of the
left ends from those of the right ends by their sign. A Euler characteristic calculation, combined with
the leaky cover condition, shows that

𝑛∑
𝑖=1

𝑥𝑖 = 𝑘 · (2𝑔 − 2 + 𝑛),

where g denotes the genus of Γ.
An automorphism of a leaky cover is an automorphism of Γ compatible with 𝜋.
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2.2. Insertions from the stack of expansions

The stack Ex of expansions has been studied extensively in the context of Gromov-Witten theory (see
[Li01, Li02, ACFW13]). Recall from Section 1.2 that it parameterizes chains of rational curves with
markings 0,∞ at the opposite ends of the chain. It has a locally closed decomposition

Ex = pt � 𝐵G𝑚 � 𝐵G2
𝑚 � . . . , (2.3)

where the locally closed stratum 𝐵G𝑟
𝑚 ⊆ Ex represents the locus where the chain has 𝑟 +1 components.4

One way to define Ex is to see it as the Artin fan associated to the cone stack tEx of tropical
expansions. For the original definition and background on Artin fans and cone stacks, we refer the reader
to Sections 2.7 and 2.8 of [CMR25] and the references therein. Roughly, a (combinatorial) cone stack is a
collection of rational polyhedral cones with a system of face morphisms between them (see [CCUW20,
Definition 2.15]). The cone stack tEx has one object R𝑟

≥0 for each 𝑟 ≥ 0, and the face morphisms
R𝑟

≥0 → R𝑠
≥0 are all coordinate inclusions obtained by inserting 𝑠 − 𝑟 zero coordinates (and leaving the

orders of the other coordinates fixed). For example, for 𝑟 = 2, 𝑠 = 4, these are the six morphisms:

(𝑥, 𝑦) ↦→ (𝑥, 𝑦, 0, 0), (𝑥, 0, 𝑦, 0), (𝑥, 0, 0, 𝑦), (0, 𝑥, 𝑦, 0), (0, 𝑥, 0, 𝑦), (0, 0, 𝑥, 𝑦) .

The resulting cone stack can be interpreted as parameterizing subdivisions of the real lineR at 𝑟+1 points,
up to translation. The coordinates of the cone R𝑟

≥0 parameterize the r distances between neighboring
vertices in the subdivision.

The stack Ex can then be defined as the unique Artin fan Ex = AtEx corresponding to the cone stack
tEx above. By [MPS23, Theorem 14], the Chow ring of Ex can be seen to be isomorphic to the ring
sPP∗(tEx) via an algebra isomorphism

Φ : sPP∗(tEx) → CH∗(Ex) . (2.4)

Note that this Chow ring has previously been computed independently by Oesinghaus [Oes19] – the
above gives a new way to obtain this result. Using [HMP+22, Lemma 54], one can verify that the
fundamental class of the closure 𝑇𝑐 = 𝐵G𝑐

𝑚 of the codimension c stratum is precisely given as

[𝑇𝑐] = Φ(𝜑𝑐) with 𝜑𝑐 ∈ sPP𝑐 (tEx) given by 𝜑𝑐 =
∑

𝐼 ⊆{1,...,𝑟 }, |𝐼 |=𝑐

∏
𝑖∈𝐼

𝑥𝑖 on R𝑟≥0 .

Indeed, the formula 𝜑𝑐 is easily seen to define a strict piecewise polynomial. On the dimension c
cone R𝑐

≥0 in tEx, it is given by the product
∏𝑐

𝑖=1 𝑥𝑖 of the coordinate functions. Thus, it maps to the
fundamental class of the associated strata closure 𝑇𝑐 under Φ.

In Definition 1.1, we defined the branch class Br𝑐𝑔 (x) as a pull-back of a codimension c class on Ex
under a map t : M̂x

𝑔,𝑛 → Ex. We start by giving a concrete description of this map t and its claimed
properties from the introduction.

To define it, let M̃x
𝑔,𝑛 be the blowup of M𝑔,𝑛 associated to the vector x and a small nondegenerate

stability condition 𝜃 (see [HMP+22, Section 4]). Its tropicalization Σ̃x
𝑔,𝑛 has been described in [HMP+22,

Section 4.2.2]. Its cones are indexed by tuples (Γ̂, 𝐷, 𝐼), where Γ̂ is a quasi-stable graph, D is a 𝜃-stable
divisor on Γ̂ and I is an acyclic flow on Γ̂ with

div(𝐼) = deg((𝜔log)𝑘 (−
∑

𝑎𝑖𝑥𝑖)) − 𝐷 .

4A priori one would expect this object to have stabilizer group G𝑟+1
𝑚 , but we rigidify by the simultaneous standard action of

G𝑚 on all components simultaneously. On the tropical side (see below), this corresponds to considering subdivisions of the line
R up to translation.
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The cone 𝜎(Γ̂,𝐷,𝐼 ) associated to this tuple parameterizes tropical covers 𝜋 : Γ̂ → R from (a tropical
curve with underlying graph) Γ̂ to R having slope 𝐼 (𝑒) on each edge e of Γ̂. Inside this cone, there
are codimension 1 walls defined by the condition that two vertices of Γ̂ have the same image in R.
Let Σ̂x

𝑔,𝑛 → Σ̃x
𝑔,𝑛 be the subdivision obtained by introducing all of these walls (it is straightforward to

check that the walls are compatible under face maps and thus do define a subdivision). We denote by
M̂x

𝑔,𝑛 → M̃x
𝑔,𝑛 the log blowup associated to this subdivision.5

Proposition 2.3. The space M̂x
𝑔,𝑛 admits a map t : M̂x

𝑔,𝑛 → Ex to the stack of expansions such that
for the inclusion 𝜄 : M∼

𝑔,x → M̂x
𝑔,𝑛 of the log double-ramification locus, we have

◦ the diagram in Figure 3 commutes,
◦ the tropicalization of the composition t ◦ 𝜄 is the map DRtrop

𝑔 (x) → tEx sending a tropical cover
Γ → R to the induced subdivision of its target R at the images of vertices of Γ.

Proof. Given 𝜋 ∈ 𝜎(Γ̂,𝐷,𝐼 ) , taking the image of the stable vertices of Γ̂ in R defines a subdivision of
the real line (i.e. an element of the tropicalization tEx). By taking the subdivision Σ̂x

𝑔,𝑛 → Σ̃x
𝑔,𝑛, one

ensures that this operation defines a morphism

Σ̂x
𝑔,𝑛 → tEx (2.5)

of cone stacks. Since Ex = AtEx is its own Artin fan, we can define the map

t : M̂x
𝑔,𝑛 → AΣ̂x

𝑔,𝑛
→ AtEx = Ex

as the composition of the map from M̂x
𝑔,𝑛 to its Artin fan, with the morphism of Artin fans induced

from the cone stack map (2.5). The tropicalization DRtrop
𝑔 (x) is the sub-complex of Σ̂x

𝑔,𝑛 where the curve
Γ̂ is stable, and on there, the map to tEx continues to record the edge lengths of the subdivided target R.
This shows the second bullet point, and for the first, we simply observe that two maps to Ex are equal if
and only if their tropicalizations coincide (again, since Ex is its own Artin fan). �

In our paper, the only type of insertion from CH∗(Ex) that we consider is the fundamental class
[𝑇𝑐] ∈ CH𝑐 (Ex) of the codimension c boundary stratum of Ex. Using a variant of Ex where we do not
rigidify by the simultaneous action ofG𝑚 on all components (as in Footnote 4), further natural insertions
would be the cotangent line classes Ψ0,Ψ∞ of the expanded target at 0,∞. For 𝜋 : M̂x

𝑔,𝑛 → M𝑔,𝑛, the
blowup on which logDR𝑔 (x) is supported, a description for the class

𝜋∗

(
logDR𝑔 (x) · t∗Ψ𝑢

∞

)
∈ CH𝑔+𝑢 (M𝑔,𝑛)

was proposed in [CGH+22, Conjecture 1.4], and recently proven in [CH24]. This formula would allow
to calculate the intersection numbers of logDR𝑔 (x) against both powers of Ψ∞ and further 𝜓-classes in
examples. However, for now, we restrict our attention to the insertions [𝑇𝑐] mentioned above.

3. Tropical leaky descendants

Definition 3.1 (Psi-conditions for leaky covers). Let 𝑔, 𝑛 ≥ 0 such that 2𝑔 − 2 + 𝑛 > 0 and consider
vectors x ∈ Z𝑛 such that |x| = 𝑘 (2𝑔 − 2 + 𝑛) for some 𝑘 ∈ Z. Let e ∈ Z𝑛

≥0 such that 0 ≤ |e| ≤ 2𝑔 − 3 + 𝑛.

