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Linear free resolutions over non-commutative algebras

Peter Jørgensen

Abstract

The main result of this paper is that, over a non-commutative Koszul algebra, high trun-
cations of finitely generated graded modules have linear free resolutions.

Introduction

Eisenbud and Goto [EG84], Avramov and Eisenbud [AE92], and the present author [Jor99b] have
all studied whether high truncations of finitely generated graded modules over graded algebras
have linear free resolutions.

The original study of this took place over polynomial algebras. The main result [EG84, Propo-
sition, p. 89] is: If M is a finitely generated graded module over k[X1, . . . ,Xt] with k a field, then
for large s, the minimal free resolution of the degree shifted truncation M�s(s) is linear. That is,
the mth module in the minimal free resolution has all its generators placed in degree m.

This was later extended in [AE92, Corollary 2] to commutative Koszul algebras, and in [Jor99b,
Theorem 2.6] to non-commutative AS-regular algebras, which are algebras with good homological
behaviour generalizing that of polynomial algebras.

This paper proves a common extension of [AE92, Corollary 2] and [Jor99b, Theorem 2.6]: If A is
a non-commutative Koszul algebra satisfying a few weak conditions given in Setup 0.1, then for any
finitely generated graded module M and large s, the minimal free resolution of M�s(s) is linear.
This is Theorem 3.1 below.

Along the way, I prove Theorems 2.5 and 2.6 and Corollaries 2.8 and 2.9, which show that the
two competing definitions of Castelnuovo–Mumford regularity of graded modules given in [AE92],
respectively [EG84] and [Jor99b], are in fact closely related.

Setup 0.1. Throughout the paper, k is a field, and A is a noetherian N-graded connected k-algebra
which has a balanced dualizing complex.

See [Jor99a] and [Jor99b] for generalities on the theory of graded algebras, and [vdB97] and
[Yek92] for information on dualizing complexes. My notation is mostly standard, but I do want to
list a few items of terminology.

The opposite algebra of A is denoted Aopp, and A-right-modules are identified with Aopp-left-
modules.

The abelian category of graded A-left-modules and graded homomorphisms of degree zero is
denoted GrA. The derived category of GrA is denoted D(GrA). If X is in D(GrA), then hmX
denotes the mth cohomology module of X. The derived category D(GrA) has full subcategories
D−(GrA) consisting of complexes X with hmX = 0 for m large positive, D+(GrA) consisting of
complexes X with hmX = 0 for m large negative, and Db

fg(GrA) consisting of complexes X with
hmX = 0 for m large positive or negative and each hmX finitely generated.
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The derived functors of HomA and ⊗A are denoted RHomA and
L⊗A. Section functors of graded

A-left- and graded A-right-modules are denoted Γm and Γmopp , and their derived functors are
denoted RΓm and RΓmopp . These give rise to local cohomology functors Hm

m = hm RΓm and Hm
mopp =

hm RΓmopp . The Matlis duality functor is denoted (−)′ and defined on graded A-modules by (M ′)p =
Homk(M−p, k). Matlis duality exchanges graded A-left- and graded A-right-modules, and is exact
and therefore well defined on derived categories.

1. Background results

Proposition 1.1. For X and Y in Db
fg(GrA) there is a natural isomorphism

RHomA(RΓmX,Y ) ∼= RHomA(X,Y ).

Proof. First observe that there are natural isomorphisms

RHomA(RΓmoppA,Y ) ∼= RHomA(RΓmoppA,Y ′′)
(a)∼=

(
Y ′ L⊗A RΓmoppA

)′
(b)∼= RΓmopp(Y ′)′

(c)∼= Y ′′

∼= Y.

Here (a) is by [Jor99a, Theorem 1.5] and (b) is by [Jor99a, Theorem 1.6], while (c) can be seen as
follows: Let F be a free resolution of Y consisting of finitely generated free modules. It is then easy
to see that F ′ is an injective resolution of Y ′. As F consists of finitely generated free modules, F ′

consists of torsion graded injective modules, so Γmopp(F ′) ∼= F ′ whence RΓmopp(Y ′) ∼= Γmopp(F ′) ∼=
F ′ ∼= Y ′.

Now compute:

RHomA(RΓmX,Y )
(d)∼= RHomA

(
RΓm(A)

L⊗A X,Y
)

∼= RHomA(X,RHomA(RΓmA,Y ))
(e)∼= RHomA(X,RHomA(RΓmoppA,Y ))
(f)∼= RHomA(X,Y ).

Here (d) is by [Jor99a, Theorem 1.6] again, while (e) is by [vdB97, Corollary 4.8] and (f) is by the
previous computation.

Lemma 1.2. For X in D−(GrA) and Y in D+(GrA) there is a convergent spectral sequence

Emn
2 = ExtmA (h−nX,Y ) ⇒ Extm+n

A (X,Y ).

