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Langlands duality and global Springer theory

Zhiwei Yun

Abstract

We compare the cohomology of (parabolic) Hitchin fibers for Langlands dual groups G
and G∨. The comparison theorem fits in the framework of the global Springer theory
developed by the author. We prove that the stable parts of the parabolic Hitchin
complexes for Langlands dual group are naturally isomorphic after passing to the
associated graded of the perverse filtration. Moreover, this isomorphism intertwines the
global Springer action on one hand and Chern class action on the other. Our result is
inspired by the mirror symmetric viewpoint of geometric Langlands duality. Compared
to the pioneer work in this subject by T. Hausel and M. Thaddeus, R. Donagi and
T. Pantev, and N. Hitchin, our result is valid for more general singular fibers. The
proof relies on a variant of Ngô’s support theorem, which is a key point in the proof of
the Fundamental Lemma.
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1. Introduction

This paper is a revised version of part of the author’s PhD thesis [Yun09]. In the first parts of
the thesis (published as [Yun11]), we introduced a global analog of Springer representation. This
paper studies the behavior of global Springer representations under Langlands duality. The main
results in [Yun11] on which this paper relies will be reviewed in § 1.3.

1.1 Motivations

Let G and G∨ be almost simple algebraic groups over an algebraic closed field k with dual root
systems. We call them a pair of Langlands dual groups. Fix an algebraic curve X over k and a
sufficiently positive divisor D on X, we can define the Hitchin moduli stacksMHit

G andMHit
G∨ of G

and G∨-Higgs bundles (see [Hit87] for the case D is the canonical divisor of X, and see [Ngo06]
for the general case). The Hitchin bases AHit

G and AHit
G∨ can be identified using a Weyl group

Received 6 September 2010, accepted in final form 12 September 2011, published online 19 March 2012.
2010 Mathematics Subject Classification 14H60, 20G35 (primary), 14F20, 14K30 (secondary).
Keywords: Hitchin fibration, Langlands duality, T-duality.

The work is partially supported by the NSF grant DMS-0969470.
This journal is c© Foundation Compositio Mathematica 2012.

https://doi.org/10.1112/S0010437X11007433 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X11007433


Z. Yun

invariant nondegenerate symmetric bilinear form on t (a Cartan subalgebra of g = LieG). We
use AHit to denote this common base. Consider Hitchin fibrations for MHit

G and MHit
G∨ .

MHit
G

fHit ##FFFFFFFF
MHit

G∨

f∨,Hit{{xxxxxxxx

AHit

(1.1)

It was observed by Hausel and Thaddeus [HT03] (who worked in the case G= SLn) that the
above diagram fits into the T-duality picture of Strominger, Yau and Zaslow [SYZ96], hence
giving an example of mirror symmetry. The mirror symmetry betweenMHit

G andMHit
G∨ is realized

via the fiberwise T-duality, i.e., the generic fibers of MHit
G and MHit

G∨ over AHit are dual abelian
varieties (up to components). The T-duality for smooth fibers of this mirror pair has been studied
from the Hodge-theoretic point of view by Donagi and Pantev [DP06] for general G; see also
Hitchin [Hit07] for a concrete description in the case of G2.

On the other hand, according to Kapustin and Witten [KW07], the geometric Langlands
correspondence may be interpreted in terms of the mirror symmetry between MHit

G and MHit
G∨ .

The conjectural homological mirror symmetry of Kontsevich implies a quasi-classical limit
statement: there should exist a natural equivalence of triangulated categories:

Db
coh(MHit

G )∼=Db
coh(MHit

G∨) (1.2)

where Db
coh(−) means the derived category of coherent sheaves. Over the generic locus where

the diagram (1.1) realizes dual torus fibrations, the equivalence (1.2) should be given by the
Fourier-Mukai transform (see [Ari02, BB07]). Moreover, the equivalence (1.2) is expected to
respect symmetries on the two derived categories. More precisely, the quasi-classical limit of the
Hecke operators on Dcoh(MHit

G ) (also called ’t Hooft operators [KW07]) is expected to transform
into Wilson operators on Dcoh(MHit

G∨) (tensoring with vector bundles induced from the universal
G∨-torsor on MHit

G∨ ×X).

The goal of this paper is to establish a topological shadow of the conjectural equivalence (1.2)
(or rather its variant for parabolic Hitchin fibrations), after passing first from the derived
categories to K-groups, and then from K-groups to cohomology.

1.2 Notation

The base field k (algebraically closed) will be fixed throughout. Fix a prime ` different from
char(k). Throughout this paper, except for Appendix A, let X be a smooth connected projective
curve over k of genus gX . We also fix a divisor D = 2D′ on X with deg D > 2gX .

Let G be a connected almost simple group over k of rank n. We make the assumption that
char(k)> 2h (h is the Coxeter number of G) to ensure the existence of the Kostant section, see
[Ngo10, § 1.2]. We fix a Borel subgroup B of G with universal quotient torus T . Let X∗(T ) and
X∗(T ) be the cocharacter and character groups of T . The Lie algebras of G, B, T are denoted
by g, b, t. The counterparts on the Langlands dual side are denoted by G∨, T∨, T∨, t∨, etc. Let
W be the canonical Weyl group given by (G, B). Let W̃ = X∗(T ) oW be the extended affine
Weyl group.

For a scheme S of finite type over k, or a Deligne–Mumford stack, let Db
c(S,Q`) denote

the derived category of constructible Q`-complexes on S. Let F 7→ F(1) be the Tate twist in
Db
c(S,Q`).
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Langlands duality and global Springer theory

For a morphism f : S→ T , we have derived functors Lf∗,Rf∗,Rf!,Rf ! between Db
c(S,Q`)

and Db
c(T,Q`). In the rest of the paper, we will simply write them as f∗, f∗, f!, f

!; all such
functors are understood to be derived.

We use DS/T or Df to denote the relative dualizing complex f !Q`. When T = Spec k, we simply
write DS for the dualizing complex of S. The homology complex of f : S→ T is defined as

H∗(S/T ) := f!f
!Q` = f!DS/T .

The homology sheaves Hi(S/T ) are the cohomology sheaves R−iH∗(S/T ).
We use notations from [BBD82] for perverse sheaves. In particular, for a complex F ∈

Db
c(S,Q`), we have the perverse truncations pτ6iF and perverse cohomology sheaves pHiF .

1.3 Review of global Springer theory
To state our main results, we need to consider a parabolic version of the Hitchin fibration, and the
symmetries on the its cohomology. This is the content of the global Springer theory, developed
by the author in [Yun11]. Let us recall the basic setup and main results in [Yun11].

For notations such as B, W, W̃ associated with G, we refer to § 1.2. In [Yun11,
Definition 2.1.1], we defined the parabolic Hitchin moduli stack Mpar =Mpar

G,X,D as the moduli
stack of quadruples (x, E , ϕ, EBx ) where:

– E is a G-torsor on X with a B-reduction EBx at x ∈X;

– ϕ ∈H0(X,Ad(E)(D)) is a Higgs field compatible with the B-reduction EBx (i.e., the value
of ϕ at x lies in Ad(EBx )(Dx)).

Here Ad(E) is the vector bundle on X associated with E and the adjoint representation
Ad :G→GL(g); (D) means tensoring OX(D). The stack Mpar is a modification of Hitchin’s
moduli stack MHit, which classifies the data (E , ϕ) as above.

Let f1, . . . , fr be the canonical homogeneous generators of k[g∗]G of degrees d1, . . . , dr.
Let AHit =

⊕r
i=1 H0(X,OX(diD)) be the Hitchin base. We have the parabolic Hitchin fibration

(see [Yun11, Definition 2.2.1]):

fpar :Mpar→AHit ×X
which sends (x, E , ϕ, EBx ) to f1(ϕ), . . . , fr(ϕ) and x. The morphism fpar is the global analog of
the Grothendieck simultaneous resolution π : g̃→ g in the classical Springer theory.

Let A⊂AHit be the anisotropic locus (denoted by Aani in [Ngo10, § 6.1]). It is the locus over
which fpar is of finite type.