5This modification is related to the distinction between the spaces Div𝑔,𝑥 and Rub𝑔,𝑥 in [MW20]: we have thatM̃x
𝑔,𝑛 ⊆ Div𝑔,𝑥

is an open substack, whereas M̂x
𝑔,𝑛 is almost an open substack of Rub𝑔,𝑥 . The discrepancy between the latter two stems from

the fact that we do not modify the integral structure inherited from the moduli space of tropical curves since this will make our
lives easier in the proof of Theorem 3.7 below.
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Figure 4. Five 1-leaky tropical covers of genus 1 and degree x = (7,−3,−1) satisfying the Psi-
conditions e = (1, 0, 0). The vertices marked with a dot are vertices of genus 1. All other vertices are of
genus 0. All five pictures cover a line graph T with 2 vertices. We did not specify lengths in the picture,
as the lengths in the source graph Γ are determined by the expansion factors and the lengths in T.

Let 𝜋 : Γ → 𝑇 be a k-leaky cover. For a vertex v, let 𝐼𝑣 ⊂ {1, . . . , 𝑛} be the subset of ends adjacent
to v after passing to the minimal vertex set of Γ.

We say that 𝜋 : Γ → 𝑇 satisfies the Psi-conditions e if for all vertices v of Γ,

val(𝑣) =
∑
𝑖∈𝐼𝑣

𝑒𝑖 + 3 − 2𝑔(𝑣). (3.1)

Example 3.2. For an example of three 1-leaky tropical covers of genus 1 and degree x = (7,−3,−1)
satisfying the Psi-conditions e = (1, 0, 0), see Figure 4.
Definition 3.3 (Vertex multiplicities). Let 𝜋 : Γ → 𝑇 be a k-leaky cover satisfying the Psi-conditions e.
For a vertex v, let 𝐼𝑣 ⊂ {1, . . . , 𝑛} be the subset of ends adjacent to v after passing to the minimal vertex
set of Γ. Let x(𝑣) denote the vector containing the (left and right) local degree of v, and let 𝑔(𝑣) denote
the genus of v.

We define the vertex multiplicity to be

mult𝑣 :=
∫
𝑀𝑔 (𝑣 ) ,val(𝑣 )

DR𝑔 (𝑣) (x(𝑣)) ·
∏
𝑖∈𝐼𝑣

𝜓𝑒𝑖
𝑖

Example 3.4. For the 3-valent genus 0 vertices in the covers of Figure 4, the vertex multiplicity is 1.
This is true because in genus 0, DR equals M0,3 which is just a point. For the 4-valent vertices of
genus 0, it is still true that DR equals M0,4, but now we take the integral over 𝜓1. This is also just a
point, so again, these vertex multiplicities are 1. The genus 1 vertex may be evaluated using the software
admcycles [DSvZ21] to obtain

∫
M1,2

DR1(7,−5) · 𝜓1 = 35/24.
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Definition 3.5 (Count of k-leaky covers satisfying Psi-conditions). Let 𝑔, 𝑛 ≥ 0 such that 2𝑔−2+ 𝑛 > 0
and consider vectors x ∈ Z𝑛 such that |x| = 𝑘 (2𝑔 − 2 + 𝑛) for some 𝑘 ∈ Z. Let e ∈ Z𝑛

≥0 such that
0 ≤ |e| ≤ 2𝑔 − 3 + 𝑛, and 𝑐 = 2𝑔 − 3 + 𝑛 − |e| ≥ 0.

We define

Htrop
𝑔 (x, e) =

∑
𝜋

mult(𝜋) ·
∏
𝑣

mult𝑣 , (3.2)

where

◦ 𝜋 : Γ → 𝑇 ranges among all leaky covers of degree x and genus g (Definition 2.1) and satisfying
the Psi-conditions e (Definition 3.1); we require that every vertex of T has precisely one vertex in its
preimage6;

◦ the multiplicity

mult(𝜋) =
1

| Aut(𝜋) |
·
∏
𝑒

𝜔(𝑒) ∈ Q (3.3)

is the product of the expansion factors at the bounded edges of Γ (according to its minimal vertex
set), weighted by the number of automorphisms of 𝜋;

◦ the product goes over the set of vertices of Γ and mult𝑣 is as in Definition 3.3.

Example 3.6. Fix the leaking 1, 𝑛 = 3 ends, genus 1, degree x = (7,−3,−1) and the Psi-conditions
e = (1, 0, 0). Then the covers we have to consider are depicted in Figure 4. For these three 1-leaky
covers, we obtain the following multiplicities, using Example 3.4 discussing vertex multiplicities:

𝜋𝑖 1/ | Aut(𝜋𝑖)
∏

𝑒 𝜔 (𝑒) mult𝑣 mult(𝜋𝑖)

𝜋1 1/2 4 (1, 1) 2
𝜋2 1 3 (1, 1) 3
𝜋3 1 5 (35/24, 1) 175/24
𝜋4 1/2 1 (1, 1) 1/2
𝜋5 1 1 (1, −1/24) −1/24

In total, we obtain

𝐻
trop
1 (x, e) = 2 + 3 +

175
24

+
1
2
−

1
24

=
51
4
.

Theorem 3.7 (Correspondence Theorem for leaky covers with Psi-conditions). Let 𝑔, 𝑛 ≥ 0 such that
2𝑔 − 2 + 𝑛 > 0 and consider vectors x ∈ Z𝑛 such that |x| = 𝑘 (2𝑔 − 2 + 𝑛) for some 𝑘 ∈ Z. Let e ∈ Z𝑛

≥0
such that 0 ≤ |e| ≤ 2𝑔 − 3 + 𝑛.

Then the k-leaky double Hurwitz descendant (defined in 1.1) equals the count of tropical k-leaky
covers satisfying Psi-conditions (defined in 3.5):

Htrop
𝑔 (x, e) = H𝑔 (x, e).

Proof. We begin the proof by giving a geometric interpretation of the product

logDR𝑔 (x) · 𝐵𝑟𝑐𝑔 (x) ∈ logCH𝑔+𝑐 (M𝑔,𝑛) (3.4)

6As we will see in the proof of Theorem 3.7 below, the latter condition actually follows from a dimension counting argument
and does not necessarily have to be imposed. For the sake of clarity, we impose it here already.

https://doi.org/10.1017/fms.2025.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.26


14 R. Cavalieri et al.

of the logarithmic double ramification cycle with the branch class (i.e., the logarithmic Chow class
𝐵𝑟𝑐𝑔 (x) = t∗ [𝑇𝑐] associated to a piecewise polynomial function pulled back from tEx).

Let M̂x
𝑔,𝑛 be the non-fs log blowup of M𝑔,𝑛 (in the category LogSchcoh of log schemes that étale

locally admit charts by finitely generated monoids), performed using the subdivision introduced in
Proposition 2.3. First, we claim that by a purely tropical argument (similar to Definition 3.2.4 and the
proof of Theorem B in [CMR25]), we can decompose

𝐵𝑟𝑐𝑔 (x) =
∑

𝜋:Γ→𝑇

mult(𝜋) · (𝜄𝜋)∗ [M̂𝜋] . (3.5)

Indeed, below we explain the notation in this formula and how to prove it:

◦ The summation goes over all k-leaky tropical covers 𝜋 of the real line T subdivided at 𝑐 + 1 vertices,
not imposing any dimension constraints or the condition that any vertex downstairs should have at
most one (stable) vertex upstairs.

◦ Associated to 𝜋, there is a codimension c stratum M̂𝜋 in the log blowup M̂x
𝑔,𝑛. In the language of

[HMP+22, Section 4.2.1], its generic element satisfies that the quasi-stable model of the universal
curve is in fact stable and the piecewise linear function 𝛼 has slopes given by the 𝜔(𝑒) from 𝜋. Then
the bundle

L = (𝜔
log
𝐶 )⊗𝑘 (−

∑
𝑖

𝑥𝑖 𝑝𝑖) (𝛼) (3.6)

is stable since it has multidegree 0 and the stability condition is assumed to be small.
◦ In the Artin fan of M̂x

𝑔,𝑛, described in detail in [HMP+22, Section 1.7.2], the automorphism group
of the cone associated to M̂𝜋 is equal to Aut(𝜋). We denote by

𝜄𝜋 : M̂𝜋 → M̂x
𝑔,𝑛

the corresponding monodromy torsor over the normalization of the closure of M̂𝜋 , as constructed in
[PRSS24, Section 4.1.2].

The formula (3.5) then follows by decomposing the pullback of the piecewise linear function
𝜑 ∈ sPP𝑐 (tEx) from Section 2.2 into piecewise polynomials on the cone stack of M̂x

𝑔,𝑛 associated to
the strata M̂𝜋 . The factor mult(𝜋) then appears from comparisons of the integral structure on the cone
stack of M̂x

𝑔,𝑛 and tEx.7
Substituting the decomposition (3.5) into the formula (3.4), we are left to calculate the pullback

𝜄∗𝜋 logDR𝑔 (x) ∈ CH𝑔 (M̂𝜋) ,

and then to compute its intersection number with the 𝜓-insertions. To do this, we record some useful
information:

◦ Writing as before x(𝑣) for the insertion at the vertex v induced by 𝜋, we claim that the stability
condition chosen before induces stability conditions at all vertices v such that the corresponding log
blowup M̂x(𝑣)

𝑔 (𝑣) ,𝑛(𝑣)
of M𝑔 (𝑣) ,𝑛(𝑣) supports the log double ramification cycle logDR𝑔 (𝑣) (x(𝑣)).

