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SUMMARY

The Wells–Riley equation for modelling airborne infection in indoor environments is

incorporated into an SEIR epidemic model with a short incubation period to simulate the

transmission dynamics of airborne infectious diseases in ventilated rooms. The model enables

the effect of environmental factors such as the ventilation rate and the room occupancy to

be examined, and allows the long-term impact of infection control measures to be assessed.

A theoretical parametric study is carried out to demonstrate how changes to both the

physical environment and infection control procedures may potentially limit the spread

of short-incubation-period airborne infections in indoor environments such as hospitals.

INTRODUCTION

The indoor air in buildings can play a significant role

in the transmission of a wide range of infections.

Aerosolized infectious agents may be introduced to

the air by room occupants through actions such as

coughing, sneezing and, in some instances – such as

norovirus infection – vomiting. These microorganism-

bearing droplets evaporate rapidly to form droplet

nuclei, which with a typical diameter of <5 mm, can

remain suspended in air for many hours. Ventilation

systems and convection currents within rooms can

disperse droplet nuclei over a wide area, with the

potential to infect other occupants.

Infections that are known to be transmitted

primarily by an airborne route include viral diseases

such as measles and influenza and bacterial infections

such as tuberculosis. In some emerging infections,

for example those caused by the human meta-

pneumovirus and the SARS-associated coronavirus

the airborne route of transmission is also thought to

be important. In addition to these communicable

diseases there is increasing evidence that airborne

transmission may play a role in the dissemination of

many opportunistic pathogens responsible for a range

nosocomially acquired infections. In particular

airborne transmission has been implicated in noso-

comial outbreaks of Staphylococcus aureus, including

methicillin-resistant strains (MRSA) [1–3], Acineto-

bacter spp. [4, 5] and Serratia marcescens [6]. It is also

thought that the high attack rates during norovirus

outbreaks may be due to dispersion via aerosols [7]. It

has been estimated that 10–20% of all nosocomial

infections are spread by this route [8] which equates to

a cost to the National Health Service in England in

excess of £100 million annually [9].

These concerns together with the more recent threat

of bioterroism attacks involving the deliberate release
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of an airborne infectious agent [10, 11] have prompted

a resurgence of interest in measures to control air-

borne pathogens. Methods that have recently been

discussed by researchers in the area include improving

mechanical ventilation [12], use of personal protective

equipment [13] and the use of ultraviolet germicidal

irradiation (UVGI) devices both within rooms [14, 15]

and in air-conditioning ducts [16]. For example

experimental investigations have shown that the

introduction of UVGI lamps reduces the levels of

infectious material present in the air [17, 18]. Field

trials [14, 16] have also yielded results suggesting that

UVGI systems may have a beneficial impact.

Despite this interest, little work has been done

to evaluate the overall benefits, particularly in

developing epidemiological models that could be used

to assess the long-term impacts of introducing new

interventions. Models for examining infection in

confined spaces are generally based on the work of

Wells [19] and Riley et al. [20], and are limited to

describing only the number of new infections for a

fixed number of infectors not the full dynamics of an

epidemic. Riley et al. did apply their model to a

measles outbreak, but used discrete time steps based

on the incubation period to approximate subsequent

generations of infectors. We have presented a first

step to addressing this limitation by combining

ventilation-based models of indoor airborne trans-

mission [13, 20] with classical SIR epidemic models

[21, 22] that include an incubation period. The re-

sulting systems of equations are used in a theoretical

study to model the dynamics of an airborne infection

in an environment such as a hospital. Through this

parametric study it is demonstrated how a range of

infection control measures may influence airborne

disease transmission in enclosed environments.