Proof. Let J be an injective resolution of Y . Consider the double complex given by

Mmn = HomA(X−m, Jn).

The spectral sequence arising from the second standard filtration of the total complex Tot M gives
the lemma’s spectral sequence.

Lemma 1.3. For X in D−(GrA) there is a convergent spectral sequence

Emn
2 = TorA

−m(Hn
moppA,X) ⇒ Hm+n

m X.
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Proof. Let F be a flat resolution of X. Consider the double complex given by

Mmn = (RΓmoppA)m ⊗A Fn.

The spectral sequence arising from the second standard filtration of Tot M gives the lemma’s spectral
sequence.

To see that the sequence has the indicated limit, one needs the computation

Tot M ∼= (RΓmoppA)
L⊗A X

(a)∼= (RΓmA)
L⊗A X

(b)∼= RΓmX,

where (a) is by [vdB97, Corollary 4.8] and (b) is by [Jor99a, Theorem 1.6].

2. Two notions of regularity

The following is almost the classical definition of Castelnuovo–Mumford regularity of graded mod-
ules, given over polynomial algebras in [EG84, Definition, p. 95] and more generally in [Jor99b,
Definition 2.1].

Definition 2.1 (Castelnuovo–Mumford regularity). The complex X in D(GrA) is called p-regular
if

Hm
m (X)�p+1−m = 0

for all m.
If X is p-regular but not (p − 1)-regular, then I define the Castelnuovo–Mumford regularity of

X to be

CMreg X = p.

If X is not p-regular for any p, then CMreg X = ∞. If X is p-regular for every p (that is, if
Hm(X) = 0), then CMreg X = −∞.

The following is the competing definition of Castelnuovo–Mumford regularity given in [AE92].
In order not to confuse things, I have to use a different name.

Definition 2.2 (Ext-regularity). The complex X in D(GrA) is called r-Ext-regular if

ExtmA (X, k)�−r−1−m = 0

for all m.
If X is r-Ext-regular but not (r − 1)-Ext-regular, then I define the Ext-regularity of X to be

Ext.reg X = r.

If X is not r-Ext-regular for any r, then Ext.reg X = ∞. If X is r-Ext-regular for every r (that is,
if ExtA(X, k) = 0), then Ext.reg X = −∞.

Observation 2.3. Let X in Db
fg(GrA) have X �∼= 0. Since A has a balanced dualizing complex, the local

duality theorem [Yek92, Theorem 4.18] holds, so RΓm(X)′ is in Db
fg(GrAopp) and has RΓm(X)′ �∼= 0.

Hence CMreg X �= ±∞.
By [vdB97, Corollary 4.8] I have Hn

mA ∼= Hn
moppA for each n, whence

CMreg(AA) = CMreg(AA).

I denote this number by CMreg A.

Observation 2.4. Let X in Db
fg(GrA) have X �∼= 0. It is easy to see that ExtA(X, k) �∼= 0 whence

Ext.reg X �= −∞. However, Ext.reg X = ∞ is possible.
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If F is a minimal free resolution of X, then X is r-Ext-regular exactly if the generators of
Fm are placed in degrees less than or equal to r + m for each m. This has a nice consequence:
From considering TorA(kA, Ak) it follows that the minimal free resolutions of kA and Ak have their
generators placed in the same degrees. Hence

Ext.reg(kA) = Ext.reg(Ak).

I denote this number by Ext.reg k.

The following two theorems show that the notions of Castelnuovo–Mumford and Ext-regularity
enjoy a close relationship. Note the structural similarity between the proofs.

Theorem 2.5. Given X in Db
fg(GrA) with X �∼= 0. Then

Ext.reg X � CMreg X + Ext.reg k.

Proof. Observation 2.3 gives CMreg X �= −∞, so for Ext.reg k = ∞ the theorem makes sense and
holds trivially. So I can assume that Ext.reg k = r is finite. By Observation 2.4, the minimal free
resolution F of kA then has the generators of Fm placed in degrees less than or equal to r + m for
each m, so Fm can be written as a finite coproduct

Fm =
∐
j

A(−σmj)

with σmj � r + m. Taking Matlis duals, I = F ′ is a minimal injective resolution of Ak which has

Im =
∐
j

A′(σmj),

still with
σmj � r + m. (1)

Set p = CMreg X and Z = RΓmX. Then

h−n(Z)�p+1+n = h−n(RΓmX)�p+1+n = H−n
m (X)�p+1+n = 0

for each n, whence
((h−nZ)′)�−p−1−n = 0. (2)

Now, ExtmA (h−nZ, k) is a subquotient of

HomA(h−nZ, Im) = HomA

(
h−nZ,

∐
j

A′(σmj)
)

∼=
∐
j

(h−nZ)′(σmj),

and this vanishes in degrees less than or equal to −p − 1 − n − r − m by Equations (1) and (2), so
also