7Obtaining the factor mult(𝜋) is easier by working with the non-fs log blowup M̂x
𝑔,𝑛, since there it is immediately obtained

from an index calculation of lattices. When working with an fs log modification of M𝑔,𝑛, the final multiplicity with which this
term contributes to the intersection number can still be recovered, but it splits into contributions from greatest common divisors
of edge slopes and étale covers obtained in the saturation process. For the purpose of obtaining the formula, it is thus easier to
work in the non fs-setting at this point. For a related discussion, see also [HS21, Remark 1.4].
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◦ These spaces satisfy the functoriality that we obtain a natural projection map

𝑝 : M̂𝜋 →
∏

𝑣 ∈𝑉 (Γ)

M̂x(𝑣)
𝑔 (𝑣) ,𝑛(𝑣)

, (3.7)

sending the log curve C and piecewise linear function 𝛼 to the normalization of C at the nodes
associated to edges of Γ, and the corresponding restriction of 𝛼 to these components.8

We claim that

𝑝∗𝜄
∗
𝜋 logDR𝑔 (x) =

{
0 if ∃𝑣1 ≠ 𝑣2 ∈ 𝑉 (Γ) with 𝜋(𝑣1) = 𝜋(𝑣2)⊗

𝑣 ∈𝑉 (Γ) logDR𝑔 (𝑣) (x(𝑣)) otherwise.
(3.8)

Assuming this formula, the theorem follows immediately, using the projection formula to convert the
intersection product with 𝜓e into a product of intersection numbers of cycles logDR𝑔 (𝑣) (x(𝑣)) with
𝜓-classes. By another application of the projection formula, these are equal to the vertex multiplicities
mult𝑣 from Definition 3.3.

Denote by P̂𝑖𝑐𝜋 the Picard stack of the universal curve over M̂𝜋 . Via the restriction to the normal-
ization at nodes associated to edges of Γ, it has a map q to the product of stacks P̂𝑖𝑐𝑔 (𝑣) ,𝑛(𝑣) for the
spaces M̂x(𝑣)

𝑔 (𝑣) ,𝑛(𝑣)
. The corresponding map is a (G𝑚)

𝑏1 (Γ) -torsor, fitting into the following diagram:

M̂𝜋 P̂𝑖𝑐𝜋

∏
𝑣 ∈𝑉 (Γ) M̂x(𝑣)

𝑔 (𝑣) ,𝑛(𝑣)

∏
𝑣 ∈𝑉 (Γ) P̂𝑖𝑐𝑔 (𝑣) ,𝑛(𝑣)

𝑝

ajx

𝑞∏
𝑣 ajx(𝑣 )

(3.9)

Let 𝑒𝜋 ⊆ P̂𝑖𝑐𝜋 and 𝑒𝑣 ⊆ P̂𝑖𝑐𝑔 (𝑣) ,𝑛(𝑣) be the closures of the zero sections. Then, as shown in [HMP+22,
Proof of Theorem A], we have

(ajx)∗ [𝑒𝜋] = 𝜄∗𝜋 logDR𝑔 (x) and (ajx(𝑣) )∗ [𝑒𝑣 ] = logDR𝑔 (𝑣) (x(𝑣)) . (3.10)

Moreover, we have

[𝑒𝜋] = 𝐸 · 𝑞∗
���

∏
𝑣 ∈𝑉 (Γ)

[𝑒𝑣 ]
��� ∈ CH𝑔 (P̂𝑖𝑐𝜋) , (3.11)

where 𝐸 ∈ CH𝑏1 (Γ) (P̂𝑖𝑐𝜋) is a class whose restriction over the locus∏
𝑣 ∈𝑉 (Γ)

𝑒𝑣 ⊆
∏

𝑣 ∈𝑉 (Γ)

P̂𝑖𝑐𝑔 (𝑣) ,𝑛(𝑣)

is the zero section.9 A quick dimension calculation shows that the fibers of 𝑝 are of dimension

3𝑔 − 3 + 𝑛 − 𝑐 −
∑

𝑣 ∈𝑉 (Γ)

(3𝑔(𝑣) − 3 + 𝑛(𝑣)) = |𝐸 (Γ) | − 𝑐 = 𝑏1(Γ) + |𝑉 (Γ) | − (𝑐 + 1)

= 𝑏1(Γ) +
∑

𝑤 ∈𝑉 (𝑇 )

( |𝜋−1 (𝑤) | − 1).

8A priori, working with the modular interpretation in terms of stable bundles on quasi-stable curves would yield such maps
between the space M̃ discussed in the paragraph before Proposition 2.3. But then all constructions are compatible with the
subdivision introduced to obtain the spaces M̂, and thus, we obtain the map as described above. Similar arguments apply in all
further cases where we cite properties from [HMP+22].

9An expression for (ajx)∗𝐸 in terms of piecewise polynomials on M̂𝜋 will appear in [Spe25].
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Combining the equations above, we obtain

𝑝∗𝜄
∗
𝜋 logDR𝑔 (x) = (𝑝∗(ajx)∗𝐸) ·

∏
𝑣 ∈𝑉 (Γ)

𝜋∗𝑣 logDR𝑔 (𝑣) (x(𝑣)) . (3.12)

If any vertex w of T has at least two preimages, the term 𝑝∗(ajx)∗𝐸 vanishes for dimension reasons.
If this is not the case, then for dimension reasons, 𝑝∗(ajx)∗𝐸 gives a multiple of the fundamental class
of

∏
𝑣 ∈𝑉 (Γ) M̂x(𝑣)

𝑔 (𝑣) ,𝑛(𝑣)
. By restricting to a fiber, we see that the corresponding degree is 1. In both

cases, we prove the claim above and thus conclude our argument. �

4. Splitting formulas for (logarithmic) double ramification cycles

Below, we discuss how to convert products of double ramification cycles with certain linear combinations
of 𝜅- and 𝜓-classes into a sum of boundary terms described via further double ramification cycles. These
so-called splitting formulas generalize analogous results that first appeared in [BSSZ15, CSS21], and
allow us to recursively compute double ramification descendants in terms of intersection numbers of
DR𝑔 (x) against powers of 𝜅1 in Section 4.2.

4.1. Splittings of 𝜓-classes

Definition 4.1. Let 𝜋 : Γ → 𝑇 be a stable k-leaky cover with expansion factors 𝜔(𝑒) on its flags or
edges e. For each vertex 𝑣 ∈ 𝑉 (Γ), let 𝑓𝑙 (𝑣), 𝑓𝑟 (𝑣) be the left and right flag of the vertex 𝜋(𝑣). Consider
the gluing map

𝜉Γ : MΓ =
∏

𝑣 ∈𝑉 (Γ)

M𝑔 (𝑣) ,𝑛(𝑣) → M𝑔,𝑛 (4.1)

associated to the underlying stable graph of Γ. Then we define

DR𝜋 = (𝜉Γ)∗
∏

𝑣 ∈𝑉 (Γ)

𝜋∗𝑣 DR𝑔 (𝑣)

(
(𝜔( 𝑓 )) 𝑓 ↦→ 𝑓𝑙 (𝑣) , (−𝜔( 𝑓 )) 𝑓 ↦→ 𝑓𝑟 (𝑣)

)
∈ CH∗(M𝑔,𝑛) , (4.2)

where 𝜋𝑣 : MΓ → M𝑔 (𝑣) ,𝑛(𝑣) is the projection to the factor associated to 𝑣 ∈ 𝑉 (Γ).
For ℓ ≥ 0, let 𝑇ℓ = 𝑇ℓ ( �𝑤) be the metric line graph obtained by subdividing R at the ℓ + 1 vertices

𝑤0 < 𝑤1 < . . . < 𝑤ℓ .
Proposition 4.2. Let 𝑔, 𝑛 ≥ 0 with 2𝑔 − 2 + 𝑛 > 0 and x ∈ Z𝑛 with |x| = 𝑘 (2𝑔 − 2 + 𝑛). Then for any
1 ≤ 𝑠 ≤ 𝑛, we have

((2𝑔 − 2 + 𝑛)𝑥𝑠𝜓𝑠 − 𝑘𝜅1) · DR𝑔 (x) =
∑

𝜋:Γ→𝑇1

𝜌(𝜋, 𝑠) · mult(𝜋) · DR𝜋 , (4.3)

where the sum runs over stable k-leaky covers 𝜋 : Γ → 𝑇1 with precisely two vertices 𝑣0, 𝑣1 of Γ which
map to the two vertices 𝑤0, 𝑤1 of 𝑇1 (in that order), and

𝜌(𝜋, 𝑠) =

{
2𝑔(𝑣1) − 2 + 𝑛(𝑣1) if 𝑠 adjacent to 𝑣0,

−(2𝑔(𝑣0) − 2 + 𝑛(𝑣0)) if 𝑠 adjacent to 𝑣1.