SIR MODELS FOR A SHORT

INCUBATION PERIOD DISEASE IN A

VENTILATED SPACE

Epidemiological models for general disease trans-

mission in populations have been used for many years

and are well documented [21, 23]. The most common

deterministic models are known as SIS and SIR

models, and consist of systems of first-order differen-

tial equations describing the progression from sus-

ceptible (S) to infectious (I) individual. In an SIS

model it is assumed that on recovery the individual

becomes a susceptible again, whereas the SIR model

considers that infectious people are removed from the

transmission process either by death or isolation, or

recovery to an immune state. The transfer between

states in both models is governed by rate constants

that are estimated from epidemiological data. These

basic models have been used by numerous researchers

and extended to include factors such as incubation

periods, vaccination and immunity and interaction

between different populations [21, 23]. They have also

been applied to the spread of many diseases including

tuberculosis [24] and the impact of HIV/AIDS on

tuberculosis [25].

Many infectious diseases such as those caused by

norovirus and influenza viruses that are problematic

in institutions such as hospitals and nursing homes

occur as distinct outbreaks over a relatively short

timescale. For example the incubation period for

influenza is typically 1–3 days and patients may then

be infectious for a period of 4–6 days [26]. Norovirus,

a major cause of gastroenteritis in hospitals through-

out the world [7] that regularly leads to ward closures

and staffing shortages [27] has a similar incubation

period (1–2 days), however, the patient is usually only

highly infectious for around 2 days [28]. The short

incubation and infectious periods of these diseases are

considered to be small enough that the population

dynamics (admission and discharge rates) do not have

to be included in a model. It is also assumed that

people who become infected with, say, influenza, are

not susceptible to re-infection on recovery (within the

timescale of the model) and, therefore, an SIR type

model is appropriate.

Basic SIR model

The classic deterministic SIR model, based on

the work of Kermack & McKendrick [22], is given

by three ordinary differential equations linking the

change in number of susceptibles, S, the number of

infectors, I, and the number removed through death,

isolation or recovery to an immune state, R

dS

dt
=xbSI, (1)

dI

dt
=bSIxcI, (2)

dR

dt
=cI, (3)

S+I+R=N, (4)

Here N is the total population size, b is the contact

rate between susceptibles and infectors, and c is the
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removal or recovery rate. By non-dimensionalizing

the variables as

u=
S

N
, v=

I

N
, w=

R

N
, t=ct, R0=

bN

c
, (5)

the model can be re-written as

du

dt
=xR0uv,

dv

dt
=(R0ux1)v,

dw

dt
=v, (6)

R0 is known as the basic reproductive ratio and

describes the average number of new cases that an

infector produces in a particular population. When

R0<1 the disease dies out, while R0>1 indicates that

the infection rate is greater than the removal rate

which may potentially lead to an epidemic.

Effect of the environment

Mathematical models examining airborne infection in

confined spaces were first considered by Wells [19].

He introduced a unit of infection termed a ‘quantum’,

defined as the amount of infectious material to infect

1x(1/e) (i.e. 63.2%) of the people in an enclosed

space. Despite its stochastic definition, the number of

quanta in a room is generally considered to be a

physical measure of the infectious material present,

which effectively indicates both the quantity and

pathogenicity of an infectious material present in the

air as well as the average susceptibility of a susceptible

person. Wells published equations based on the

quanta unit which showed a dependence of the num-

ber of new cases on the size of the space as well as the

number of infectors, I, and susceptibles, S. Riley et al.

[20] modified this model, to give an expression

known as the Wells–Riley equation, reflecting the

exponential increase in the number of new cases, C,

with time for steady-state quanta levels in a room

space.

C=S(1xex(Ipqt=AV)): (7)

Here, A is the ventilation rate in air changes per hour

(AC/h), V is the room volume (m3), p is the average

pulmonary ventilation rate of the susceptibles (m3/h)

and q is the quanta production rate per infector

(quanta/h). A further modification was introduced by

Gammaitoni & Nucci [29] who published expressions

linking the rate of infection with the room ventilation

rate for non-steady state cases. They then used these

expressions [13] to assess risks in clinical procedures

where the room was initially considered to be clean.

A review of the above models by Beggs et al. [30]

demonstrated their range of applicability and used

Gammaitoni & Nucci’s general equation to evaluate

the effects of room size, occupancy and ventilation

conditions on the number of new infections.