For the purposes of this paper, we will more often consider the enhanced parabolic Hitchin
fibration (see [Yun11, Equation (2.2)])

f̃ :Mpar→ Ã

where Ã is (the anisotropic part of) the universal cameral cover in [Yun11, Definition 2.2.2].
Note that q : Ã →A×X is a branched W -cover.

In [Yun11, Theorem A], we have constructed an action of the extended affine Weyl group W̃
on the parabolic Hitchin complex fpar

∗ Q`. In this paper, we will need a variant of this action on
the enhanced parabolic Hitchin complex f̃∗Q`.

Theorem [Yun11, Proposition 3.3.5]. There is a natural W̃ -equivariant structure on f̃∗Q` ∈
Db
c(Ã,Q`), compatible with the W -action on Ã.
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In particular, we have an X∗(T ) action on f̃∗Q`. This action does not come from an action
of X∗(T ) on Mpar; rather, it comes from Hecke correspondences between Mpar and itself
over Ã.

In [Yun11, Theorem B], we extended the W̃ -action on fpar
∗ Q` to an action of the graded

double affine Hecke algebra H (graded DAHA) on fpar
∗ Q`. The extra ingredient is given by

certain line bundles on Mpar. For each ξ ∈ X∗(T ), there is a line bundles L(ξ) over Mpar: its
fiber over (x, E , ϕ, EBx ) is the line associated with the B-torsor EBx (over the point x ∈X) and

the homomorphism B→ T
ξ−−→Gm. The Chern class c1(L(ξ)) gives degree-two endomorphisms

of fpar
∗ Q` and f̃∗Q` in the derived category:

c1(L(ξ)) : f̃∗Q`→ f̃∗Q`[2](1). (1.3)

Now consider the enhanced parabolic Hitchin fibrations of Langlands dual groups G

and G∨.

Mpar
G

f̃ !!CC
CC

CC
CC

Mpar
G∨

f̃∨}}{{
{{

{{
{{

Ã

(1.4)

Here we have similarly identified the enhanced Hitchin bases ÃG and ÃG∨ . The global Springer
action of X∗(T ) on f̃∗Q` is the topological shadow of the Hecke operators on Db

coh(Mpar
G ); the

Chern class cup-product action (1.3) of X∗(T∨) on f̃∨∗ Q` is the topological shadow of the Wilson
operators on Db

coh(Mpar
G∨). The purpose of the paper is to identify (big parts of) the complexes

f̃∗Q` and f̃∨∗ Q` (up to Verdier duality), and show that the two lattice actions get intertwined
under this identification (after passing to perverse cohomology). Putting this into the picture of
the graded DAHA action, it shows (roughly speaking) that the two lattice pieces of the DAHA
action on f̃∗Q` get interchanged under Langlands duality.

1.4 Main results

1.4.1 Important notation. For technical reasons, we sometimes need to restrict our
considerations to an open subscheme A′ ⊂A over which the codimension estimate in [Ngo10,
Proposition 5.7.2] is satisfied. More precisely, recall from [Ngo10, § 4.9] that we have the global
δ-invariant δ :A→ Z>0, which is upper semicontinuous by [Ngo10, Lemme 5.6.3]. Let Aδ ⊂A be
the level set of δ. [Ngo10, Proposition 5.7.2] says that there exists an integer δD, which goes to
infinity when deg(D)→∞, such that

codimA(Aδ)> δ, ∀δ 6 δD.

We let

A′ =
⊔
δ6δD

Aδ

be the open subset of A. When char(k) = 0, the estimate codim(Aδ)> δ is always satisfied, see
[Ngo11, towards the end of § 2], and therefore we may take A′ =A.
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We summarize in the following diagram the various open subschemes of AHit and ÃHit that
we will use.

Ã♦,rs
� � //

� _

��

Ã′rs
� � //

� _

��

Ãrs
� _

��

Ã♦
� � //

��

Ã′
� � //

��

Ã

��
A♦ � � // A′ � � // A

The open locus A♦ was introduced in [Ngo10, § 4.7], and will be reviewed in § 4.2. Let (A×X)rs

be the locus of (a, x) where the value a(x) ∈ t/W is regular semisimple, and Ãrs is the preimage
of (A×X)rs in Ã. The other spaces are determined by the fact that all squares in the above
diagram are Cartesian.

For the remainder of the paper, the complex f̃∗Q` will be understood to be its restriction to
Ã′ without changing notation.

1.4.2 Langlands duality. The complex f̃∗Q` can be decomposed into the direct sum of
generalized eigencomplexes under the action of X∗(T ) (see Lemma 2.2.1 and the subsequent
discussion). Let (f̃∗Q`)st ⊂ f̃∗Q` be the direct summand on which X∗(T ) acts unipotently (see
Definition 2.2.3). We call this subcomplex the stable part1 of f̃∗Q`. Our main result can be
viewed as a way to understand the unipotent action of X∗(T ) on (f̃∗Q`)st using the Langlands
dual parabolic Hitchin complex (f̃∨∗ Q`)st.

Let d be the common dimension of Mpar
G and Mpar

G∨ . Consider two complexes on Ã′:

K = (f̃∗Q`)st[d](d/2), L= (f̃∨∗ Q`)st[d](d/2).

Let Ki, Li be the ith perverse cohomology sheaves of K and L.
On one hand, we have the unipotent global Springer action of X∗(T ) on K. It will be shown

(see Lemma 2.2.1) that this action induces the identity action after passing to the perverse
cohomology Ki. Hence, for λ ∈ X∗(T ), the endomorphism λ− id on K induces a map

Spi(λ) := pHi(λ− id) :Ki→Ki−1[1],

which can be viewed as ‘sub-diagonal entries’ of the unipotent action of X∗(T ) on K with respect
to the perverse filtration.

On the other hand, consider the cup-product action (1.3) for Mpar
G∨ instead of Mpar

G .
Tautological line bundles L(λ) on Mpar

G∨ are indexed by λ ∈ X∗(T∨) = X∗(T ). Passing to the
stable part and the perverse cohomology, the induced map ∪c1(L(λ)) : Li→ Li+2(1) is in fact
zero (Lemma 3.2.3). Therefore, it makes sense to talk about the ‘sub-diagonal entries’:

Chi(λ) := pHi(∪c1(λ)) : Li→ Li+1[1](1).

Theorem A (See Theorems 3.1.2 and 3.2.4). For each i ∈ Z, there are natural isomorphisms of
perverse sheaves on Ã′ (D below stands for Verdier dual):

K−i ∼= DKi ∼= Li(i). (1.5)

1 The term ‘stable’ comes from the fact that for the usual Hitchin complex, the Frobenius traces of the stable part
give stable orbital integrals [Ngo06, § 9]. It has nothing to do with the stability condition of Higgs bundles.
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Moreover, for each λ ∈ X∗(T ) = X∗(T∨), we have a commutative diagram

K−i
∼ //

Sp−i(−λ)
��

DKi

(D Spi+1(λ))[1]
��

∼ // Li(i)

Chi(λ)(i)
��

K−i−1[1] ∼ // DKi+1[1] ∼ // Li+1[1](i+ 1)

(1.6)

where the two rows are the isomorphisms in (1.5).

The concrete implication of Theorem A on the cohomology of parabolic Hitchin fibers is the
following.

Corollary (See Corollary 3.3.4). Let ã ∈ Ã′ be a geometric point and let Mpar
ã and Mpar,∨

ã
be the corresponding fibers in Mpar

G and Mpar
G∨ . Let N be the common dimension of Mpar

ã and
Mpar,∨

ã . There is a natural filtration P6n on both H∗(Mpar
ã )st and H∗(Mpar,∨

ã )st, induced from
the perverse filtration on K and L, such that the following hold.

(i) There is a natural isomorphism vn : GrPn H∗(Mpar
ã )st

∼= GrP2N−n H∗(Mpar,∨
ã )st(N − n).

(ii) For any λ ∈ X∗(T ) = X∗(T∨), the following diagram is commutative.