Proof. For 𝑘 = 0 and 𝑥𝑠 ≠ 0, this statement was proven in [BSSZ15, Theorem 4]. To prove the general
case, consider the vector x̂ = (𝑥1, . . . , 𝑥𝑛, 𝑘) associated to a double ramification cycle with an additional
free marking. For the forgetful map 𝐹 : M𝑔,𝑛+1 → M𝑔,𝑛, we have

𝐹∗ DR𝑔 (x) = DR𝑔 (x̂) ∈ CH𝑔 (M𝑔,𝑛+1) .
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Applying [CSS21, Proposition 3.1] to this extended double ramification cycle (with 𝑠 = 𝑠, 𝑡 = 𝑛 + 1 in
the notation of [CSS21]), we obtain

(𝑥𝑠𝜓𝑠 − 𝑘𝜓𝑛+1) · 𝐹
∗ DR𝑔 (x) =

∑
𝜋:Γ→𝑇1

𝑓𝑠,𝑛+1(�̂�) · mult(�̂�) · DR𝜋 , (4.4)

where �̂� runs over (𝑛 + 1)-pointed k-leaky covers with exactly one vertex 𝑣0, 𝑣1 over each of the vertices
𝑤0, 𝑤1 ∈ 𝑇1 and

𝑓𝑠,𝑡 (�̂�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑠 and 𝑛 + 1 are adjacent to the same vertex,
1 if 𝑠 is adjacent to 𝑣0 and 𝑛 + 1 to 𝑣1,

−1 otherwise.

We claim that equation (4.3) follows by multiplying boths sides of (4.4) with 𝜓𝑛+1 and pushing forward
under the forgetful map F. Indeed, using that

𝐹∗(𝜓𝑠𝜓𝑛+1) = (2𝑔 − 2 + 𝑛) · 𝜓𝑠 and 𝐹∗(𝜓
2
𝑛+1) = 𝜅1 ,

one sees that applying 𝐹∗(𝜓𝑛+1 · −) to the left-hand side of (4.4) gives the left-hand side of (4.3).
For the comparison of the right-hand sides, we first note that for any stable k-leaky cover �̂� such that

marking 𝑛 + 1 lies on a vertex v with 𝑔(𝑣) = 0, 𝑛(𝑣) = 3 that becomes unstable under forgetting 𝑛 + 1,
we have 𝜓𝑛+1 ·DR𝜋 = 0 for dimension reasons. The remaining covers �̂� appearing in the summation are
in bijective correspondence to the tuples (𝜋, 𝑣𝑛+1) recording the cover 𝜋 obtained by forgetting marking
𝑛 + 1 and the choice 𝑣𝑛+1 ∈ {𝑣0, 𝑣1} of the vertex where this marking was attached. Indeed, the fact
that marking 𝑛 + 1 carries weight k precisely means that its position on the graph Γ does not influence
the balancing condition on the two vertices. Note also that mult(�̂�) = mult(𝜋) is preserved under this
correspondence.

To conclude the proof, observe that for any cover 𝜋 appearing on the right-hand side of (4.3), there
is precisely one choice of 𝑣𝑛+1 such that the corresponding lift �̂� = (𝜋, 𝑣𝑛+1) satisfies 𝑓𝑠,𝑛+1 (�̂�) ≠ 0
(namely, 𝑣𝑛+1 = 𝑣1 for s adjacent to 𝑣0 in 𝜋, and 𝑣𝑛+1 = 𝑣0 otherwise). Then indeed, the map 𝐹∗(𝜓𝑛+1 ·−)
sends the right-hand side of (4.4) to the right-hand side of (4.3). Here, the sign of the factor 𝜌(𝜋, 𝑠) comes
from 𝑓𝑠,𝑛+1 (�̂�), and its absolute value 2𝑔(𝑣𝑛+1) − 2 + 𝑛(𝑣𝑛+1) comes from the forgetful pushforward of
the class 𝜓𝑛+1 on the vertex 𝑣𝑛+1. �

Remark 4.3. It is an interesting question how to lift equation (4.3) to a splitting formula for the
logarithmic double ramification cycle logDR𝑔 (x). We expect that the right-hand side of (4.3) generalizes
by allowing arbitrary stable k-leaky covers 𝜋, with the associated contribution logDR𝜋 given as a suitable
log-boundary pushforward of logarithmic double ramification cycles on the vertices of Γ. The associated
language of log-boundary pushforwards is currently being developed in [PRSS24].

4.2. Recursions for double ramification descendants

Given a vector x ∈ Z𝑛 with |x| = 𝑘 (2𝑔 − 2 + 𝑛) and e ∈ Z𝑛
≥0 with |e| = 2𝑔 − 3 + 𝑛, we want to give a

recursion determining all intersection numbers

H𝑔 (x, e) =
∫
M𝑔,𝑛

DR𝑔 (x) · 𝜓𝑒1
1 · · ·𝜓𝑒𝑛

𝑛 . (4.5)

Note that a priori, the invariant H𝑔 (x, e) is defined as an intersection number of the logarithmic double
ramification cycle logDR𝑔 (x) supported on a log blowup of M𝑔,𝑛. However, in the absence of branch
cycles, all the insertions 𝜓𝑖 above are pulled back from M𝑔,𝑛 and so by applying the projection formula,
we can replace logDR𝑔 (x) by its pushforward DR𝑔 (x) in the above intersection number.
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The splitting formula for 𝜓-classes can be used to recursively calculate the numbers (4.5). However,
when 𝑘 ≠ 0, the recursion naturally features a generalization of these numbers defined in equation
(1.13) as

H𝑔 (x, e, 𝑓 ) =
∫
M𝑔,𝑛

DR𝑔 (x) · 𝜓𝑒1
1 · · ·𝜓𝑒𝑛

𝑛 · 𝜅
𝑓
1 ,

where now |𝑒 | + 𝑓 = 2𝑔 − 3 + 𝑛.

Proposition 4.4. Assume that for 1 ≤ 𝑠 ≤ 𝑛, the component 𝑒𝑠 of e is positive and denote e𝑠 = e − 𝛿𝑠 .
Then

𝑥𝑠 (2𝑔 − 2 + 𝑛) · H𝑔 (x, e, 𝑓 ) = 𝑘 · H𝑔 (x, e𝑠 , 𝑓 + 1) +
∑

𝜋:Γ→𝑇1

𝜌(𝜋, 𝑠) · mult(𝜋) · Cont𝜋,e, 𝑓 , (4.6)

where the sum goes over covers 𝜋 : Γ → 𝑇1 with two vertices 𝑣0, 𝑣1 of Γ which map to the two vertices
𝑤0, 𝑤1 of 𝑇1 (in that order). The contribution of this cover to the formula above is given by

Cont𝜋,e, 𝑓 =

(
𝑓

𝑓0, 𝑓1

)
H𝑔 (𝑣0) (x[𝑣0], e𝑠 [𝑣0], 𝑓0) · H𝑔 (𝑣1) (x[𝑣1], e𝑠 [𝑣1], 𝑓1) , (4.7)

where x[𝑣 𝑗 ], e𝑠 [𝑣 𝑗 ] are the entries of the vectors x, e𝑠 associated to markings attached to vertex 𝑣 𝑗 and

𝑓 𝑗 = 2𝑔(𝑣 𝑗 ) − 3 + 𝑛(𝑣 𝑗 ) − |e𝑠 [𝑣 𝑗 ] | .

Proof. This immediately follows from multiplying (4.3) by 𝜓𝑒1
1 · · ·𝜓𝑒𝑠−1

𝑠 · · ·𝜓𝑒𝑛
𝑛 and taking the integral

over M𝑔,𝑛. The factor
( 𝑓
𝑓0 , 𝑓1

)
arises when the factor 𝜅 𝑓

1 in (1.13) splits as (𝜅1,𝑣0 + 𝜅1,𝑣1 )
𝑓 when restricted

to the boundary stratum associated to Γ. By dimension reasons, the only term which survives is 𝜅 𝑓0
1,𝑣0

𝜅
𝑓1
1,𝑣1

,
which appears with the above binomial factor. Note that when either 𝑓0 or 𝑓1 are negative, the integral
vanishes for dimension reasons, and the binomial vanishes by definition. �

The numbers H𝑔 (x, e, 𝑓 ) are polynomial in x by [PZ]. Seeing the entries 𝑥𝑡 of x as formal variables
and dividing equation (4.6) by 𝑥𝑠 (2𝑔 − 2 + 𝑛), this equation determines H𝑔 (x, e, 𝑓 ) in terms of the
polynomials H𝑔′ (x′, e′, 𝑓 ′) with |e′ | < |e|. Iterating this procedure, the initial data of the recursion is
given by the numbers

H𝑔 (x, 0, 2𝑔 − 3 + 𝑛) =
∫
M𝑔,𝑛

DR𝑔 (x) · 𝜅2𝑔−3+𝑛
1 . (4.8)

These numbers are determined explicitly in forthcoming work [Sau] by Sauvaget.