ExtmA (h−nZ, k)�−p−1−n−r−m = 0. (3)

Lemma 1.2 provides a convergent spectral sequence

Emn
2 = ExtmA (h−nZ, k) ⇒ Extm+n

A (Z, k),

and since Equation (3) shows (Emn
2 )�−p−1−r−(m+n) = 0 it follows that

ExtqA(Z, k)�−p−1−r−q = 0 (4)

for each q.
Finally, Proposition 1.1 gives

ExtqA(Z, k) = ExtqA(RΓmX, k) ∼= ExtqA(X, k),
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so Equation (4) implies
ExtqA(X, k)�−p−1−r−q = 0

for each q, showing
Ext.reg X � p + r = CMreg X + Ext.reg k. �

Theorem 2.6. Given X in Db
fg(GrA) with X �∼= 0. Then

CMreg X � Ext.reg X + CMreg A.

Proof. Observation 2.3 gives CMreg A �= −∞, so for Ext.reg X = ∞ the theorem makes sense and
holds trivially. So I can assume that Ext.reg X = r is finite. By Observation 2.4, the minimal free
resolution F of X then has the generators of Fm placed in degrees less than or equal to r + m for
each m, so Fm can be written as a finite coproduct

Fm =
∐
j

A(−σmj)

with
σmj � r + m. (5)

Set p = CMreg A. Observation 2.3 gives CMreg(AA) = CMreg A, so I get

Hn
mopp(A)�p+1−n = 0 (6)

for each n.
Now, TorA

−m(Hn
moppA,X) is a subquotient of

Hn
mopp(A) ⊗A F−m

∼= Hn
mopp(A) ⊗A

∐
j

A(−σ−m,j) ∼=
∐
j

Hn
mopp(A)(−σ−m,j),

and this vanishes in degrees larger than or equal to p + 1− n + r −m by Equations (5) and (6), so
also

TorA
−m(Hn

moppA,X)�p+1−n+r−m = 0. (7)

Lemma 1.3 provides a convergent spectral sequence

Emn
2 = TorA

−m(Hn
moppA,X) ⇒ Hm+n

m X,

and since Equation (7) shows (Emn
2 )�p+1+r−(m+n) = 0, it follows that

Hq
m(X)�p+1+r−q = 0 (8)

for each q, showing
CMreg X � p + r = Ext.reg X + CMreg A. �

Let me end the section with some easy consequences. First recall the following definition.

Definition 2.7. The algebra A is called Koszul if Ext.reg k = 0.

For A to be Koszul means exactly that the minimal free resolutions of Ak and kA are linear;
cf. Observation 2.4.

The following corollary is immediate from Theorems 2.5 and 2.6.

Corollary 2.8. Suppose that A is Koszul and has CMreg A = 0. Then each X in Db
fg(Gr A) has

Ext.reg X = CMreg X.

The following corollary is also immediate from Observation 2.3 and Theorem 2.5. It extends
[AE92, Theorem 1] and [AP01, Theorem 1] to the non-commutative case.

Corollary 2.9. Suppose that A has Ext.reg k < ∞. Then each X in Db
fg(GrA) has Ext.reg X < ∞.
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3. Linear free resolutions

The following main result is a simultaneous extension of [AE92, Corollary 2] (to the non-commut-
ative case) and [Jor99b, Theorem 2.6] (to the non-AS-regular case).

Recall that A is the algebra of Setup 0.1.

Theorem 3.1. Suppose that A is Koszul, and let M in GrA be finitely generated with M �∼= 0.
Then for s � CMreg M , the minimal free resolution of M�s(s) is linear. (Note that CMreg M is
finite.)

Proof. The result clearly holds if M�s(s) is 0, so I can assume M�s(s) �∼= 0.
Let F be the minimal free resolution of M�s(s). As M�s(s) sits in non-negative degrees, it is

clear for each m that Fm has no generators placed in degrees strictly smaller than m. Hence it
is enough to prove for each m that Fm also has no generators placed in degrees strictly larger
than m. By Observation 2.4 this is the same as proving

Ext.reg(M�s(s)) � 0. (9)

Since A is Koszul, Ext.reg k = 0 holds. By Theorem 2.5, the inequality (9) will therefore follow
from CMreg(M�s(s)) � 0, which is again the same as CMreg(M�s) � s, that is

Hm
m (M�s)�s+1−m = 0

for each m. To show this is easy: there is a short exact sequence 0 −→ M�s −→ M −→ M/M�s −→ 0
resulting in a long exact sequence consisting of pieces

Hm
m (M�s) −→ Hm

m (M) −→ Hm
m (M/M�s).

Now combine this with Hm
m (M)�s+1−m = 0 for each m (because s � CMreg M) and

Hm
m (M/M�s) ∼=

{
M/M�s for m = 0,
0 for m � 1

(because M/M�s is torsion).
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