GrPn H∗(Mpar
ã )st

Sp(−λ)

��

vn // GrP2N−n H∗(Mpar,∨
ã )st(N − n)

Ch(λ)
��

GrPn−1 H∗(Mpar
ã )st

vn−1// GrP2N−n+1 H∗(Mpar,∨
ã )st(N − n+ 1)

A few remarks about the proof of Theorem A. One technical result needed in the proof
is that Ki and Li are middle extensions perverse sheaves supported on the whole Ã′. This is a
consequence of Theorem B that we will state in the next subsection. Recall from [Yun11, Lemma
2.3.3] that there is a Picard stack P over A which acts onMpar fiberwise. The general fibers of P
are abelian varieties (up to components) which acts simply transitively on the generic fibers of f̃ .
The construction of the isomorphism (1.5) uses an explicit description of the Picard stack P and
its Tate module, which relies on the result of Donagi and Gaitsgory on the regular centralizer
group scheme [DG02]. The proof of the commutativity of (1.6) has two major ingredients. One
is the simple observation that Ext1 between middle extensions of local systems are determined
by the Ext1 between the local systems, so that we can concentrate on a nice locus Ã♦ ⊂ Ã′
where the fibers of f̃ and f̃∨ are abelian varieties (up to components). The other ingredient is an
explicit calculation of Sp(λ) and Ch(λ) over this nice locus, which is essentially a manipulation
of Abel–Jacobi maps for curves.

1.4.3 The support theorem. Recall the following statement in the classical Springer theory:
the Springer sheaf π∗Q` is the middle extension of its restriction to grs (the regular semisimple
locus of g). We will prove an analogous result for f̃∗Q` instead of π∗Q`.

By the decomposition theorem [BBD82, Théorème 6.2.5], f̃∗Q` is noncanonically a direct sum
of shifted perverse sheaves

⊕
i(
pHif̃∗Q`)[−i]. We would like to understand the supports of the

simple constituents of pHif̃∗Q`.

Theorem B (See Theorem 2.1.1 and Corollary 2.2.4). (i) Let j̃ : Ã′rs ↪→ Ã′ be the open
inclusion. For any i, any simple constituent of pHif̃∗Q` is the middle extension of its restriction
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to Ã′rs; i.e.,
pHif̃∗Q` = j̃!∗j̃

∗(pHif̃∗Q`).

Similar result holds for the perverse cohomology sheaves of fpar
∗ Q`.

(ii) Recall that Ki are the perverse cohomology sheaves of the stable part (f̃∗Q`)st[d](d/2).
Then the support of Ki is the whole of Ã′.

Note that Theorem B does not imply that the support of every simple constituent F of
pHif̃∗Q` is the whole Ã′: it only states that the support of F intersects Ã′rs. The proof of
Theorem B uses Ngô’s argument for his ‘Théorème du support’ [Ngo10, Théorème 7.2.1], which
is the key geometric ingredient in his proof of the Fundamental lemma.

Using this result, one can show that the action of X∗(T ) on pHif̃∗Q` factors through a finite
quotient. However, this is no longer true on the level of complexes: we have an example in [Yun11,
§ 7.2] where the action of X∗(T ) on a ‘subregular’ stalk of f̃∗Q` is not semisimple. Nevertheless,
one can consider the decomposition of f̃∗Q` into generalized eigensubcomplexes under X∗(T ):

f̃∗Q` =
⊕

κ∈T̂ (Q`)

(f̃∗Q`)κ. (1.7)

Here T̂ = Hom(X∗(T ),Gm) is a torus over Q`. This is the parabolic analog of the endoscopic
decomposition considered by Ngô [Ngo06, Théorème 8.5]. The direct summands (f̃∗Q`)κ have
two types.

– When κ ∈ ZĜ(Q`), then2 (f̃∗Q`)κ is naturally isomorphic to (f̃∗Q`)st.

– When κ /∈ ZĜ(Q`), then (f̃∗Q`)κ has support on a proper subscheme of Ã′. These
direct summands can be understood using the endoscopic groups of G. The study of
these direct summands is the content of the first half of the preprint [Yun09].

1.5 Organization of the paper
In § 2, we prove Theorem B about the support of simple constituents of pHif̃∗Q`. We then study
the κ-decomposition of f̃∗Q` in § 2.2.

In § 3, we state Theorem A about Langlands duality and its consequences. In § 3.4, we consider
the example of a subregular parabolic Hitchin fiber for G= SL(2), and verify Theorem A in this
case.

In § 4, we prove Theorem A. We first need an explicit description of the Picard stack P and
its Tate module, which we give in § 4.3.

In Appendix A, we collect facts about cap-product action on direct image complexes, partly
following [Ngo10, § 7.4].

2. The support theorem and the endoscopic decomposition

2.1 Support theorem
Consider the enhanced parabolic Hitchin fibration f̃ :Mpar|Ã′ → Ã

′, which is a proper
morphism with source a smooth Deligne–Mumford stack. By the decomposition theorem

2 The group Ĝ is a split group over Q` which is Langlands dual to G; it is not to be confused with G∨. It contains

T̂ as a maximal torus, and ZĜ is its center.
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[BBD82, Théorème 6.2.5], we have a noncanonical decomposition

f̃∗Q` =
⊕
i∈I
Fi[−ni] (2.1)

where I is a finite index set and Fi are simple perverse sheaf on Ã′.
The support theorem that we will state is the analog of the following statement in classical

Springer theory: the direct image complex π∗Q` of the Grothendieck simultaneous resolution
π : g̃→ g is the middle extension from its restriction to grs.

Recall the following maps:

Ã′ q
//

p̃

))
A′ ×X p

// A′.
(2.2)

Theorem 2.1.1. For each simple perverse sheaf Fi appearing in the decomposition (2.1), its
support Z is an irreducible component of p̃−1(p̃(Z)). In particular, Fi is the middle perverse
extension of its restriction to Ã′rs. Equivalently, for each i ∈ Z,

pHif̃∗Q` = j̃rs
!∗ j̃

rs,∗(pHif̃∗Q`)

where j̃rs : Ã′rs ↪→ Ã′ is the open embedding.

Proof. Let δZ be the generic (minimal) value of δ on p̃(Z). Let us recall the notion of
the amplitude of Z following [Ngo10, § 7.3]. Let occ(Z) = {ni | i ∈ I, Supp Fi = Z}. Then the
amplitude of Z is defined to be the difference between the largest and smallest elements in
occ(Z).

Consider the P̃-action on Mpar over Ã. In this situation, we can apply [Ngo10, Proposition
7.3.2] to conclude that the amplitude of Z is at least 2(dim(P/A)− δZ).

Now we can apply the argument of [Ngo10, § 7.3] to show that codimÃ(Z)6 δZ . For
completeness, we briefly reproduce the argument here. By Poincaré duality, the set occ(Z)
is symmetric with respect to dim(Mpar). Let n+ be the largest element in occ(Z). Since the
amplitude of Z is at least 2(dim(P/A)− δZ), we conclude that n+ > dim(Mpar) + dim(P/A)−
δZ . Suppose Fj has support Z and nj = n+. Let U be an open dense subset of Z over which Fj
is a local system placed in degree −dim(Z). Pick a point ã ∈ U(k). Since

0 6= i∗ãFj ⊂Hn+−dim(Z)(Mpar
ã ,Q`),

we necessarily have

dim(Mpar) + dim(P/A)− δZ − dim(Z)6 n+ − dim(Z)6 2 dim(Mpar
ã ) = 2 dim(P/A).

This implies that codimÃ(Z)6 δZ .
By the definition of A′, we have codimA′(A′δ)> δ. This implies that codimÃ′(Z)>

codimA′(p̃(Z))> δZ . Therefore, the inequalities must be equalities; i.e.,

codimÃ′(Z) = codimA′(p̃(Z)) = δZ .

This forces the result that q(Z) = p̃(Z)×X and also the result that Z is an irreducible component
of q−1(p̃(Z)×X) = p̃−1(p̃(Z)).