Remark 4.5. Another possibility to calculate the numbers (4.5) was pointed out to us by the referee of
this paper: an explicit formula for the numbers in the case 𝑒1 = 2𝑔− 3+ 𝑛 and 𝑒𝑖 = 0 for 𝑖 > 1 was given
in [CSS21]. Moreover, in [CSS21, Proposition 3.1], a formula is given for the class

(2𝑔 − 2 + 𝑛) · (𝑥𝑠𝜓𝑠 − 𝑥𝑡𝜓𝑡 ) · DR𝑔 (x)

in terms of boundary classes involving smaller DR-cycles. This formula is obtained by subtracting
equation (4.3) for index t from the same equation for index s, eliminating the 𝜅1-term. Using this
method, one can one-by-one shift all 𝜓-insertions to the first marked point, with all correction terms
being controlled recursively. This second recursion does not need the initial data (4.8) and is thus entirely
explicit. We once again thank the referee for pointing it out!
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5. Piecewise polynomiality in any genus and wall crossings for genus 0

Theorem 5.1. Let 𝑛 ≥ 3 and let X = {x ∈ Z𝑛 | |x| = 𝑘 (2𝑔 − 2 + 𝑛) for some 𝑘 ∈ Z}. Let e ∈ Z𝑛
≥0 such

that 0 ≤ |e| ≤ 2𝑔 − 3 + 𝑛.
We can then view the k-leaky double Hurwitz descendant as a function

X → Q : x ↦→ H𝑔 (x, e).

This function is piecewise polynomial in the 𝑥𝑖 and k, where the polynomials are of degree

𝑛 − 3 + 4𝑔 − |e|.

Using the Correspondence Theorem 3.7, the function mapping x to the count of tropical k-leaky covers
satisfying Psi-conditions is also piecewise polynomial of course. In fact, we will prove Theorem 5.1 on
the tropical side.
Remark 5.2. In genus 0, the vertex multiplicity

mult𝑉 :=
∫
𝑀 0,val(𝑉 )

logDR0 (aV) ·
∏
𝑖∈𝐼𝑉

𝜓𝑒𝑖
𝑖 =

∫
𝑀 0,val(𝑉 )

∏
𝑖∈𝐼𝑉

𝜓𝑒𝑖
𝑖 =

(val(𝑉) − 3)!∏
𝑖∈𝐼𝑉 𝑒𝑖!

of a leaky cover satisfying Psi-conditions does not depend on k or on the expansion factors of its adjacent
edges; it equals a multinomial coefficient that only depends on its valency and the Psi-conditions.

More generally, the vertex multiplicities are given by the intersection numbers∫
𝑀𝑔 (𝑣 ) ,val(𝑣 )

DR𝑔 (𝑣) (x(𝑣)) ·
∏
𝑖∈𝐼𝑣

𝜓𝑒𝑖
𝑖 .

By [PZ, Spe24], the cycle DR𝑔 (𝑣) (x(𝑣)) is a tautological class with coefficients which are polynomials
in the entries of the vector x(𝑣) of degree equal to 2𝑔(𝑣). Accordingly, the vertex multiplicities are
polynomials in the entries of the vector x(𝑣) of degree equal to 2𝑔(𝑣).
Proof of Theorem 5.1. By the Correspondence Theorem 3.7,

H𝑔 (x, e) = Htrop
𝑔 (x, e),

and the latter is a sum over all tropical k-leaky covers 𝜋 of degree x and genus g satisfying the Psi-
conditions e and mapping to a fixed metric line graph, where each cover 𝜋 is counted with multiplicity
mult(𝜋) equal to the product of expansion vectors, vertex multiplicities and 1

| Aut(𝜋) | .
Given the combinatorial type of an abstract tropical curve of genus g with n labeled ends (such that

the valence of a vertex v of genus 𝑔(𝑣) adjacent to the ends with labels in 𝐼𝑣 equals
∑

𝑖∈𝐼𝑉 𝑒𝑖 +3−2𝑔(𝑣)),
we associate the expansion factor |𝑥𝑖 | to the end with label i. We orient the ends pointing inward if
𝑥𝑖 > 0 and outward if 𝑥𝑖 < 0. We view this degree now as something varying with the vector x.

Furthermore, we fix 𝑔′ := 𝑔−
∑

𝑣 𝑔(𝑣) edges whose removal produces a tree and view their expansion
factors as variables 𝑖1, . . . , 𝑖𝑔′ .

We pick an arbitrary orientation for the bounded edges, for which we ask ourselves whether there
exists a map to the line graph respecting this orientation.

Using the k-leaky condition, the expansion factor of every other edge is then uniquely determined,
and it is equal to a linear form in the 𝑥 𝑗 , k and 𝑖𝑠 .

A map to the line graph exists if and only if each expansion factor is positive.
If a map to the line graph exists, there is a unique way to add a metric to the graph which is compatible

with the metric of the target.
Consider the space with coordinates 𝑖1, . . . , 𝑖𝑔′ . Each expansion factor defines a hyperplane equation

in this space, such that the expansion factor is positive if and only if we are on the right side of the
hyperplane.
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The sum over all leaky tropical covers can thus be viewed as a weighted sum over all integer points
(𝑖1, . . . , 𝑖𝑔′ ) in a bounded chamber of a hyperplane arrangement defined by an oriented labeled graph
(with orientations of the ends matching the 𝑥𝑖), where each summand contributes mult(𝜋) for the
associated leaky cover 𝜋. The fact that the chamber is bounded follows from the arguments used in the
proof of Corollary 2.13 in [CJM11].

By Definition 3.5, the multiplicity mult(𝜋) with which 𝜋 contributes to the count of k-leaky covers
satisfying Psi-conditions is a product of expansion vectors, vertex multiplicities and 1

| Aut(𝜋) | . The last
factor is a number, independent of the expansion factors of the ends. The first factor is a product
of linear forms in the 𝑥 𝑗 , k and the 𝑖𝑠 of degree equal to the number of bounded edges, which is
𝑛 − 3 + 3𝑔′ −

∑
𝑣 (val(𝑣) − 3) = 𝑛 − 3 + 3𝑔′ − |e| +

∑
𝑣 2𝑔(𝑣).

By Remark 5.2, the vertex multiplicities are polynomial of degree 𝑔(𝑣) in the expansion factors of
the adjacent edges, which are themselves affine-linear forms in the 𝑥 𝑗 and the 𝑖𝑘 .

Thus, viewed as polynomial in the 𝑥 𝑗 , k and 𝑖𝑠 , the multiplicity mult(𝜋) is of degree 𝑛 − 3 + 3𝑔′ −
|e| +

∑
𝑣 4𝑔(𝑣).

Summing over the points (𝑖1, . . . , 𝑖𝑔′ ) in the bounded chamber increases the degree by 𝑔′. Here, we
use that the matrix defining the walls of the hyperplane arrangement is a network matrix (calculated
from the domain graph Γ of the tropical cover 𝜋), and thus totally unimodular [Sch03, Chapter 13].
Then the fact that this summation is a piecewise polynomial follows, for example, from [Mou00].

Thus, the multiplicity mult(𝜋) is a polynomial in the 𝑥 𝑗 and k of degree 𝑛−3+4𝑔′ − |e| +
∑

𝑣 4𝑔(𝑣) =
𝑛 − 3 + 4𝑔 − |e|.

In total, we obtain a piecewise polynomial function, where the piecewise structure arises since the
topology of the hyperplane arrangement of the expansion factors in the space with coordinates 𝑖1, . . . , 𝑖𝑔′
may vary for different choices of 𝑥 𝑗 . �

Example 5.3. For this example, we fix 𝑘 = 1. The k-leaky double Hurwitz descendant is then piecewise
polynomial in the 𝑥𝑖 . Let 𝑔 = 0, 𝑛 = 5, 𝑘 = 1 and e = (1, 0, 0, 0, 0). We fix the inequalities 𝑥1, 𝑥4 > 0,
𝑥2, 𝑥3, 𝑥5 < 0, 𝑥1 + 𝑥4 + 𝑥 + 5 − 2 > 0, 𝑥1 + 𝑥4 + 𝑥2 − 2 > 0, 𝑥1 + 𝑥4 + 𝑥5 − 2 > 0, 𝑥1 + 𝑥3 + 𝑥5 − 2 > 0,
𝑥1 + 𝑥3 + 𝑥4 − 2 > 0, 𝑥1 + 𝑥2 + 𝑥5 − 2 > 0.

The unique bounded edge of each of the 6 labeled trees with label 1 adjacent to a 4-valent vertex
can be oriented in a unique way producing a leaky cover with positive expansion factors in the chamber
defined by these inequalities; see Figure 5. In total, we obtain for all x satisfying the inequalities above
the polynomial

H0 (x, (1, 0, 0, 0, 0)) = (𝑥1 + 𝑥2 + 𝑥3 − 2) + (𝑥1 + 𝑥4 + 𝑥5 − 2) + (𝑥1 + 𝑥3 + 𝑥5 − 2)
+ (𝑥1 + 𝑥3 + 𝑥4 − 2) + (𝑥1 + 𝑥2 + 𝑥5 − 2) + (𝑥1 + 𝑥2 + 𝑥4 − 2)

= 6𝑥1 + 3𝑥2 + 3𝑥3 + 3𝑥4 + 3𝑥5 − 12 = 3𝑥1 − 3.

