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1. Introduction and preliminaries. An interesting concept of semigroups (and also
rings) of (left) quotients, based on the notion of group inverse in a semigroup, was
developed by J. B. Fountain, V. Gould and M. Petrich, in a series of papers (see [5]-[12]).
Among the most interesting are semigroups having a semigroup of (left) quotients that is
a union of groups. Such semigroups have been widely studied. Recall from [3] that a
semigroup has a group of left quotients if and only if it is right reversible and cancellative.
A more general result was obtained by V. Gould [10]. She proved that a semigroup has a
semilattice of groups as its semigroup of left quotients if and only if it is a semilattice of
right reversible, cancellative semigroups. This result has been since generalized by A.
El-Qallali [4]. He proved that a semigroup has a left regular band of groups as its
semigroup of left quotients if and only if it is a left regular band of right reversible,
cancellative semigroups. Moreover, he proved that such semigroups can be also
characterised as punched spined products of a left regular band and a semilattice of right
reversible, cancellative semigroups. If we consider the proofs of their theorems, we will
observe that the principal problem treated there can be formulated in the following way:
Given a semigroup S that is a band B of right reversible, cancellative semigroups 5,, i e B,
to each 5,- we can associate its group of left quotients G,. When is it possible to define a
multiplication of Q = U G, such that Q becomes a semigroup having S as its left order,

and especially, that Q becomes a band B of groups G,, i e Bl Applying the methods
developed in [1] (see also [2]), in the present paper we show how this problem can be
solved for Q to become a strong band of groups (that is in fact a band of groups whose
idempotents form a subsemigroup, by [16, Theorem 2]. Moreover, we show how Gould's
and El-Quallali's constructions of semigroups of left quotients of a semilattice and a left
regular band of right reversible, cancellative semigroups, can be simplified.

Throughout this paper, for a semilattice Y,S = (Y\Sa) will mean that a semigroup S
is a semilattice Y of semigroups Sa,a s Y. Especially, for a band B,B = (Y\Ba) will
mean that B is a semilattice Y of rectangular bands Ba,a e Y (i.e. Y is the greatest
semilattice homomorphic image of B). For a congruence p, ph will denote its natural
homomorphism.

Let B be a band. By ^ we will denote the natural partial order on B, i.e. a relation
on B defined by: j^i <=> ij=)i=j (i,je.B), and < will denote a quasi-order on B
defined by: ; < i <=> j-jij (i,j e B). Clearly, < and < coincide if and only if B is a
semilattice. Further, for ieB, [i] will denote the class of / with respect to the smallest
semilattice congruence on B. It is easy to verify that;' < / <=> [;'] s [/], for all i,j E B.

Let B be a band. To each i E B we associate a semigroup 5, and an oversemigroup D,
of 5, such that D, PID, = 0 , if i / / . For i,j e B, i>j, let (/>,,, be a mapping of S, into D, and
suppose that the family of <£,v satisfies the following conditions:

(1) <f>u is the identity mapping on 5,, for each i e B;
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(2) (.SrfvjXSjtkjj,) S Sijy for all i,j e 5 ;

(3) [(«<M(H,y)]<k/,* = («<M(H,*)' for fl e 5<> fc e sh V > k>'. A * 6 fi-
Define a multiplication * on 5 = U 5, by:

(4)fl*ft = (fl<A,,,y)(H,;) (aeS,,6eS,).
Then S is a band 5 of semigroups £,, i G B, in notation 5 = (S; 5,, 01-y, A ) [!]• The symbol
"*" will be further omitted. If we assume i=j in (3), then we obtain that <f>ljc is a
homomorphism, for all i,k e B, i>k.

Further, if Dt = 5,, for each / e B, then we write 5 = (B; Sit 4>itJ). Here the condition
(2) can be omitted. If 5 = ( 5 ; 5,, <£,,) and if {</>,_, \i,j e B, i >j) is a transitive system of
homomorphisms, i.e. if <f>ij<f>j\k = </>;,*, for i>j>k, then we will write 5 = [B;£,, </>,;], and
we will say that 5 is a strong band B of semigroups 5,. In the case when B is a semilattice,
we obtain a strong semilattice of semigroups.

If /* and Q are two semigroups with a common homomorphic image Y, then a spined
product of P and Q with respect to Y is 5 = {(a, b) e Px Q\aq> = bi}i}, where <p : P-» Y
and (/>:(?—»Y are homomorphisms onto Y. If Pa = a<p~1, Qa = atp~1, aeY, then
5 = U ^a x Qa- Clearly, 5 is a subdirect p roduc t of P and Q. A punched spined

aeY

product of P and Q with respect to Y is any semigroup isomorphic to some subdirect
product of P and Q contained in their spined product with respect to Y [4].