Since ({a} ×X)rs is dense in {a} ×X for any a ∈ A(k), we conclude that q(Z)rs is dense
in q(Z) and therefore Zrs is dense in Z. Therefore, the simple perverse sheaf Fi is the middle
extension of its restriction on Zrs. This completes the proof. 2
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2.2 Endoscopic decomposition
By the theorem quoted in § 1.3, there is an action of X∗(T ) on the enhanced parabolic Hitchin
complex f̃∗Q`. In the proof of [Yun11, Proposition 3.3.5], we used the Hecke correspondence
H\λ (a self-correspondence of Mpar over Ã) to construct the action of λ ∈ X∗(T ). By [Yun11,
beginning of the proof of Proposition 3.2.1], there is a morphism

s : X∗(T )× Ãrs ⊂ Ã0→P (2.3)

such that for each λ ∈ X∗(T ), H\λ|Ãrs is the graph of the following automorphism of Mpar|Ãrs :
the automorphism over ã ∈ Ãrs is given by the action of s(λ, ã) ∈ Pa on Mpar

ã (where a ∈ A is
the image of ã).

The morphism s induces a surjective homomorphism of sheaves of abelian groups on Ãrs

π0(s) : X∗(T )→ π0(P̃/Ãrs) = p̃rs∗π0(P/A) (2.4)

where p̃rs : Ãrs→A is the projection and X∗(T ) stands for the constant sheaf on Ãrs with stalks
X∗(T ).

On the other hand, since P̃ acts on Mpar over Ã, by homotopy invariance [LN08,
Lemme 3.2.3], it induces an action of π0(P̃/Ã) on pHif̃∗Q`.

Lemma 2.2.1. Over Ã′, the global Springer action of X∗(T ) on each perverse cohomology sheaf
pHif̃∗Q` factors through a finite quotient, and hence is semisimple.

Proof. By Theorem 2.1.1, it suffices to check this statement over Ã′rs. We actually check this
statement over the larger subset Ãrs. By the discussion in the beginning of this subsection, over
Ãrs, the action of X∗(T ) comes from the map s(λ,−) : Ãrs→P and the action of P on Mpar,
and therefore the action of X∗(T ) on f̃∗Q`|Ãrs factors through π0(s) in (2.4). By the definition
of the anisotropic locus A, π0(P/A) is a constructible sheaf of finite abelian groups, and hence
π0(s) necessarily factors through a finite quotient of X∗(T ). 2

Let T̂ = Hom(X∗(T ),Gm) be an algebraic torus over Q`, such that T̂ (Q`) is the set of
characters X∗(T )→Q×` . By Lemma 2.2.1, the action of Q`[X∗(T )] on f̃∗Q` factors through a
finite length quotient Q`[X∗(T )]/I, whose spectrum is a finite subset {κ1, . . . , κm} ⊂ T̂ (Q`). By
the Chinese remainder theorem, we can find orthogonal idempotents ι1, . . . , ιm ∈Q`[X∗(T )]/I
projecting to the localizations of Q`[X∗(T )]/I at κ1, . . . , κm. These idempotents give rise to a
decomposition of f̃∗Q` ∈Db

c(Ã,Q`) into generalized eigensubcomplexes under X∗(T ):

f̃∗Q` =
⊕

κ∈T̂ (Q`)

(f̃∗Q`)κ. (2.5)

By Lemma 2.2.1, X∗(T ) acts on pHi(f̃∗Q`)κ via the character κ : X∗(T )→Q×` . Over Ãrs,
the action of X∗(T ) comes from the map s in (2.3), therefore this decomposition is also the
decomposition according to generalized eigensubcomplexes of π0(P̃/Ã). Hence, passing to
perverse cohomology sheaves, the decomposition (2.5) coincides with the κ-decomposition defined
by Ngô in [Ngo10, § 6.2.1].

Following [Ngo10, § 6.2.3], for κ ∈ T̂ (Q`), let Ãrs
κ be the locus of ã ∈ Ãrs such that κ : X∗(T )→

Q×` factors through the homomorphism s(−, ã) : X∗(T )→ π0(Pa). Let Ãκ be the closure of Ãrs
κ

in Ã. Let Ã′κ = Ãκ ∩ Ã′. Note that in [Ngo10], the notation Ã has a different meaning: it is the
preimage of a point ∞∈X in Ãrs in our notation.
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Proposition 2.2.2. The support of any simple constituent of pHi(f̃∗Q`)κ (for any i) is an
irreducible component of Ã′κ.

Proof. By Theorem 2.1.1, it suffices to show that for any simple constituent F of pHi(f̃∗Q`)κ|Ã′rs ,
the support of F is an irreducible component of Ã′rsκ = Ã′ ∩ Ãrs

κ .
We would like to apply the general result [Ngo10, Corollaire 7.2.3] to the fibration f̃ rs :

Mpar|Ã′rs → Ã
′rs together with the action of P ×A Ã′rs. Since f̃ rs is the base change of the usual

Hitchin fibration fHit :MHit|A′ →A′, all the conditions in [Ngo10, § 7.1] are satisfied by the
discussion in [Ngo10, § 7.8]. The result given in [Ngo10, Corollaire 7.2.3] implies that Z is an
irreducible component of the support of a direct summand of (R2N f̃ rs

∗ Q`)κ (N is the relative
dimension of f̃ rs). By [Ngo10, Propositions 6.5.1 and 6.3.3], these irreducible components are
simply irreducible components of Ã′rsκ . 2

Definition 2.2.3. The stable part (f̃∗Q`)st of the complex f̃∗Q` is defined as the direct
summand in the decomposition (2.5) corresponding to κ= 1.

In other words, (f̃∗Q`)st is the direct summand of f̃∗Q` on which X∗(T ) acts unipotently. By
definition, Ãκ = Ã for κ= 1, we conclude the following corollary.

Corollary 2.2.4 (Of Proposition 2.2.2). For any i ∈ Z, pHi(f̃∗Q`)st is the middle extension
from its restriction to any nonempty Zariski open subset of Ã′.

Remark 2.2.5. The discussions in this and the previous subsections apply to the parabolic
Hitchin complex fpar

∗ Q` as well. In particular, we can write fpar
∗ Q` as a direct sum of (fpar

∗ Q`)κ
according to the X∗(T )-action, and we have

(fpar
∗ Q`)κ = q∗(f̃∗Q`)κ.

We also define the stable part (fpar
∗ Q`)st as the direct summand with κ= 1.

3. Parabolic Hitchin complexes and Langlands duality

In this section, we will establish a Verdier duality between the stable part (f̃∗Q`)st of the enhanced
parabolic Hitchin complex to the stable part f̃∨∗ Q` for the Langlands dual group G∨. We will
also relate the global Springer action of X∗(T ) on (f̃∗Q`)st and the Chern class action of X∗(T∨)
on (f̃∨∗ Q`)st.

3.1 Verdier duality for enhanced parabolic Hitchin complexes
Fix a W -equivariant isomorphism ι : t

∼−−→ t∨. This allows us to identify W -invariant polynomials
on t and on t∨, hence giving isomorphisms between the Hitchin bases of G and G∨ preserving
the anisotropic loci:

ιA :AG
∼−−→AG∨ ,

ιÃ : ÃG
∼−−→ ÃG∨ .

Since G is almost simple, the choice of ι is unique up to a scalar. Therefore, the resulting ιÃ
is unique up to the natural action of Gm on ÃG. Since all the complexes over ÃG or ÃG∨ we
consider will be Gm-equivariant, this ambiguity is harmless. We therefore fix the identification ι
once and for all. We denote the common Hitchin base (respectively enhanced Hitchin base) by
A (respectively Ã). We have the enhanced parabolic Hitchin fibrations as in (1.4).
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Lemma 3.1.1. The stacks Mpar
G and Mpar

G∨ have the same dimension.

Proof. By [Ngo10, § 4.13.4], we have

dim(MHit
G ) = dim(G) deg(D) = dim(G∨) deg(D) = dim(MHit

G∨).

Since the parabolic Hitchin stacks have one dimension more than the usual Hitchin stacks [Yun11,
Proposition 3.5.1(2)], we conclude that dim(Mpar

G ) = dim(Mpar
G∨). 2

Let d= dim(Mpar
G ) = dim(Mpar

G∨). Let

K := (f̃∗Q`)st[d](d/2), L := (f̃∨∗ Q`)st[d](d/2) (3.1)

be objects in Db
c(Ã′,Q`). For each i ∈ Z, let

Ki := pHiK, Li := pHiL

be the perverse cohomology sheaves of K and L.
The first result in this section is a Verdier duality between K and L.