Lemma 5.4. Let 𝑔 = 0, 𝑛 ≥ 3 and let X = {x ∈ Z𝑛 | |x| = 𝑘 (−2 + 𝑛) for some 𝑘 ∈ Z}. Let e ∈ Z𝑛
≥0

such that 0 ≤ |e| ≤ −3+ 𝑛. The walls separating the areas of polynomiality of the piecewise polynomial
function H𝑔 (x, e) are given by vanishing expansion factors – that is, by expressions of the form∑

𝑖∈𝐼

𝑥𝑖 − 𝑘 · (♯𝐼 − 1) = 0,

where 𝐼 ⊂ {1, . . . , 𝑛}, 2 ≤ ♯𝐼 ≤ 𝑛 − 2.
Proof. The walls separating chambers of polynomiality are given by expressions as above, as this is the
expansion factor of the edge separating the ends with labels in I from the ends with labels not in I. Trees
with an edge of this weight correspond to the polynomial on one side – on the other side, the tree with
the edge reversed contributes. �

Remark 5.5. For higher genus, the walls separating chambers of polynomiality are given by the same
equations. The walls arise because bridge edges can change their direction, as above, or because the
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𝑥1 𝑥2

𝑥3

𝑥4
𝑥5

𝑥1 + 𝑥2 + 𝑥3 − 2

𝑥1 𝑥2

𝑥3
𝑥4

𝑥5

𝑥1 + 𝑥2 + 𝑥5 − 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥1 + 𝑥5 + 𝑥3 − 2

𝑥1 𝑥2

𝑥3

𝑥4 𝑥5

𝑥1 + 𝑥2 + 𝑥4 − 2

𝑥1

𝑥2

𝑥3

𝑥4 𝑥5

𝑥1 + 𝑥3 + 𝑥4 − 2

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥1 + 𝑥5 + 𝑥4 − 2
Figure 5. Six 1-leaky covers (all vertices of genus 0) of degree x satisfying the inequalities in Example 5.3
yield a nonzero contribution to the count H0(x, (1, 0, 0, 0, 0)). For each, its multiplicity equals the
expansion factor of its unique bounded edge.

hyperplane arrangement given by the egdes as discussed in the proof of Theorem 5.1 becomes degenerate.
As for the case of double Hurwitz numbers, the hyperplane arrangements become degenerate precisely
at the walls described above. One can view the degeneracy as arising because several edges go to zero
and change their direction together. To obtain wall-crossing formulas for higher genus, one thus has to
take contributions from graphs for which we need to cut more than just one edge into account, which is
why the formulas become more tedious [CJM11].

Proof of Theorem 1.4. The proof follows the ideas presented in [CJM10] for tropical double Hurwitz
numbers; we have to include leaking and Psi-conditions.

Recall from the proof of Theorem 5.1 that the polynomial expression equals a sum over oriented
labeled trees such that the valence of a vertex V adjacent to the ends with labels in 𝐼𝑉 equals

∑
𝑖∈𝐼𝑉 𝑒𝑖+3.

Each tree contributes either 0 or mult(𝜋) for the leaky cover 𝜋 we can build from it. We build a cover by
adding expansion factors to the bounded edges, satisfying the leaky condition, and a metric. If an edge
in such a cover has expansion factor 𝛿 > 0, the corresponding oriented tree yields 0 on the other side
of the wall (as then 𝛿 < 0); however, the tree with the orientation of the edge reversed yields a nonzero
contribution. Vice versa, that tree does not yield a contribution on the first side of the wall.

Trees that do not produce covers with an expansion factor being ±𝛿 contribute the same to both sides
of the wall and thus do not contribute to the wall-crossing.

We produce a weighted bijection between ‘cut-and-reglued’ covers and covers contributing to the
wall-crossing. Given a cover contributing to the wall-crossing, cut the edge with expansion factor 𝛿.
We obtain two covers, one that contributes to H0(x𝐼 ∪ {𝛿}, e𝐼 ) and one that contributes to H0 (x𝐼 𝑐 ∪
{−𝛿}, e𝐼 𝑐 ). Vice versa, if we have a pair of leaky covers, one contributing to H0(x𝐼 ∪ {𝛿}, e𝐼 ) and one
to H0 (x𝐼 𝑐 ∪ {−𝛿}, e𝐼 𝑐 ), how can we reglue the ends labeled ±𝛿? First, we have to interlace the images
of the vertices. There are

( 𝑟
𝑟1 ,𝑟2

)
choices for this, as r is the number of vertices of the whole tree, while

𝑟𝑖 are the numbers of vertices of the two pieces.
For a fixed such choice, the orientation of the reglued edge labeled 𝛿 is determined by the images of

the vertices and the compatibility with the cover of the line graph. Depending on this orientation, the
reglued cover yields a nonzero contribution to precisely one of the sides of the wall. If it lives on side
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𝑥1 𝑥2

𝑥3

𝑥4
𝑥5

−𝑥1 − 𝑥2 − 𝑥3 + 2

Figure 6. The cover that arises when crossing the wall 𝛿 in Example 5.6.

1, the only missing ingredient to count it with its correct multiplicity is the expansion factor of the cut
and reglued edge, which is 𝛿 > 0. If it lives on side 2, it appears with negative sign in the difference for
the wall-crossing, and we have so far missed the expansion factor of its cut and reglued edge, which is
−𝛿. As the two minus signs cancel, we can treat both cases in the same way and thus obtain the claimed
equality. �

Example 5.6. We continue Example 5.3. There, 𝑛 = 5, 𝑘 = 1 and e = (1, 0, 0, 0, 0). We computed the
polynomial H0 (x, (1, 0, 0, 0, 0)) for x satisfying the inequalities 𝑥1, 𝑥4 > 0, 𝑥2, 𝑥3, 𝑥5 < 0, 𝑥1+𝑥4+𝑥+5−
2 > 0, 𝑥1+𝑥4+𝑥2−2 > 0, 𝑥1+𝑥2+𝑥3−2 > 0, 𝑥1+𝑥3+𝑥5−2 > 0, 𝑥1+𝑥3+𝑥4−2 > 0, 𝑥1+𝑥2+𝑥5−2 > 0.
Let us now cross the wall 𝛿 = 𝑥1 + 𝑥2 + 𝑥3 − 2 = 0. In Figure 5, all covers except the top left yield
the same contribution on the other side of the wall, so their contributions cancel in the wall-crossing.
Instead of the cover on the top left, the cover depicted in Figure 6 arises on the other side of the wall.

The wall-crossing equals 2(𝑥1 + 𝑥2 + 𝑥3 −2) =
( 2
1,1
)
𝛿, as predicted by Theorem 1.4, as the cut 1-leaky

double Hurwitz descendants are both just one.

6. Positivity and vanishing of leaky Hurwitz descendants in genus 0

In this section, we give a characterization of when genus zero leaky double Hurwitz descendant invariants
vanish. By Remark 5.2, the multiplicity with which a leaky cover contributes is always positive. A leaky
double Hurwitz descendant in genus 0 is thus positive if and only if we can construct a single leaky
cover which contributes to the count.

If the genus is positive, it is possible to have leaky tropical covers which contribute with negative
multiplicity, as well as some which contribute with positive multiplicity to a leaky double Hurwitz
descendant; see Example 6.1. The question whether a leaky double descendant is positive, negative or
even 0 is therefore hard to answer in general.

Example 6.1. Consider the leaky Hurwitz number 𝐻1 (𝑑,−(𝑑 − 2𝑘)) for some 𝑑 > 𝑘 + 1 > 0. Figure 7
shows two types of leaky tropical covers which contribute to the count. The upper cover has a vertex
of genus 1 with an incoming edge of weight k and no outgoing edge. The vertex multiplicity of this
genus 1 vertex equals − 1

24 . The upper cover thus contributes − 𝑘
24 . The lower cover has only trivial vertex

multiplicities. The weight i of the edge in the cycle can vary from 1 to 𝑑 − 𝑘 − 1. Exchanging the two
edges of the cycle yields an automorphism, so we have to divide by 1

2 . Altogether, the lower picture
accounts for

1
2
·

𝑑−𝑘−1∑
𝑖=1

𝑖 · (𝑑 − 𝑘 − 𝑖) =
1

12
· (𝑑 − 𝑘) · (𝑑 − 𝑘 − 1) · (𝑑 − 𝑘 + 1).

Consequently, while the k-leaky number is positive for large d, there are regions of the parameter
space where it becomes negative (e.g., 𝑑 = 𝑘 + 2, 𝑘 > 12, where the number is 1

2 − 𝑘
24 ).

From now on, we restrict to the case 𝑔 = 0, where leaky tropical covers have nonnegative multiplicity.

Remark 6.2. If 𝑘 = 0, 𝐻0 (x, e) > 0 unless x = (0, . . . , 0) and 𝑛 > |e| + 3: for any degree x which
is not zero, the existence of a tropical cover follows from Proposition 6.5, since x must have negative
entries. If x is zero, we must impose Psi-conditions that force any cover to consist of only one vertex,
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𝑔 = 1

𝑑 𝑑 − 2𝑘

𝑑 − 2𝑘
𝑑 𝑘

𝑖

𝑑 − 𝑘 − 𝑖

Figure 7. Leaky tropical covers which contribute negatively resp. positively to 𝐻1 (𝑑,−(𝑑 − 2𝑘)).