An element a of a semigroup 5 is completely regular if there exists x e S such that
a = axa and ax = xa. It is well known that a is completely regular if and only if it lies in
some subgroup of 5, so completely regular elements will be also called group elements. If
a is completely regular, then there exists a unique x e S such that a = axa, x = xax and
ax =xa, which is the inverse of a in the maximal subgroup of 5 containing it, so such an
element will be called a group inverse of a and it will be denoted by a~\

An element a of a semigroup 5 is square-cancellable if, for all x,y e S\

a2x = a2y implies ax = ay and xa2 = ya2 implies xa = ya.

Let 5 be a subsemigroup of a semigroup Q. Recall from [9] that S is a left order in Q
or that Q is a semigroup of left quotients of 5 if

(i) every square-cancellable element of 5 lies in a subgroup of Q;
(ii) every element q of Q can be written as q = a~]b, for some elements a, b e S.

Clearly, if Q is a union of groups, then the condition (i) can be omitted.
A semigroup S is right reversible if SaDSb^ 0 , for all a, b e 5.
For undefined notions and notation we refer to [3], [13] and [15].

2. The main results. First we will prove the following lemma.

LEMMA 1. Let S = (B;Sh </>,v, G,), and for each i e B, let 5, be a right reversible,
cancellative semigroup with G, as its group of left quotients. Then, for all i,j G B, i >j, <£l>;

can be extended to a homomorphism ipi; of G, into G, such that there exists a

Proof. Let ° denote the multiplications in groups G,,i E B. For / , / e B,i>j, faj can
be (uniquely) extended to a homomorphism <p,v of G, into G, and then for a,b G 5, we
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have

Let us prove that {<p,;- \i,j e B, i >j) is a transitive system of homomorphisms. Since
G, is the group of left quotients of Sh for any i E B, it is enough to show that
a<Pi,j<Pj,k = a<Pijc, f ° r a ^ ' » / » ^ ^ such that / >j > k and any a e 5,. Assume x,y e 5, such
that aq>ij= x~l°y, i.e. X ° (a<p,;) = _y. Then yx = ^ ° A : = x°(a<Pij)°x = x°(a4>ij)°x. By (3)
and (4) it follows that xax = x°{a4>itj)°x, and hence yx = xax. Again by (3) and (4) we
obtain

) = (yx)4>j,k = (xax)4>JJC =

whence y<£y,* = (x<f)jjc)°(a<f>ik), by the cancellativity in G^. Hence,

which was to be proved.

Now we go to the main theorem of this paper.

THEOREM 1. The following conditions on a semigroup S are equivalent:
(i) 5 is a left order in a strong band of groups;
(ii) S = (B;St,<l>ij,Ci), where, for each ieB, 5, is a right reversible, cancellative

semigroup with G, as its group of left quotients;
(iii) S is a punched spined product of a band B = (Y; Ba) and a semigroup

T = (Y;Ta), with respect to a semilattice Y, where, for each a eY, Ta is a right reversible,
cancellative semigroup.

Proof. (i)=^>(ii). This follows immediately by Propositions 2 and 4 of [11].
(ii)=>(i). This follows by Lemma 1.
(ii) ^ ( n i ) - Let B - (Y;Ba). By [1, Theorem 2], 5 is a semilattice Y of semigroups

(Ba; Sj, 4>ij, G,), a relation p on 5 defined by: a p b if and only if a E 5,, b e 5;, i,j e B,
['] = [j] a n d o<f>iJc = b(f)jk, for each k E B such that i,j > k, is a congruence, T = Sip is a
semilattice V of semigroups Ta = Sap*, a e Y, and 5 is a punched spined product of B and
T with respect to Y. It remains to prove that for each a e Y, Ta is cancellative and right
reversible.

Let a E Y. Assume u,v,weTa such that uw = vw. Then u=ap*, v = bp* and
w = cp*, for some a,b,c e Sa. Let a e 5,, b E SJ, C E Sk, for some i,j, k e Ba. Assume
/ e B such that i,j > 1. Then k, ik, jk > I and

= [(a<f>uk)(c4>kJk)]<l)ikj = {ac)4>ikJ

= (bc)4>jkJ = [(b<f>jJk)(c<f)kjk)]<f)jkj =

since ac p be, i.e. uw = vw. Now, by the cancellativity in Gh afaj = bfyj. Thus, a p b,
i.e. u = v. Hence, Ta is right cancellative. Similarly we prove left cancellativity in Ta.