Theorem 3.1.2. For each i ∈ Z, there is a natural isomorphism of perverse sheaves on Ã′:

ṼD
i
: DKi ∼= Li(i).

The proof will be given in § 4.3.

Remark 3.1.3. Let d= dimMpar
G . Fix a fundamental class [Mpar

G ] of Mpar
G , and hence fix an

isomorphism [Mpar
G ] : Q`,Mpar [d](d/2)∼= DMpar

G
[d](d/2). This induces isomorphisms

ṽ : f̃∗Q`[d](d/2) ∼−−→ f̃∗DMpar
G

[d](d/2) = D(f̃∗Q`[d](d/2)).

In [Yun11, Proposition 4.1.8] we established a relation between global Springer action on fpar
∗ Q`

and Verdier duality. A similar relation for f̃∗Q` was stated without proof: the isomorphism ṽ
transforms the action of λ ∈ X∗(T ) to the Verdier dual of the action of −λ. The essential point is
that the correspondence Hλ in [Yun11, Definition 3.3.1] (which is used to define the λ-action on
f̃∗Q`) is the same as the transpose ofH−λ over Ãrs, and they are both graph-like correspondences
with respect to (A′ ×X)rs ⊂A′ ×X (see [Yun11, Lemma 3.1.4]).

By the above discussion, the stable part K is preserved under ṽ. This induces a canonical
isomorphism of perverse sheaves on Ã:

ṽi :K−i ∼= DKi. (3.2)

Therefore, Theorem 3.1.2 can be reformulated as an isomorphism

ṼD′
i
:K−i ∼= Li(i). (3.3)

3.2 Comparison of two actions
3.2.1 The Springer action. By the Theorem quoted in § 1.3, we have an action of X∗(T ) on

K. By Lemma 2.2.1, the X∗(T )-action on Ki is semisimple. Since K is the stable part, X∗(T )
acts trivially on Ki; i.e., for any λ ∈ X∗(T ), the action of λ− id on K induces the zero map on
Ki, therefore pτ6i(λ− id) factors through

pτ6i(λ− id) : pτ6iK→ pτ6i−1K.

Taking the ith perverse cohomology, we get

Spi(λ) := pHi(λ− id) :Ki→Ki−1[1], (3.4)

which is an extension class between the perverse sheaves Ki and Ki−1.
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3.2.2 The Chern class action. Apply the discussion in § 1.3 to G∨ instead of G, we
have tautological line bundles L(λ) on Bunpar

G∨ indexed by λ ∈ X∗(T∨) (see also [Yun11,
Construction 6.1.4]). We denote its pull-back to Mpar

G∨ also by L(λ). The Chern class c1(L(λ))
gives a map ∪c1(L(λ)) : f̃∨∗ Q`→ f̃∨∗ Q`[2](1) as in (1.3). Taking the stable part of this map,

(∪c1(L(λ)))st : L ↪→ f̃∨∗ Q`[d](d/2)→ f̃∨∗ Q`[d+ 2](d/2 + 1)� L[2](1).

we get a map pHi(∪c1(L(λ)))st : Li→ Li+2(1) on the perverse cohomology.

Lemma 3.2.3. The map pHi(∪c1(L(λ))st) : Li→ Li+2(1) is zero for all i ∈ Z.

We postpone the proof to § 4.6. Admitting this lemma, the map pτ6i(∪c1(L(λ)))st factors
through pτ6i(∪c1(L(λ))st) : pτ6iL→ pτ6i−1(L[2](1)). Taking the ith perverse cohomology, we get

Chi(λ) = pHi(∪c1(L(λ))st) : Li→ Li+1[1](1). (3.5)

The next main result is an identification of the maps Spi(λ) and Chi(λ) under the Verdier
duality given in Theorem 3.1.2.

Theorem 3.2.4. For each i ∈ Z and λ ∈ X∗(T ) = X∗(T∨), we have a commutative diagram.

K−i
ṽ−i

∼
//

Sp−i(−λ)
��

DKi

(D Spi+1(λ))[1]
��

ṼD
i

∼
// Li(i)

Chi(λ)(i)
��

K−i−1[1]̃
v−i−1[1]

∼
// DKi+1[1] ṼD

i+1

∼
// Li+1[1](i+ 1)

(3.6)

Here the isomorphism ṼD
i

is given in Theorem 3.1.2 and the isomorphism ṽi is given in
Remark 3.1.3.

The proof will be given in § 4.7.

3.3 The perverse filtration on the cohomology of parabolic Hitchin fibers
In this subsection we spell out the implication of Theorem 3.2.4 on the cohomology of fibers of f̃
and f̃∨. For any geometric point ã ∈ Ã′, letMpar

ã andMpar,∨
ã be the fibers f̃−1(ã) and f̃∨,−1(ã).

Let N be the relative dimension of f̃ and f̃∨; hence dimMpar
ã = dimMpar,∨

ã =N .

By the decomposition theorem (see (2.1)), the truncations pτ6n(f̃∗Q`)st are direct summands
of (f̃∗Q`)st. Taking stalks at ã, they define a filtration on the graded vector space H∗(Mpar

ã ) =
⊕Hm(Mpar

ã )st[−m]:

P6nH∗(Mpar
ã )st := (pτ6n+dim Ã(f̃∗Q`)st)ã. (3.7)

Let GrPn Hm(Mpar
ã )st = P6nHm(Mpar

ã )st/P6n−1Hm(Mpar
ã )st. Then GrPn Hm(Mpar

ã )st is the
(m− n− dim Ã)th cohomology of the stalk of pHn+dim Ã(f̃∗Q`)st at ã.

Lemma 3.3.1. Let ã ∈ Ã′ be a geometric point.

(i) We have GrPn H∗(Mpar
ã )st = 0 unless 06 n6 2N .

(ii) (Hard Lefschetz) We have dim GrPn Hm(Mpar
ã )st = dim GrP2N−n Hm+2(N−n)(Mpar

ã ), for all
m, n ∈ Z. In particular, dim GrPn H∗(Mpar

ã )st is symmetric about N .

(iii) We have GrPn Hm(Mpar
ã )st = 0 unless n6m6 2n.
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Proof. (i) The complex f̃∗Q` lies in the cohomological range [0, 2N ] under the usual t-structure.
Over a dense open subset U ⊂ Ã, f̃ |U is a disjoint union of families of abelian varieties. Therefore,
(f̃∗Q`)st|U is a direct sum of shifted local systems, and hence lies in the cohomological range
[dim Ã, 2N + dim Ã] under the perverse t-structure. By Corollary 2.2.4, (f̃∗Q`)st also lies in the
cohomological range [dim Ã, 2N + dim Ã] under the perverse t-structure.

(ii) Over a dense open subset U ⊂ Ã, the family f̃ |U :Mpar|U → U can be polarized. This
gives a Lefschetz isomorphism of local systems Rn(f̃∗Q`)st|U

∼−−→R2N−n(f̃∗Q`)st(N − n)|U .
By Corollary 2.2.4, this isomorphism extends to an isomorphism pHn+dim Ã(f̃∗Q`)st

∼−−→
pH2N−n+dim Ã(f̃∗Q`)st(N − n), which implies the required equality of dimensions.

(iii) Any perverse sheaf on Ã′, such as pHn+dim Ã(f̃∗Q`)st, have all stalks lying in
cohomological degrees greater than or equal to −dim Ã. Since GrPn Hm(Mpar

ã )st is the (m−
n− dim Ã)th cohomology of the stalk of pHn+dim Ã(f̃∗Q`)st at ã, it is zero for m< n.

On the other hand, by (2), we also have dim GrPn Hm(Mpar
ã ) = dim GrP2N−n Hm+2(N−n)(Mpar

ã )
= 0 if m+ 2(N − n)> 2N ; i.e., m> 2n. 2

Remark 3.3.2. If either k = C, or k = Fq and all the relevant stacks are defined over Fq, we have a
weight filtration W6nH∗(Mpar

ã )st. SinceMpar
ã is proper, we have Hn(Mpar

ã )st =W6nHn(Mpar
ã )st.