The effect of the indoor environment can be

examined by considering Gammaitoni & Nucci’s

[13, 29] equations relating the rate of infections in a

ventilated space with a volume V (m3), and a venti-

lation rate of A (AC/h).

dS

dt
=

xp

V
QS, (8)

dQ

dt
=xAQ+qI, (9)

In this case Q is the total quanta level in the space.

Assuming continuous generation of quanta by the

infectors and steady-state ventilation (dQ/dt=0), the

level of quanta in the space is given by

Q=
qI

A
(10)

and equation (8) becomes

dS

dt
=

xpq

VA
IS: (11)

This rate of reduction of susceptibles in equation (11)

as a result of new infections is in fact equivalent to the

rate of increase in new cases given by the derivative of

the Wells–Riley equation [equation (7)] with time.

Comparing equation (11) with equation (1) we

see that the term (pq/VA) is equivalent to b in the

basic SIR model. Therefore the two models can be

combined to give the following expressions.

dS

dt
=x

pq

VA
IS, (12)

dI

dt
=

pq

VA
ISxcI, (13)

dR

dt
=cI: (14)

This model can also be represented by the

dimensionless equations above but with the basic

reproductive ratio now defined by

R0=
pq

VA

N

c
: (15)

The model combines the effect of the physical

environment with equations describing the progres-

sion of the disease and provides a means of quantify-

ing the contact rate in terms of the room ventilation,
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environmental conditions and level of airborne

infectious material in the space. The definition of R0

in these terms enables the effect of ventilation and

room parameters on the disease transmission to be

compared for different cases.

Inclusion of a short incubation period

Although the above model can give some useful

indications about airborne disease transmission and

the influence of physical parameters, it is difficult to

apply to real situations as most diseases have an

incubation period before the infected person becomes

infectious to others. This limitation can be addressed

by extending the SIR model for a ventilated room

[equations (12)–(14)] to include an incubation period

by assuming the susceptible is initially transferred to

an exposed state, E, before going on to become an

infector. The model is now referred to as an SEIR

model, and the description becomes

dS

dt
=x

pq

VA
IS, (16)

dE

dt
=

pq

VA
ISxaE, (17)

dI

dt
=aExcI, (18)

dR

dt
=cI, (19)

S+I+E+R=N, (20)

where a is the progression rate from exposed to

infector, equivalent to the reciprocal of the incubation

period.

As previously this model can be re-written in terms

of non-dimensional variables

_
u=

S

N
, x=

E

N
, v=

I

N
,

w=
R

N
, t=ct, s=

a

c
,

u=
S

N
, x=

E

N
, v=

I

N
,

w=
R

N
, t=ct, s=

a

c
,

9>>=
>>;

(21)

to give

_du

dt
=xR0uv,

dx

dt
=R0uvxsx,

dv

dt
=sxxv,

dw

dt
=v:

du

dt
=xR0uv,

dx

dt
=R0uvxsx,

dv

dt
=sxxv,

dw

dt
=v:

9>>=
>>;

(22)

The reproductive ratio remains unchanged from

equation (15) as the total number of new infections

depends on the rate at which an infector produces new

cases with respect to the removal rate, which is not

affected by a delay in a susceptible person becoming

infective.

BEHAVIOUR OF SHORT INCUBATION

PERIOD SEIR MODEL

The SEIR model described above [equations

(16)–(19)] can be used in a theoretical study to exam-

ine how changes in the ward environment may influ-

ence outbreaks of short-incubation-period diseases.

As the models are systems of nonlinear differential

equations, solutions are most easily found using

numerical methods. In this study the mathematical

analysis package Maple v.9 (MaplesoFt, Waterloo,

Canada) is used to numerically solve the governing

equations and produce typical epidemic curves

showing the probable disease progression with time.

Choice of parameters

The study was based on the initial conditions and

parameter ranges given in the Table.

The numbers of people are intended to be rep-

resentative of an area of a hospital with, say, 100

patients on a number of connected wards and 100

health-care workers/other people. Each patient is

assumed to occupy a volume of 36 m3 (3r4r3 m),

with the remainder of the area (corridors, offices,

nurses’ rooms, treatment rooms, etc.) occupying the

same space again giving a total volume of 7200 m3.