Let u, v E Ta. Then M = ap*, v - bp*, for some a, b E 5a , and a E 5,, b e Sj, for some
i,j E fla. By Lemma 1, for all / , ; E B, i >j, 4>i%j can be extended to a homomorphism <p,v
of G, into G; such that there exists a Q = [B; G,, <p1>;]. Now (fl0,,y)(fe^);.,y)"1 E G,y, so

* =x~ly, for some x,}< e 5y, i.e. x(a<f>u/) = y(b<f>jjj), whence

) = *(a</>,,,y) = (xa)4>ijUl,
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Assume k e B such that ij, iji > k. Then

= (xa)<f>,M<f>ijJt = (xa)(piM(pij<k = (xa)q>iM = (xa)<f>ijii

Therefore, yb p xa, whence {xp*)u = (yp*)v, so To is right reversible.
(iii) ẑ> (i). Without loss of generality we can assume that 5 £ B X T, i.e.

S^ U Bax Ta. By [10, Theorem 3.1], 7 is a left order in a semigroup Q, where

Q = (Y; Ga) and for each a e V, Ga is a group, and also, for each a e y, Ga is a group of
left quotients of 7a. Let P be the spined product of B and Q with respect to Y, i.e. let
^ = U Ba x Ca. By [16, Theorem 4] (see also [14, Theorem 3.2]), P is a strong band

aeY

of groups. It remains to prove that P is a semigroup of left quotients of 5. Assume an
arbitrary (/, a) e P. Then i e 5 a , a e Ga, for some aeY. Since 5 is a subdirect product of
B and T, there exists 6 e T such that (i,6) e S, and hence fe E Ta. Thus, fea"1 e Ga, so
ba~l=x~1y, for some x,_y e Ta, and further, there exists j,ksB such that C/,*),
(A:,y) e 5. Now ; , k e Ba, so (i, bxb) = (i, b)(j,x)(i, b) eS, (ik, by) = (i, b)(k,y) 6 5, and
{by)^bxb = y^b^bxb = y~lxb = {ba'^b = a/r'6 = a, whence

(i, a) = (i, (by)-'bxb) = (/A:, fcy)"^/,

Therefore, P is a semigroup of left quotients of 5.

Semigroups having a rectangular group of (left) quotients have been considered by
several authors. By Theorem 1 we obtain the following corollary.

COROLLARY 1. The following conditions on a semigroup S are equivalent:
(i) S is a left order in a rectangular group;

(ii) 5 = (B; 5,, <f>tj, G,), where B is a rectangular band and for each i e B, 5, is a right
reversible, cancellative semigroup with G, as its group of left quotients;

(iii) 5 is a subdirect product of a rectangular band and a right reversible, cancellative
semigroup.

Finally, the next theorem, together with Lemma 1, shows how Gould's and
El-Qallali's constructions of semigroups of left quotients of a semilattice and a left regular
band of right reversible, cancellative semigroups, can be simplified.

THEOREM 2. Let S be a left regular band B of right reversible, cancellative semigroups
Sh ieB, and for each ieB, let G, be the group of left quotients of 5,. Then
S = (fl; 5,, </>,„, G,.).

Proof. Let ° denote the multiplications in groups G,, ieB, and let {u, \i e B}^S
such that M, e 5,, for each / e B. For /',/ e B, i >], define a mapping <£1>;: 5,—»G,- by:

«</>.•./ = " / l o ( " ; f l ) (aeSi).

Since B is a left regular band, then ufl e Sj, so M"1 °(«;a) 6 G7. Clearly (1) holds. Assume
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/ e B , aeShbeSj. Further, since B is a left regular band, then w,y, u^a e 5,y, so
^ = wiiy, for some v, w e S<,. Now

°v°(Ujjdb) = Uy* °(Ujjdb) = ujj
x°uijo{ab) = ab.

Therefore, (2) and (4) hold.
Assume i,j,ktB, ij>k, a e 5,, b e Sj. Since B is a left regular band, then

uka, uk e Sk, whence vuka = wuk, for some v, w e Sk. Now

= u^1 °v~} °w°uk°uk
la(ukb) = ul^°v~x °v°(uka)auk~

x°{ukb)
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