Figure 8. A caterpillar cover: the leftmost vertices of the cover merge an end until all nonnegative ends
are merged in, and the last vertices split off the negative ends.

adjacent to all ends. Such a cover contributes positively. If we have less Psi-conditions, any cover needs
to have at least one bounded edge, which must be of weight 0 by the balancing condition, leading to a
contradiction. Thus, there is no cover of degree 0 and with 𝑛 > |e| + 3.

Remark 6.3. In Theorem 1.6, we consider the case 𝑘 ≠ 0. In the following, we assume without restriction
that 𝑘 > 0. That is possible, since we can ‘turn around’ any tropical k-leaky cover of degree x, thus
producing a tropical (−𝑘)-leaky cover of degree −x.

With the following lemma, we can deduce positivity of k-leaky double Hurwitz descendants from
the positivity of k-leaky double Hurwitz numbers.

Lemma 6.4. If the k-leaky double Hurwitz number 𝐻0 (x) > 0 for some x, then also the k-leaky double
Hurwitz descendant 𝐻0(x, e) > 0 for any e.

Proof. By definition and because of Remark 5.2, in genus 0, any leaky tropical cover contributes with
positive multiplicity. Since 𝐻0 (x) > 0, there exists a tropical leaky cover of genus 0 and degree x. It has
3-valent vertices. We can temporarily forget the order of the images of the vertices. If e ≠ 0, we can
shrink bounded edges in such a way that we produce the valencies which are required by e. We can then
order the remaining vertices again in an arbitrary way (compatible with the images of the edges). The
cover we produce in this way then contributes positively to 𝐻0(x, e) and we conclude 𝐻0(x, e) > 0. �

To study the positivity of k-leaky double Hurwitz numbers, we first assume that x contains at least
one entry strictly smaller than 𝑘/2.

Proposition 6.5. Let 𝑘 ≥ 0, |x| = 𝑘 (𝑛 − 2) and assume x has at least one entry 𝑥𝑖 < 𝑘/2. Then there
exists a caterpillar k-leaky cover of genus 0 and degree x which contributes positively to the count
𝐻0 (x), see Figure 8. As a consequence, 𝐻0(x) > 0.

Proof. The case 𝑛 = 3 is trivial, since there the trivial graph with three legs is always a leaky tropical
cover with multiplicity 1 and so 𝐻0(x) = 1 > 0. Assume that 𝑛 ≥ 4, and without loss of generality, we
order the markings such that 𝑥1 ≥ 𝑥2 ≥ . . . ≥ 𝑥𝑛 with 𝑥𝑛 < 𝑘/2 by assumption. Then we have

Claim : 𝑥1 + 𝑥2 > 𝑘 . (6.1)

Indeed, assume on the contrary that 𝑥1 + 𝑥2 ≤ 𝑘 . Then we have that 𝑥2 ≤ 𝑘/2 since otherwise,
𝑥1 + 𝑥2 ≥ 𝑥2 + 𝑥2 > 𝑘 . By the ordering above, we then also have 𝑥3, . . . , 𝑥𝑛−1 ≤ 𝑘/2. Using these
inequalities, we would have
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𝑥1 + 𝑥2︸�︷︷�︸
≤𝑘

+ 𝑥3 + . . . + 𝑥𝑛−1︸������������︷︷������������︸
≤(𝑛−3) ·𝑘/2

+𝑥𝑛 = 𝑘 (𝑛 − 2)

=⇒ 𝑥𝑛 + (𝑛 − 1) · 𝑘/2 ≥ 𝑘 (𝑛 − 2)

=⇒ 𝑥𝑛 ≥ 𝑘 (𝑛 − 2 −
𝑛 − 1

2
) = 𝑘 ·

𝑛 − 3
2

.

Since 𝑛 ≥ 4, this gives a contradiction to the assumption 𝑥𝑛 < 𝑘/2.
To conclude 𝐻0(x) > 0 we construct a cover as follows: let 𝑣0 be a vertex with markings 1, 2 and an

outgoing edge, whose expansion factor is �̃� = 𝑥1 + 𝑥2 − 𝑘 > 0 by (6.1). Then by induction, the Hurwitz
number 𝐻0 (�̃�, 𝑥3, . . . , 𝑥𝑛) is positive (since still 𝑥𝑛 < 𝑘/2), and so there exists an associated leaky cover.
Gluing the vertex 𝑣0 in results in a cover for 𝐻0(x) contributing positively, which is necessarily of the
form illustrated in Figure 8. �

Lemma 6.6. Let 𝑘 > 0 be any number and |x| = 𝑘 (𝑛 − 2). Then the k-leaky double Hurwitz number
𝐻0 (x) is nonnegative, and it is strictly positive if and only if x contains an entry which is not a positive
multiple of 𝑘

2 .
Proof. We prove the theorem by induction on 𝑛 ≥ 3. For 𝑛 = 3, the leaky Hurwitz number is always 1,
as seen above. However, the condition 𝑥1 + 𝑥2 + 𝑥3 = 𝑘 can never be satisfied if 𝑥𝑖 = 𝑚𝑖 · 𝑘/2 with
𝑚𝑖 > 0, so the corresponding clause of the theorem is empty, and thus, the leaky Hurwitz number is
predicted to always be positive, which we verified.

For 𝑛 = 4, we know by Proposition 6.5 that 𝐻0(x) is positive unless all 𝑥𝑖 are at least 𝑘/2. Since they
sum to 2𝑘 , the only remaining possibility is 𝑥1 = . . . = 𝑥4 = 𝑘/2 with k even, in which case the k-leaky
Hurwitz number vanishes, since all associated tropical covers have weight 𝑘/2 + 𝑘/2 − 𝑘 = 0 on the
bounded edge.

For 𝑛 > 4, we distinguish two cases: if k is even and all 𝑥𝑖 are of the form 𝑥𝑖 = 𝑚𝑖 · 𝑘/2 with 𝑚𝑖 > 0,
take any leaf vertex 𝑣0 of a corresponding leaky cover. If the two 𝑥𝑖 , 𝑥 𝑗 adjacent to it are equal to 𝑘/2,
the outgoing edge has slope 0, and thus, the cover does not contribute to 𝐻0 (x). Otherwise, the outgoing
slope is a positive multiple 𝑚 ·𝑘/2, so the remaining graph is one contributing to a leaky Hurwitz number
𝐻0 (𝑚 · 𝑘/2, 𝑥1, . . . , �̂�𝑖 , . . . , �̂� 𝑗 , . . . , 𝑥𝑛), which vanishes by induction. Thus, the remaining graph has
multiplicity zero, and thus has a bounded edge of weight 0. Hence, the original graph contributed with
multiplicity 0 as well, and so, 𝐻0(x) = 0.

Conversely, assume that not all numbers are of the form 𝑥𝑖 = 𝑚𝑖 · 𝑘/2 for 𝑚𝑖 ∈ N>0, in which case
we want to show 𝐻0 (x) > 0. If any of them satisfied 𝑥𝑖 < 𝑘/2, we would conclude the positivity of
𝐻0 (x) from Proposition 6.5. Thus, we can assume 𝑥𝑖 ≥ 𝑘/2.

If there is at least one entry of x, which is not a positive multiple of 𝑘/2, then in fact, there must
be two since all the 𝑥𝑖 are positive and their sum is 𝑘 (𝑛 − 2). Assume the number of these entries is
precisely two, and say they are given by 𝑥1, 𝑥2. Then necessarily 𝑥𝑛 = 𝑘/2 since 𝑛 ≥ 4. Taking 𝑣0 a
vertex with markings 1, 𝑛, its outgoing expansion factor is

�̃� = 𝑥1︸︷︷︸
≥𝑘/2 and ≠𝑘/2

+𝑥𝑛 − 𝑘 > 𝑘/2 + 𝑘/2 − 𝑘 = 0.

By induction, the number 𝐻0 (�̃�, 𝑥2, . . . , 𝑥𝑛−1) is positive since 𝑥2 is not a positive multiple of 𝑘/2, and
gluing 𝑣0 to any cover contributing to that number gives a cover with positive contribution to 𝐻0 (x).