A pulmonary ventilation rate of 8 l/min is typical

for an adult [31]. The model assumes the population

is constant during the outbreak and that the air in

the wards is fully mixed. Although the population

may not be constant in some situations, in others,

such as norovirus outbreaks, wards are usually closed

to new admissions and discharges are postponed,

therefore, this assumption is reasonable under these

circumstances. Likewise the assumption that the

air is fully mixed may not be appropriate for all

situations. However, both these assumptions enable a

first approximation to be made about the trans-

mission dynamics of airborne infection in an enclosed

area, and further possible improvements are outlined

in the discussion. The values for a and c are based on

data for the incubation time and periods of infectivity

for influenza and norovirus as given above.

The value for the quanta production rate, q, in any

disease outbreak is the parameter that is the most
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difficult to quantify. To date, most of the quanta

values presented in the literature relate to tuberculosis

[12, 13] and very little data have been published

relating to quanta production rates for short-

incubation-period infections that may be more of

an issue in a typical hospital environment. Rudnick

& Milton [31] estimated values of quanta production

rate for rhinovirus as 1–10 quanta/h and influenza

as 15–128 quanta/h depending on the calculation

method. Riley et al. [20] calculated a value of

570 quanta/h for a typical measles case, which is

consistent with the high transmission rates of this

disease in school outbreaks. For the purposes of this

study, quanta production values of 1–50 quanta/h are

used as suitable values to examine the behaviour of

the model.

Dynamics of an outbreak

Figure 1 shows a typical result from the SEIR model

for a theoretical airborne infection given by the base

parameters in the Table. The epidemic curves

produced are characteristic of those produced by all

SEIR models. Initially the number of susceptibles

falls with time, with the numbers of infectors, exposed

and removals all increasing. The outbreak peaks after

about 16 days, with around 25 active infectors, and

the rate of change of both susceptibles and removals

at a maximum. After this point the outbreak starts to

wane, with all the variables levelling off to constant

values. The outbreak is over after about 35 days, with

approximately 20% of the susceptibles remaining

uninfected. The curve indicating the exposed group is

a similar shape to the infector profile over the period,

but peaks 1 day (the incubation period) earlier at a

lower value. R0 for this particular case is 2.133, a value

that is indicative of an epidemic.

Impact of physical environment

The model is first used to examine how changes to the

physical environment, in particular the ventilation

rate and the occupancy level, may affect the course of

an outbreak of an airborne infection. Figures 2 and 3

show the effect of increasing the ventilation rate on

the course of the outbreak modelled in Figure 1. In

Figure 2 the ventilation rate is increased to 5 AC/h.

This has the effect of increasing the duration of the

outbreak, yet it reduces the total number of cases.

The reproductive number is now R0=1.28, reflecting

Time (days)

0
0

50

100

N
um

be
r 

of
 p

eo
pl

e
150

200

10 20 30 40

Susceptibles
Infectors
Exposed
Removed

Fig. 1. Predicted dynamics of an outbreak of an airborne

infection with the disease and environment characteristics
given by the base parameters in the Table.

Table. Basic conditions and study parameter ranges for SIR model

simulations

Parameter Base value Study range

S (at t=0) 199 99–199

I (at t=0) 1 1
E (at t=0) 0 0
R (at t=0) 0 0

A 3 AC/h 3–8 AC/h
q 10 quanta/h 1–50 quanta/h
V 7200 m3 7200 m3

p 0.48 m3/h (8 l/min) 0.06–0.48 m3/h
a 1/day (1-day incubation

period)
1–0.33/day (1- to 3-day incubation
period)

c 0.5/day (2-day infectious
period)

0.5–0.166/day (2- to 6-day infectious
period)
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the lower transmission rate for the disease. The rate

of infection is much slower and the peak number of

infectors significantly lower.

In Figure 3 the ventilation rate is 8 AC/h, which has

a dramatic effect on the dynamics of the outbreak

with less than 10% of the susceptibles infected. This

phenomenon is always seen with SIR-type models

when the contact rate is smaller than the removal rate

(R0=0.799), effectively meaning the infectors recover

before they have the chance to infect anyone else.