Let N6nH∗(Mpar
ã )st be the natural filtration on H∗(Mpar

ã )st given by N6nH∗(Mpar
ã )st =⊕

m6n Hm(Mpar
ã )st. We have the following inclusions

P6nH∗(Mpar
ã )st←↩ N6nH∗(Mpar

ã )st ↪→W6nH∗(Mpar
ã )st.

However, there is no containment relation between P6nH∗(Mpar
ã )st and W6nH∗(Mpar

ã )st in either
direction, as we will see in the example in § 3.4.

Remark 3.3.3. A similar filtration on the cohomology of stable Higgs bundles (induced from the
perverse filtration on the Hitchin complex) is considered by de Cataldo et al. [dHM], in which
they established an exciting connection between this perverse filtration and the weight filtration
of the Betti-counterpart: the character variety (in the case G= GL(2), SL(2) or PGL(2)).

Theorems 3.1.2 and 3.2.4 directly translate into the following corollary.

Corollary 3.3.4 (Of Theorems 3.1.2 and 3.2.4). Let ã ∈ Ã′ be a geometric point. Let n, m be
integers such that 06 n6m6min{2n, 2N}.

(i) There is a natural isomorphism

vmn : GrPn Hm(Mpar
ã )st

∼= GrP2N−n Hm+2(N−n)(Mpar,∨
ã )st(N − n).

(ii) For any λ ∈ X∗(T ) = X∗(T∨), the following diagram is commutative.

GrPn Hm(Mpar
ã )st

Sp(−λ)

��

vmn // GrP2N−n Hm+2(N−n)(Mpar,∨
ã )st(N − n)

Ch(λ)

��
GrPn−1 Hm(Mpar

ã )st

vmn−1 // GrP2N−n+1 Hm+2(N−n+1)(Mpar,∨
ã )st(N − n+ 1)

Proof. By (3.7), we have

GrPn H∗(Mpar
ã )st = pHn+dim Ã(f̃∗Q`)st,ã[−n− dim Ã] =Kn−N

ã [−n− dim Ã](−d/2).
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Similarly, we have

GrP2N−n H∗(Mpar,∨
ã )st = LN−nã [−2N + n− dim Ã](−d/2).

The isomorphism ṼD′
i

in (3.3) then induces

GrPn H∗(Mpar
ã )st

∼= GrP2N−n H∗(Mpar,∨
ã )st[2N − 2n](N − n).

Taking the degree-m parts of both sides, we get the desired isomorphism vmn . The diagram in
part (ii) follows from the outer square in (3.6), applied to i=N − n. 2

3.4 An example
In this subsection, we verify the results in § 3.3 (up to a scalar) on the example we calculated
in [Yun11, § 7.2]. More precisely, we take G= SL(2), G∨ = PGL(2). The base curve X = P1 and
the divisor is taken to be O(D)∼=OP1(2). Fixing an affine coordinate t for P1\{∞}, we can then
identify AHit =H0(P1,O(4)) with polynomials in t of degree at most four. The universal cameral
cover Ã →AHit ×X can be identified with the universal spectral curve Y .

Let a0 = a0(t) ∈ Ã be a polynomial with a double root (for example, a0(t) = t2(t− 1)). The
spectral curve Ya0 is then a nodal curve of arithmetic genus 1. Let y0 be the unique node of Ya0

and x0 ∈ P1 be its projection.

3.4.1 The perverse filtration. We first consider the (enhanced) parabolic Hitchin fiber
Ma0,y0 =Mpar

a0,y0 (we suppress the superscript ‘par’ from the notations). As we have seen in
[Yun11, § 7.1], Ma0,y0 is topologically a union of two rational curves C0, C1 intersecting at two
points. In particular, we can compute its Betti numbers:

h0(Ma0,y0) = 1, h1(Ma0,y0) = 1, h2(Ma0,y0) = 2.

In this example, the stable part H∗(Ma0,y0)st coincides with H∗(Ma0,y0).

The decomposition of (f̃∗Q`)st into shifted perverse sheaves reads

(f̃∗Q`)st = Q` ⊕ L[−1]⊕Q`(−1)[−2].

Here the degree-zero and degree-two parts are constant sheaves because they are middle
extensions from an open dense subset of U ⊂ Ã on which they are obviously constant. The
degree-one part L is the middle extension of a rank-two local system on U (because the general
fibers of f̃ are elliptic curves).

Since H2(Ma0,y0) is two-dimensional, and Q`(−1)[−2] only contributes one dimension to it, we
must have dim H1(La0,y0) = 1. Therefore, the perverse filtration on H∗(Ma0,y0) has dimensions,

dim GrP0 H∗(Ma0,y0) = 1, dim GrP1 H∗(Ma0,y0) = 2, dim GrP2 H∗(Ma0,y0) = 1.

Note that Hi(Ma0,y0) has weight 0, 0, 2 for i= 0, 1, 2 respectively. This shows that there is no
containment relation in either direction between the perverse filtration and the weight filtration
on H∗(Ma0,y0).

3.4.2 The Springer action. Since the global Springer action preserves the perverse filtration,
the one-dimensional subspace GrP1 H2(Ma0,y0)⊂H2(Ma0,y0) is invariant under the unipotent
action of the lattice part of W̃ . Let {γ0, γ1} be the basis of H2(Ma0,y0) dual to the fundamental
classes {[C0], [C1]}. By the calculation in [Yun11, § 7.2], γ0 − γ1 spans the unique eigenspace of
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the action of α∨ ∈ X∗(T )⊂ W̃ . Hence

GrP1 H2(Ma0,y0) = Span{γ0 − γ1} ⊂ Span{γ0, γ1}.

From the matrix of the α∨-action in [Yun11, § 7.2], the ‘subdiagonal’ part of it gives an
isomorphism

Sp(α∨) : GrP2 H2(Ma0,y0) ∼−−→GrP1 H2(Ma0,y0). (3.8)

3.4.3 The Chern class action. Now we consider the parabolic Hitchin fibers for G∨ =
PGL(2), with the same choice of X = P1, D and (a0, y0) ∈ Ã. The parabolic Hitchin fiberM∨a0,y0
(for PGL(2)) classifies pairs (F ⊃ F ′) up to tensoring line bundles from X. Here F , F ′ are
torsion-free rank-one coherent sheaves on Ya0 , such that F/F ′ is of length 1 supported on y0 ∈ Ya0 .
Therefore,M∨a0,y0 decomposes as the disjoint union ofM∨,ev

a0,y0 andM∨,od
a0,y0 according to the parity

of deg F . The stable part H∗(M∨a0,y0)st can be identified with either H∗(M∨,ev
a0,y0) or H∗(M∨,od

a0,y0)
via the projections to the direct summands:

H∗(M∨a0,y0)st ⊂H∗(M∨a0,y0) = H∗(M∨,ev
a0,y0)⊕H∗(M∨,od

a0,y0).

The homomorphism SL(2)→ PGL(2) induces a canonical morphismMa0,y0 →M
∨,ev
a0,y0 , which

induces an isomorphism on coarse moduli spaces. Therefore,M∨,ev
a0,y0 also consists of two rational

curves C0, C1 intersecting at two points.
The line bundle L(−α∨) on M∨,ev

a0,y0 corresponding to the root −α∨ ∈ X∗(T∨) assigns to each
(F ⊃ F ′) the line F/F ′. On the C0 component, F ′ is fixed, and hence L(−α∨)|C0

∼=OC0(−1).
On the C1 component, F is fixed, and hence L(−α∨)|C1

∼=OC1(1). Here we identify C0 and C1

with P1. Therefore,

c1(L(−α∨)) = γ1 − γ0 ∈H2(M∨a0,y0)st
∼= H2(M∨,ev

a0,y0).

The Chern class action then gives an isomorphism

Ch(−α∨) : GrP0 H0(M∨a0,y0)st→GrP1 H2(M∨a0,y0)st. (3.9)

Combining (3.8) and (3.9), we have verified the commutative diagram in Corollary 3.3.4 up to a
scalar. The calculation can be summarized into the following diagram, where all the arrows are
isomorphisms.