Finally, if there are at least three entries (say 𝑥1, 𝑥2, 𝑥3) of x not given by positive multiples of 𝑘/2, then
fusing 𝑥1, 𝑥2 at a vertex 𝑣0 as above still has positive outgoing expansion factor (since �̃� = 𝑥1+𝑥2−𝑘 > 0),
and we conclude as above using the proven case 𝐻0 (�̃�, 𝑥3, . . . , 𝑥𝑛) > 0. �

By Lemma 6.4, we can conclude the following:
Corollary 6.7. Let 𝑘 > 0 be any number, and |x| = 𝑘 (𝑛 − 2). Assume x contains an entry which is not
a positive multiple of 𝑘

2 . Then the k-leaky double Hurwitz descendant 𝐻0 (x, e) > 0.
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Proposition 6.8. Let 𝑘 > 0 be even and |x| = 𝑘 (𝑛−2). Assume x contains only positive integer multiples
of 𝑘

2 , 𝑥𝑖 = 𝑚𝑖 ·
𝑘
2 . Let 𝑒 ∈ Z𝑛

≥0 with 0 ≤ |𝑒 | ≤ 𝑛−3 and 𝐼 ⊂ {1, . . . , 𝑛} be an index set of size r such that∑
𝑖∈𝐼

𝑒𝑖 ≥
∑
𝑖∈𝐼

𝑚𝑖 − 𝑟 + 1. (6.2)

Then 𝐻0 (x, e) > 0.
Proof. Since all the edge weights involved in the proof of this Proposition are integral multiples of 𝑘

2 ,
we divide this factor out from all weights. The degree condition for a leaky cover then becomes∑

𝑚𝑖 = 2𝑛 − 4. (6.3)

Note that (6.3) also expresses in this normalization the leaky balancing condition at a vertex of a leaky
cover, where the 𝑚𝑖’s are the weights of the incident edges, and n is the valence of the vertex. We make
the following simplifying assumptions:
1. for every 𝑖 ∈ 𝐼, 𝑒𝑖 > 0;
2. for every 𝑗 ∉ 𝐼, 𝑒 𝑗 = 0.

We prove that these two assumptions do not cause any loss of generality. If 𝑖 ∈ 𝐼 has 𝑒𝑖 = 0, (6.2) is
satisfied by the subset 𝐼 \ {𝑖}; thus given any subset I satisfying (6.2), we may replace it with the subset
of its elements with strictly positive 𝑒𝑖’s, which satisfies condition (1).

Assume the vector of Psi conditions e is supported on the subset 𝐼 ⊆ [𝑛] of size r, and
∑

𝑖∈𝐼 𝑒𝑖 ≥∑
𝑖∈𝐼 𝑚𝑖 − 𝑟 + 1. If there exists a k-leaky tropical cover of degree x satisfying the Psi-conditions given

by e, then for any entry-wise larger vector of Psi conditions, one can construct a k-leaky tropical cover
as in Lemma 6.4 by shrinking edges. Thus, condition (2) poses no restriction.

With the simplifying assumptions in place, the strategy of proof is as follows: we construct a k-leaky
cover starting from the rightmost vertex 𝑣𝑅, to which we attach all the ends in I; the Psi condition
determines the valency of 𝑣𝑅, which requires adding additional s half-edges at the vertex. The leaky
balancing condition determines the total weight of edges and ends incident to 𝑣𝑅. We can connect all
but one of the s half-edges directly to ends in such a way that the weight on the last half-edge (which
is determined) is still positive. To complete the picture, we are looking for a leaky cover with a bunch
of left ends and exactly one right end to glue to the remaining half-edge of 𝑣𝑅. The existence of such a
graph is guaranteed by Proposition 6.5. Now for the details.

Assume without loss of generality that 𝐼 = [1, 𝑟] ⊆ [𝑛], and that 𝑚𝑟+1 ≤ 𝑚𝑟+2 ≤ . . . ≤ 𝑚𝑛.
Let 𝑠 = |e| − 𝑟 + 3, and note that 3 ≤ 𝑠 ≤ 𝑛− 𝑟; the first inequality holds because of condition (1), the

second because |e| ≤ 𝑛 − 3. Let Γ𝑅 be a graph consisting of a single vertex 𝑣𝑅 of valence 𝑟 + 𝑠. Assign
weights 𝑚1, . . . , 𝑚𝑟+𝑠−1 to all but one of the edges of Γ𝑅.

By (6.3), the weight at the last end of Γ𝑅 equals

𝑚𝐿 := 2(𝑟 + 𝑠) − 4 −

𝑟+𝑠−1∑
𝑖=1

𝑚𝑖 . (6.4)

Claim. 𝑚𝐿 > 0.
Assuming the claim, consider x′ = (𝑚𝑟+𝑠 , . . . , 𝑚𝑛,−𝑚𝐿), a vector of length 𝑛− 𝑟 − 𝑠+2. We observe

that x′ satisfies the degree condition to admit a k-leaky cover:

𝑛∑
𝑖=𝑟+𝑠

𝑚𝑖 − 𝑚𝐿 =
𝑛∑
𝑖=1

𝑚𝑖 − 2(𝑟 + 𝑠) + 4

= 2𝑛 − 4 − 2(𝑟 + 𝑠) + 4
= 2(𝑛 − 𝑟 − 𝑠 + 2) − 4.
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Since −𝑚𝐿 is negative, and so in particular strictly less than one, by Proposition 6.5, there exists a
caterpillar leaky cover of degree x′. Attaching this cover to the end of weight 𝑚𝐿 of Γ𝑅 produces a leaky
cover of degree x, with a rightmost vertex 𝑣𝑅 of valence

𝑟 + 𝑠 = |e| + 3. (6.5)

By (6.5), this graph satisfies the Psi condition e and contributes positively to 𝐻0(x, e). Thus, the
Proposition is proved modulo proving the claim. �

Proof of Claim. Assume 𝑚𝐿 ≤ 0, giving

2(𝑟 + 𝑠) − 4 ≤

𝑟+𝑠−1∑
𝑖=1

𝑚𝑖 =
𝑟∑
𝑖=1

𝑚𝑖 +

𝑟+𝑠−1∑
𝑖=𝑟+1

𝑚𝑖

(6.2)
≤ |e| + 𝑟 − 1 +

𝑟+𝑠−1∑
𝑖=𝑟+1

𝑚𝑖

(6.5)
= 𝑟 + 𝑠 − 3 + 𝑟 − 1 +

𝑟+𝑠−1∑
𝑖=𝑟+1

𝑚𝑖 .

Simplifying, we obtain

𝑟+𝑠−1∑
𝑖=𝑟+1

𝑚𝑖 ≥ 𝑠, (6.6)

so one of the 𝑠 − 1 summands 𝑚𝑖 on the left-hand side above must be at least 2. In particular, since
we choose to order the weights after r in increasing order, 𝑚𝑖 ≥ 2 for 𝑖 ≥ 𝑟 + 𝑠 − 1. This gives us the
following contradiction:

2𝑛 − 4 =
𝑛∑
𝑖=1

𝑚𝑖 =
𝑟+𝑠−1∑
𝑖=1

𝑚𝑖 +

𝑛∑
𝑖=𝑟+𝑠

𝑚𝑖

≥ 2(𝑟 + 𝑠) − 4 + 2(𝑛 − 𝑟 − 𝑠 + 1) = 2𝑛 − 2. �

Finally, we generalize the vanishing part 𝐻0(x) = 0 for x only containing positive multiples of 𝑘/2
from Lemma 6.6 to the numbers 𝐻0(x, e), where we see that an additional condition is required (which
is always satisfied for e = 0).

Proposition 6.9. Let 𝑘 > 0 be even and |x| = 𝑘 (𝑛 − 2). Assume x contains only positive multiples of
𝑘
2 , 𝑥𝑖 = 𝑚𝑖 ·

𝑘
2 . Let 𝑒 ∈ Z𝑛

≥0 with 0 ≤ |𝑒 | ≤ 𝑛 − 3 and assume that for any subset 𝐼 ⊂ {1, . . . , 𝑛} with
|𝐼 | = 𝑟 , we have ∑

𝑖∈𝐼

𝑒𝑖 <
∑
𝑖∈𝐼

𝑚𝑖 − 𝑟 + 1. (6.7)

Then 𝐻0 (x, e) = 0.

Proof. We show that there cannot be a leaky tropical cover of genus 0 and degree x satisfying the Psi-
conditions imposed by e in this case. Assume there is such a cover. Since x has only positive entries,
the cover has no right ends. Thus, there cannot be an edge leaving the rightmost vertex 𝑣𝑅 to the right.
Denote by I the subset of ends that attach directly to 𝑣𝑅, and say that an additional s edges (which are
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Figure 9. The rightmost vertex of a leaky cover whose degree contains only positive multiples of 𝑘
2 .

not ends) attach to 𝑣𝑅, with weights 𝑤 𝑗 ·
𝑘
2 for 𝑗 = 1, . . . 𝑠; see Figure 9. Denoting by 𝑟 = |𝐼 |, the leaky

balancing condition at 𝑣𝑅 is ∑
𝑖∈𝐼

𝑚𝑖 +

𝑠∑
𝑗=1

𝑤 𝑗 = 2(𝑟 + 𝑠) − 4. (6.8)

The cover satisfying the Psi-conditions at 𝑣𝑅 implies∑
𝑖∈𝐼

𝑒𝑖 = 𝑟 + 𝑠 − 3. (6.9)

We may subtract (6.9) from (6.8), and, using the fact that 𝑤 𝑗 ≥ 1 for all j, obtain the inequality∑
𝑖∈𝐼

𝑚𝑖 + 𝑠 −
∑
𝑖∈𝐼

𝑒𝑖 ≤ 𝑟 + 𝑠 − 1. (6.10)

It is immediate to see that (6.10) contradicts the hypothesis (6.7). Hence, no cover can exist and
𝐻0 (x, e) = 0.

�

Proof of Theorem 1.6. By Remark 6.3, we can assume 𝑘 > 0 without restriction. The Theorem collects
together the statements of Corollary 6.7, Proposition 6.8 and Proposition 6.9. �
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