The impact of the ventilation rate can also be

examined by considering the reproductive number,

R0. Figure 4 shows how R0 changes with the venti-

lation rate, again for the base parameters in the Table,

and also with an occupancy of 50%. It can be seen

that with 200 occupants (S=199, I=1), a ventilation

rate below 6.4 AC/h results in a value of R0>1 and

the potential for this infection to become an epidemic.

With only 100 occupants (S=99, I=1), a ventilation

rate of half this value will lead to the same conditions.

Impact of disease and infector/susceptible

characteristics

Further examination of the model can reveal how the

characteristics of the infection and the infectors and

susceptibles may affect the progression of an outbreak

of an airborne infection. Increasing the incubation

period of an infection has the result of increasing the

duration of the outbreak, but it does not impact on

the overall number of people infected, and the repro-

ductive number remains unchanged. However, this

may have implications for infection control pro-

cedures as outlined in the Discussion section.

The influence of both the disease itself and

the infector and susceptible characteristics can be

examined by considering the recovery rate, c, the

pulmonary ventilation rate, p, and the quanta pro-

duction rate, q, which incorporates the infectivity of

the pathogen, the response of the average susceptible

and the ability of the average infector to disseminate

the infection into the room in an airborne state. It can

be seen from equation (15) that R0 is directly

proportional to both the infectious period (1/c) and

the quanta production rate. Hence, as expected,

infections characterized by a low quanta production

rate require a much longer infectious period for an

outbreak to reach epidemic levels (R0>1) than those

infections with a high quanta production rate.

The relationship between R0 and quanta pro-

duction rate for three pulmonary ventilation rates

Time (days)

0
0

50

100

N
um

be
r 

of
 p

eo
pl

e

150

200

20 40 60

Susceptibles
Infectors
Exposed
Removed

Fig. 2. Predicted progression of the epidemic modelled in
Figure 1, with the ventilation rate increased to 5 AC/h.
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N
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Fig. 3. Predicted progression of the epidemic modelled in
Figure 1, with the ventilation rate increased to 8 AC/h.

0

0·5

1·0

1·5

2·0

2·5

3·0

3·5

2 3 4 5 6 7 8

Ventilation rate (AC/h)

R0

N=200

N=100

Fig. 4. Impact of ventilation and ward occupancy on the
potential for an epidemic, for the base conditions in the
Table.
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is also linear as demonstrated by Figure 5. A value

of p=8 l/min is typical of a normal adult, while

p=6 l/min is intended to be representative of a child.

In both of these cases the reproductive number is

directly proportional to the quanta production rate

and exceeds R0=1 when q=8–10 quanta/h indicating

the possibility of an epidemic. However, when the

value of p is reduced to 1 l/min even at high quanta

production rates the reproductive number does not

exceed R0=1.

DISCUSSION

The models and results outlined in this study have

been used to demonstrate the probable dynamics of

airborne infections and the impacts of changes in the

physical environment or disease characteristics.

However, these results can also be interpreted in the

context of infection control measures. The results

presented in Figures 2 and 3 suggest that increasing

the ventilation rate may reduce the rate of infection

and that high ventilation rates may remove the

potential for an epidemic altogether. In a real situ-

ation it is likely that a moderate increase in ventilation

rate may make an outbreak more manageable, with

for example fewer problems with staffing shortages

and a higher possibility of isolating the smaller

numbers of infectors. Reducing the ward occupancy

density was also shown to have a similar impact on

infection rates, with the results in Figure 4 indicting

that much lower ventilation rates were necessary

to prevent an outbreak with only half the original

number of occupants.

The effect of both the quanta production rate and

the infectious period of the disease, also have

implications for infection control procedures in

the event of an outbreak. For infections that have

relatively low quanta production rates, isolation of

infectors may be an effective means of preventing an

epidemic, particularly where the disease has a long

infectious period. For example, using the base par-

ameters in the Table where an infectious patient is

emitting 10 quanta/h and the infectious period of the

disease is 2 days, R0=2.133, suggesting an epidemic

is likely to occur. If the patients are diagnosed and

isolated within 1 day, the effective reduction in the

infectious period results in R0<1 and may prevent an

epidemic. However, for highly contagious diseases,

indicated by high quanta production rates, epidemic

conditions may be present with an infectious period of

less than 8 h. In these cases it may be impossible to

isolate individual cases quickly enough and it may be

necessary to isolate whole wards or units as seen in

norovirus outbreaks [27].