H∗(Ma0,y0)st : GrP0 H0

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
GrP1 H1

��

GrP1 H2

��

GrP2 H2

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Sp(α∨)
uu

H∗(M∨a0,y0)st : GrP0 H0

Ch(−α∨)

22GrP1 H1 GrP1 H2 GrP2 H2

4. Proof of Theorem A

4.1 Preliminaries on the Picard stack
Construction 4.1.1. Let S be a scheme and a ∈ AHit(S). Recall from [Ngo10, § 4.3.1] that we
have the regular centralizer group scheme Ja over X × S. We also have the cameral curve
Xa = S ×A Ã, which is a branched W -cover of X × S. For any Ja-torsor QJ over S ×X, the
pull-back q∗aQ

J is a q∗aJa-torsor over the cameral curve Xa. By [Ngo10, Proposition 2.4.2],
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we have a natural homomorphism of group schemes over Xa:

ja : q∗aJa→ T ×Xa.

Therefore, we can form the induced T -torsor QT := q∗aQ
J
q∗aJa,ja
× T over Xa, which carries a strong

W -equivariant structure (W acts on both Xa and the group T ). For the notion of strong W -
equivariance, we refer to [DG02, Definition 5.7]. Let PicT (Ã/AHit)W be the stack over AHit

whose points over a ∈ AHit(S) comprise the category of strong W -equivariant T -torsors on Xa.
The assignment QJ 7→QT gives a morphism of Picard stacks over AHit and Ã:

jP : P →PicT (Ã/AHit)W . (4.1)

Let jP̃ be the base change of jP to from AHit to Ã. Over Ã ×AHit PicT (Ã/AHit)W we have the
universal T -torsor PoinT . Then we define a tautological T -torsor over P̃ = P ×AHit Ã:

QT := j∗P̃ PoinT .

In particular, we get the associated line bundle Q(λ) on P̃ for each λ ∈ X∗(T ).

Lemma 4.1.2. The restriction of the morphism jP in (4.1) to A is an isogeny (i.e., the kernel
and cokernel of jP are finite over A).

Proof. Fix a ∈ A(S). We need a description of Pa due to Donagi and Gaitsgory in [DG02, § 16.3],
which we briefly recall here. For each root α ∈ Φ, let Dα ⊂Xa be the divisor given by the pull-
back of the wall tα,D ⊂ tD. In other words, Dα is the fixed point locus of the action of the
reflection rα ∈W on Xa. For each object QT ∈ PicT (Xa)W (S), the rα-equivariant structure of
QT gives an isomorphism of T -torsors over Dα:

QT |Dα
T,rα
× T ∼=QT |Dα .

Therefore, spelling out the action of rα on T , we get an isomorphism of T -torsors over Dα:

(QT |Dα
T,α
× Gm)

Gm,α∨
× T ∼= T ×Dα. (4.2)

The result of Donagi and Gaitsgory in [DG02, § 16.3] says that Pa(S) is the Picard groupoid of
tuples (QT , {γw}w∈W , {βα}α∈Φ) where (QT , {γw}w∈W ) is a strongly W -equivariant T -torsor on

Xa and βα is a trivialization of the Gm-torsor Q(α)|Dα :=QT |Dα
T,α
× Gm, which is compatible

with the trivialization (4.2) and the W -equivariant structure; i.e., γw sends the trivialization βα
to the trivialization βw(α).

We give a reformulation of their result. For each α ∈ Φ, let

µα := ker(Gm
α∨−−−→ T ).

This is either the trivial group or the group µ2, depending on whether α∨ is a primitive element
of X∗(T ) or not. For QT ∈ PicT (Xa)W (S), by the trivialization (4.2), the Gm-torsor Q(α)|Dα in
fact comes from a unique µα-torsor Qµα over Dα (if char(k) 6= 2). An object in Pa(S) is just
an object (QT , {γw}w∈W ) in PicT (Xa)W (S) together with a trivialization of the µα torsor Qµα
over Dα for each α ∈ Φ, compatible with the W -equivariant structure of QT . Since the above
discussion works for any test scheme S, we get an exact sequence of Picard stacks(∏

α∈Φ

ResÃα/A(µα × Ãα)
)W
→P jP−−−→PicT (Ã/A)W →

(∏
α∈Φ

Picµα(Ãα/A)
)W

. (4.3)
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Here Ãα ⊂ Ã is the pull-back of tα,D, and the last arrow in (4.3) sends QT ∈ PicT (Xa)W (S) to
the µα-torsor Qµα over Dα = S ×A Ãα.

Since Ãα is finite over A, and µα is a finite group scheme, the two ends of the sequence (4.3)
are finite Picard stacks. Therefore, jP is an isogeny. 2

By Construction 4.1.1, QT gives a classifying morphism P̃ → BT ; we also have a natural map
Mpar→ BT given by the tautological T -torsor LT over Mpar.

Lemma 4.1.3. There is a natural 2-morphism making the following diagram commutative.

P̃ ×ÃM
par act //

QT
��

LT
��

Mpar

LT
��

BT × BT mult // BT

(4.4)

Here ‘act’ is the action map and ‘mult’ stands for the multiplication on the Picard stack BT
induced from the multiplication on T .

Proof. Let a ∈ AHit(S), QJ ∈ Pa(S) be a Ja-torsor over S ×X and (x, E , ϕ, EBx ) ∈Mpar(S) be
a point over a, which also gives a point x̃ ∈Xa(S). By Construction 4.1.1, the fiber of QT over
the point (x̃, QJ) ∈ P̃(S) is the T -torsor

QTx̃ := x̃∗QJ
x̃∗Ja,j
× T

over S = Γ(x̃)⊂Xa. Here j : x̃∗Ja→ T is induced from jT .

On the other hand, the fiber of LT over the point (x, E , ϕ, EBx ) is the T -torsor ETx := EBx
B
× T

over Γ(x). By the P-action on Mpar given in [Yun11, Lemma 2.3.3], after twisting by QJ , the
T -torsor ETx becomes the T -torsor,

(x̃∗QJ
x̃∗Ja,jB
× EBx )

B
× T ∼= x̃∗QJ

x̃∗Ja,j
× ETx =QTx̃

T
× ETx ,

which is precisely the product of QTx̃ (the fiber of QT at (x̃, QJ)) and ETx (the fiber of LT at
(x, E , ϕ, EBx )) under the multiplication on BT . This completes the proof. 2

4.2 The locus A♦

Let A♦ ⊂A be the open dense locus where the cameral curves Xa are transversal to the
discriminant divisor in tD (see [Ngo10, § 4.7]). Let Ã♦ = Ã ×A A♦. We collect a few facts about
A♦.

– By [Ngo10, Corollaire 4.7.4], for a ∈ A♦, the cameral curve Xa is smooth and connected.

– By [Ngo10, Proposition 4.7.7], the neutral component P0|A♦ is the quotient of an abelian
scheme over A♦ by ZG via the trivial action. The Hitchin moduliMHit|A♦ is a torsor under
P|A♦ .

– For a ∈ A♦, the global delta invariant δ(a) = 0 (because δ(a) is the dimension of the affine
part of Pa); in particular, A♦ ⊂A0 ⊂A′. This also implies that the local delta invariants
δ(a, x) = 0 for any x ∈X.

– By [Yun11, Lemma 2.6.1] and the fact that δ(a, x) = 0, we have

Mpar|Ã♦
∼−−→MHit|A ×A Ã♦.
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Recall the notion of the Tate module V`(P0/A♦) from §A.1. By Lemma A.3.4, to understand
the stable parts (see Definition A.3.1) of the homology H∗(P/A♦), we need only to describe
V`(P0/A♦).

Lemma 4.2.1. There are natural isomorphisms of local systems on A♦:

V`(P0/A♦)∼= (H1(Ã♦/A♦)⊗Z X∗(T ))W , (4.5)
V`(P∨,0/A♦)∗ ∼= (H1(Ã♦/A♦)⊗Z X∗(T∨))W , (4.6)

where the right-hand side are the invariants and coinvariants of the diagonal W -action.

