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Abstract. Transverse oscillations of thin threads in solar prominences are frequently reported
in high-resolution observations. The typical periods of the oscillations are in the range of 3
to 20 min. A peculiar feature of the oscillations is that they are damped in time, with short
damping times corresponding to few periods. Theoretically, the oscillations are interpreted as
kink magnetohydrodynamic waves. However, the mechanism responsible for the damping is not
well known. Here we perform a comparative study between different physical mechanisms that
may damp kink waves in prominence threads. The considered processes are thermal conduction,
cooling by radiation, resonant absorption, and ion-neutral collisions. We find that thermal con-
duction and radiative cooling are very inefficient for the damping of kink waves. The effect of
ion-neutral collisions is minor for waves with periods usually observed. Resonant absorption is
the only process that produces an efficient damping. The damping times theoretically predicted
by resonant absorption are compatible with those reported in the observations.
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1. Introduction
Oscillations of small amplitude are frequently observed in solar prominences (see re-

views by, e.g., Oliver & Ballester 2002, Engvold 2008, Arregui et al. 2012). High-resolution
observations often show that individual prominence threads, i.e., the building blocks of
prominences, oscillate transversely (e.g., Lin et al. 2005, 2007, 2009, Okamoto et al. 2007,
Ning et al. 2009). Some features of transverse thread oscillations are that the periods are
in the range of 3 to 20 min, that the velocity amplitudes are lower than 3 km s−1 , and
that the oscillations are quickly damped. Typically, the oscillation amplitude decreases
to the noise level in less than 10 periods (Ning et al. 2009).

Transverse thread oscillations are theoretically interpreted as kink magnetohydrody-
namic (MHD) waves propagating along the magnetic flux tube that supports the thread
(e.g., Dı́az et al. 2002, Terradas et al. 2008, Lin et al. 2009, Soler et al. 2010). However, the
mechanism responsible for the damping is not well known and several possible physical
processes have been suggested (e.g., Ballai 2003, Arregui et al. 2008, Oliver 2009). Here,
we compare the efficiency of various mechanisms that may damp kink MHD waves in
prominence threads, namely radiative cooling, thermal conduction, ion-neutral collisions,
and resonant absorption. This brief work is based on the results extensively discussed in
Soler (2010).

2. Model and method
The prominence thread model is schematically represented in Figure 1. It is composed

of a straight cylindrical magnetic flux tube of radius a, filled with prominence plasma
with density ρi and temperature Ti , and embedded in a coronal environment with density
ρe and temperature Te . Between the prominence and coronal plasma there is a transverse
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Figure 1. Schematic representation of the prominence thread model used in this work.

transitional layer of thickness l, where the physical conditions change continuously. The
magnetic field strength, B0 , is constant. We use the following values for the various
physical parameters: ρi = 5 × 10−11 kg m−3 , Ti = 8000 K, ρe = 2.5 × 10−13 kg m−3 ,
Te = 106 K, a = 100 km, and B0 = 5 G. These parameters verify the pressure balance
condition at the boundary of the thread. The thickness of the transitional layer, l, is
considered a free parameter. The prominence plasma is assumed to be partially ionized
and the ionization degree is a free parameter as well.

We study linear MHD waves superimposed on the static equilibrium. The governing
equations for nonadiabatic perturbations are
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where ρ, p, T , B0 are the equilibrium density, gas pressure, and temperature, ρ′, p′,
T ′, B′ are their corresponding perturbations, v is the velocity perturbation, and μ is
magnetic permittivity. In addition, ∂L/∂ρ and ∂L/∂T are the partial derivatives of the
the heat-loss function L with respect to density and pressure, η and ηC are Ohm’s and
Cowling’s resistivities, and κ‖ is the parallel thermal conductivity. We refer the reader
to Soler (2010) for the expressions of these quantities.

The perturbations are put proportional to exp (ikz z + imϕ − iωt), where kz and m
are the longitudinal and azimuthal wavenumbers (m = 1 for kink waves) and ω is the
frequency. After fixing kz and m, Equations (2.1)–(2.5) form an eigenvalue problem where
ω is the eigenvalue. The eigenvalue problem is solved numerically with the PDE2D code
(Sewell 2005). Due to the presence of damping mechanism, ω is complex. The period, P ,
and exponential damping time, τD, are computed from the real and imaginary parts of
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Figure 2. (a) Kink wave τD /P vs. kz a for damping due to nonadiabatic effects. The various
lines are for different parameterizations of the heat-loss function (see details in Soler 2010). (b)
Same as panel (a) but for damping due to Cowling’s and Ohm’s diffusion. The various lines
are for different ionization degrees from almost fully ionized (upper line) to almost fully neutral
(lower line) thread. In both panels, the shaded area is the realistic range kz a ∈ [10−3 , 10−1 ].
Results for l/a = 0.

ω as P = 2π/Re(ω) and τD = 1/|Im(ω)|. Values of τD/P � 10 are needed for damping
to be compatible with the observations.

3. Results
We compare the efficiency of the various damping mechanisms by computing the kink

wave damping ratio, τD/P , produced by each process as function of the dimensionless
wavenumber, kza, whose realistic values are in the interval kza ∈ [10−3 , 10−1 ].

Damping due to nonadiabatic effects. We compute the damping ratio when thermal
conduction and radiative cooling are considered (Fig. 2a). We obtain τD/P � 104, mean-
ing that nonadiabatic effects are very inefficient damping mechanisms for kink waves and
cannot explain the observed rapid attenuation.

Damping due to ion-neutral collisions. The effect of ion-neutral collisions is here in-
cluded in the single-fluid approximation. Cowling’s diffusion term in the induction equa-
tion (third term on the right-hand side of Equation (2.4)) contains the effect of colli-
sions. For consistency, we also consider the effect of classic Ohm’s diffusion. Figure 2b
shows that τD/P � 102 in the realistic range of kza, which points out that damping
due to Cowling’s and Ohm’s diffusion is inefficient. Although efficient damping due to
Ohm’s/Cowling’s diffusion is obtained for kza smaller/larger than realistic values, this
result has no relevance for the observed waves.

Damping due to resonant absorption. Resonant damping takes place in the nonuniform
transitional layer where the global kink wave couples to local Alfvén and slow waves. An
approximate expression for the kink mode τD/P in the thin tube (kza � 1) and thin
boundary (l/a � 1) approximations is (e.g., Ruderman & Roberts 2002, Goossens et al.
2002)

τD
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≈ 2

π
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[
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A
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, (3.1)

where vs and vA are the sound and Alfvén velocities. The first term within the square
brackets of Equation (3.1) is due to the Alfvén resonance and the second term is due
to the slow resonance. For typical parameters the slow resonance can be neglected. Us-
ing l/a = 0.2 and kza = 10−2 , Equation (3.1) gives τD/P ≈ 3, which suggests that
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Figure 3. Same as Figure 2 but for damping due to resonant absorption. The solid line is the
full result, the dashed line is the slow resonance damping, and symbols are the Alfvén resonance
damping. We used l/a = 0.2.

resonant absorption is an efficient damping mechanism. This result is confirmed by the
full numerical computations displayed in Figure 3.

We conclude that, among the considered damping mechanisms, resonant coupling to
Alfvén waves is the only process that produces kink wave damping times compatible with
those observed.
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