The effects of incubation and infectious period

described here are not unique to this model for air-

borne transmission, and are seen with all SIR models

that incorporate an incubation period. However, they

are still important to consider in the context of air-

borne infections, as it is likely that the transmission

rate, b=pq/VA, will be different than for many

infections transmitted via contact routes. The rate

may also be less controllable as isolating patients with

airborne infections is more involved than for those

with infections that are only transmitted by contact,

generally requiring the use of a negatively pressurized

isolation room [32].

The final aspect of the parametric study is also

relevant to infection control procedures. Although the

pulmonary ventilation rate 1 l/min plotted in Figure 5

is an unrealistic breathing rate for a normal person,

it may be equivalent to introducing some form of

protection such as facemasks. In this case p can be

considered to be the rate at which a person breathes

only the contaminated air. Gammaitoni & Nucci [13]

considered this intervention in their modelling and

suggested that surgical and HEPA masks reduce the

pulmonary ventilation of contaminated air to the

equivalent of 0.6p and 0.03p respectively. A value of

p=1 l/min in Figure 5 is 0.125 of the original value of

8 l/min for an adult, and is therefore representative

of the level of reduction that the use of masks may

achieve.

Although the results presented in this study are all

for theoretical cases, they demonstrate how infection

control interventions may reduce the number of

0

1

2

3

4

5

6

7

0 10 20 30 40 50
Quanta production rate per infector (quanta/h)

R0

p=8 l/min
p=6 l/min
p=1 l/min

Fig. 5. Effect of quanta production rate on reproductive
number at different pulmonary ventilation rate.
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infections, and possibly prevent an outbreak. The

study has shown that the models can be used to

examine a wide range of possible infection control

measures, some of which require physical modifi-

cations such as changes to the ventilation system and

others that are procedural such as isolation of patients

or the use of face masks. This allows different controls

to be compared and the most appropriate measures

for the situation to be selected. The models may also

be applied to evaluating further engineering infection

control measures such as the application of upper

room UVGI devices. The effectiveness of UVGI

systems can be quantified in terms of an effective air

change rate. For example Riley et al. [33] showed

that the effectiveness of a 17 W UV fitting in

their ventilated test room against airborne bacille

Calmette–Guerin (BCG) was equivalent to an

increase in the ventilation rate of 10 air changes per

hour. The ability to make this comparison may be of

benefit in situations where it is believed that increas-

ing the ventilation rate will be beneficial, however,

it is impractical or too expensive to fit a new air-

conditioning system. In such cases the fitting of UV

lamps could be a possible solution as they are easily

installed in most buildings.

The model presented here does have a number of

limitations. The equations are based on the assump-

tion that the room air is fully mixed and, therefore,

has a uniform distribution of quanta throughout the

space. In reality most rooms are not well mixed and

room air simulation results suggest that considerably

higher infection concentrations will occur close to the

source [30]. The risk of disease transmission is there-

fore likely to be greater for susceptibles in close

proximity to the infectors. This was demonstrated by

an outbreak of tuberculosis in an Arkansas hospital

caused by aerosols generated by irrigation of a

tuberculous abscess [34], where the prevalence of

tuberculin reactivity decreased considerably with the

distance from the source. Although increasing the

ventilation rate in a space will in general reduce

the bioburden in the air and hence the risk of infection

for occupants, the design of ventilation systems may

have a significant bearing on the actual distribution

of bioaerosols in the space. For example previous

computational and analytical studies [15, 35] have

shown that the disinfection potential of devices such

as UVGI is strongly related to the layout of the

ventilation system, and a change in ventilation

system design could have a negative impact on

infection control.

The applicability of the model presented here is also

limited by the assumption of a closed population and

the deterministic nature of the equations. Although

some populations may be assumed to have no inputs

and outputs, particularly over short periods of time,

the assumption is not strictly valid for many real

hospital wards, especially where there are significant

numbers of visitors and a high patient throughput. In

these cases it is easily possible to extend the model to

include admission and discharge rates, such as those

used to simulate the transmission of tuberculosis [24].

For more complex situations it would also be possible

to model the staff, patients and visitors as separate

patient groups and include the interaction between

them such as in Cooper et al. [36]. The issue of the

deterministic nature of the model is significant in

situations where the risk of infection may be influ-

enced by chance events as much as by the environ-

ment, such as when the number of individuals

involved in an outbreak is small. The deterministic

model presented here will still give useful indicators in

these cases, particularly when comparing infection

control measures. However, it is possible to use

similar assumptions to formulate stochastic SIR

models [21, 23], which may be more appropriate for

some cases.

When using this model, parameters such as the

room size, room ventilation rate and pulmonary

ventilation rate can all be calculated or estimated for a

particular case with a reasonable level of confidence.

However, determining a suitable value for the quanta

is much more difficult. The fact that the concept of the

quanta encompasses the infectivity and virulence of a

given strain of a pathogenic microorganism, as well

the susceptible and infector characteristics, means

that even with the same infection there are likely to be

wide variations in suitable values. It is also likely that

in reality an infector will not remain at the same level

of infectiousness throughout their illness, but will

become less infectious as they start to recover. Most

of the values quoted in the literature relate to

tuberculosis outbreaks [12, 13] and are calculated by

applying models such as equations (8) and (9) to

actual cases to find an average value for the quanta.

Values collated by Beggs et al. [30] for several

tuberculosis outbreaks indicated the large range of

quanta values that may be associated with a single

disease. For example typical tuberculosis patients

were seen to generate quanta levels of the order

of 1.25 quanta/h, however, some cases were notice-

ably more infective, with quanta levels of up to
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60 quanta/h. However, these values were all much

lower than the values calculated following outbreaks

associated with a range of clinical procedures. Quanta

values calculated by Gammaitoni & Nucci [13]

included 360 quanta/h for a bronchoscopy-related

outbreak [37] and 2280 quanta/h following a hip

abscess irrigation [34], suggesting that some clinical

procedures may create significant numbers of

aerosolized microorganisms. For predicting the

likelihood of epidemics for other airborne infections,

where a suitable quanta value is not known, a similar

calculation method to that used by Nardell et al. [12]

can be used by applying the model to a previous out-

break and selecting a value of quanta such that the

results approximate to the progression of the infection

seen in reality. Alternatively predictions can be made

at a range of quanta values to evaluate the impact of

interventions for a range of cases.

Despite the limitations of the model, the predicted

results suggest that changes in the physical environ-

ment may lead to a long-term reduction in infections

and potentially prevent epidemics. This is in agree-

ment with findings from several studies examining

the impact of interventions such as UVGI lamps. For

example Wells et al. [38] investigating the impact of

UV air disinfection in schools over a 5-year period

showed a consistently lower incidence of measles in

the irradiated schools. Evidence is also given by

Menzies et al. [16], who showed in a double-blind

study that the incidence of a range of symptoms,

including respiratory complaints, decreased following

the introduction of UV air disinfection in the air-

conditioning ducts of an office building. Hence the

model described here will, therefore, at the very least

give an indication of the impact of various factors in

the physical environment.

CONCLUSIONS

The model developed in this study shows how

environmental factors may be included in classical

epidemic models to examine the impact of changes in

the physical environment and disease characteristics

on the transmission of airborne infection in ventilated

rooms. The parametric study has shown that the

model can be used to examine a range of infection

control measures and the results suggest that the

most suitable method depends on both the infection

characteristics and the physical environment.

Although the model developed here is relatively

simple, the same methodology could easily be applied

to the more complex epidemic models in the litera-

ture, including stochastic models suitable for small

populations [21] and the models for tuberculosis

spread with factors such as HIV/AIDS [25].
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