Proof. We prove the first isomorphism only. By Lemma 4.1.2, jP is an isogeny over A and hence,
in particular, over A♦. Over A♦, the neutral components of both P and PicT (Ã♦/A♦) are
isogenous abelian schemes, therefore jP induces an isomorphisms on the Q`-Tate modules of the
neutral components:

V`(jP) : V`(P0/A♦)∼= V`(Pic0
T (Ã♦/A♦)W /A♦). (4.7)

Here Pic0
T (Ã♦/A♦) is the neutral component of PicT (Ã♦/A♦). Note however that the fibers of

Pic0
T (Ã♦/A♦)W are not necessarily connected; by Tate modules we mean the Tate modules

of their neutral components.
For any geometric point a ∈ A, the automorphisms of objects in PicT (Xa)W are T (Xa)W =

TW which is finite (here we use the fact that Xa is connected, see [Ngo10, Proposition 4.6.1]).
Therefore, PicT (Ã/A)W is a Deligne–Mumford stack, and it is harmless to replace Pic(Ã/A)W

by its coarse moduli space Pic(Ã/A)W in calculating its Tate module.
For the abelian scheme Pic0

T (Ã♦/A♦), taking W -invariants commutes with taking Q`-Tate
modules:

V`(Pic0
T (Ã♦/A♦)W /A♦)∼= (V`(Pic0(Ã♦/A♦))⊗Z X∗(T ))W . (4.8)

For a ∈ A♦, the cameral curve Xa is smooth, and the Abel–Jacobi map Ã♦→ Pic1(Ã♦/A♦)
gives a canonical isomorphism

H1(Ã♦/A♦)∼= H1(Pic1(Ã♦/A♦)).

Moreover, we can canonically identify H1(Pic1(Ã♦/A♦)) with H1(Pic0(Ã♦/A♦)) =
V`(Pic0(Ã♦/A♦)). In fact, for any étale morphism S→A♦ and any lifting s̃ : S→ Ã♦ of s,
we can use s̃ to identify Pic0(Ã♦/S) and Pic1(Ã♦/S). The induced isomorphism on H1(−) is
independent of the choice of the lifting s̃ because any two such liftings differ by a translation
of Pic0(Ã♦/A♦)(S) and Pic0(Ã♦/A♦) has connected fibers (cf. the argument in Lemma 4.3.1).
Therefore, the local identifications between H1(Pic1(Ã♦/A♦)) and V`(Pic0(Ã♦/A♦)) glue to
give a global canonical identification

H1(Ã♦/A♦)∼= V`(Pic0(Ã♦/A♦)). (4.9)

The isomorphisms (4.8) and (4.9) give a canonical isomorphism of local systems on A♦:

V`(Pic0
T (Ã♦/A♦)W /A♦)∼= (H1(Ã♦/A♦)⊗Z X∗(T ))W .

This, together with the isomorphism (4.7), implies the isomorphism (4.5). 2

4.3 Proof of Theorem 3.1.2
Using the global Kostant section (see [Ngo10, § 4.2.4]) ε :A→MHit

G (respectively ε∨ :A→MHit
G∨),

we get a morphism τ : P →MHit
G (respectively τ∨ : P∨→MHit

G∨). Although τ is an isomorphism
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over A♦, this isomorphism depends on the choice of the section ε. Fortunately, if we restrict
ourselves to the stable parts of the homology or cohomology, and passing to cohomology sheaves,
we will get a canonical isomorphism.

Lemma 4.3.1. For each i ∈ Z, there are canonical isomorphisms

Hi(MHit
G /A♦)st

∼= Hi(P/A♦)st,

Hi(MHit
G∨/A♦)st

∼= Hi(P∨/A♦)st.

Proof. We prove the first isomorphism. For any étale map a : S→A♦, and any lifting m : S→
MHit

G of a, we get a trivialization of the Pa-torsor:

m̃ : Pa
∼−−→MHit

G,a.

Hence we get an isomorphism

m̃!,st : Hi(Pa)st
∼= Hi(MHit

G,a)st. (4.10)

If we choose another lifting m′ : S→MHit
G , then m and m′ differ by the translation of a section

$ : S→P, and the two isomorphisms m̃!,st and m̃′!,st differ by the action of $ ∈ Pa(S) on
Hi(MHit

G,a)st. By the homotopy invariance of actions on cohomology (see [LN08, Lemme 3.2.3]),
the action of Pa(S) on Hi(MHit

G,a) factors through π0(Pa)(S). By definition, π0(Pa) acts trivially
on the stable part of H∗(MHit

G,a), and the action of $ on Hi(MHit
G,a)st is trivial. Therefore, different

choices of local sections give rise to the same isomorphism as in (4.10), hence the canonicity. 2

Proof of Theorem 3.1.2. Recall that Ã♦ is the preimage of A♦ in Ã, and let K♦ and L♦ be the
restrictions of K and L to Ã♦. By Lemma 2.2.4, both DKi and Li are middle extensions from
Ã♦, and therefore it suffices to establish a canonical isomorphism DKi

♦
∼= Li♦(i).

Let p̃ : Ã♦→A♦ be the natural projection, which is smooth and proper. SinceMpar
G |Ã♦

∼−−→
MHit|A♦ ×A♦ Ã♦ and MHit

G |A♦ is a torsor under the abelian stack P|A♦ (see the beginning
of § 4.2), the complex K♦ is a sum of shifted local systems. In particular, Ki

♦ =

Hi−dim Ã(f̃∗Q`[d](d/2)|Ã♦)st = Hi+N (Mpar
G /Ã♦)st(d/2), where N = d− dim Ã is the relative

dimension of f̃ (and f̃∨). Dualizing the above statement, we get a canonical isomorphism

DKi
♦
∼= Hi+N (Mpar

G /Ã♦)st(d/2−N) = p̃ ∗Hi+N (MHit
G /A♦)st(d/2−N). (4.11)

A similar remark applies to Mpar
G∨ |A♦ , and we get

Li♦
∼= Hi+N (Mpar

G∨/Ã
♦)st(d/2) = p̃ ∗Hi+N (MHit

G∨/A♦)st(d/2). (4.12)

By the isomorphisms in Lemmas A.3.4, and 4.3.1, we have natural isomorphisms

H∗(MHit
G /A♦)st

∼= H∗(P/A♦)st
∼=
∧

(V`(P0/A♦)[1]), (4.13)

H∗(MHit
G∨/A♦)st

∼= H∗(P∨/A♦)st
∼=
∧

(V`(P∨,0/A♦)∗[−1]). (4.14)

Combining these with the isomorphisms (4.11) and (4.12), we get

DKi
♦
∼= p̃ ∗

i+N∧
(V`(P0/A♦))(d/2−N), (4.15)

Li♦
∼= p̃ ∗

i+N∧
(V`(P∨,0/A♦)∗)(d/2). (4.16)
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Therefore, to prove the theorem, it suffices to give a natural isomorphism of local systems
on A♦:

β : V`(P0/A♦)∼= V`(P∨,0/A♦)∗(1). (4.17)

Recall from [Ngo10, Proposition 4.6.1] that the cameral curves Xa are connected provided
deg(D)> 2gX . The cup product for the smooth connected projective family of curves Ã♦→A♦
gives a perfect pairing

H1(Ã♦/A♦)⊗H1(Ã♦/A♦) ∪−−→H2(Ã♦/A♦)∼= Q`(−1).

Therefore, we have a natural isomorphism of local systems

PD : H1(Ã♦/A♦)∼= H1(Ã♦/A♦)(1). (4.18)

Since X∗(T ) = X∗(T∨), we can define a natural isomorphism

(H1(Ã♦/A♦)(1)⊗Z X∗(T∨))W
∼−−→ (H1(Ã♦/A♦)⊗Z X∗(T ))W

h⊗ λ 7→
∑
w∈W

w∗PD−1(h)⊗ wλ. (4.19)

Using the isomorphisms in Lemma 4.2.1, this isomorphism induces the desired isomor-
phism (4.17). This completes the proof of the theorem. 2

4.4 Some reductions towards the Proof of Theorem 3.2.4
The commutativity of the left square follows from Remark 3.1.3. Therefore, it remains to
prove the commutativity of the right square. We make the following simple observation about
extensions of perverse sheaves.

Lemma 4.4.1. Suppose j : U ↪→ Y is the inclusion of a Zariski open subset of the scheme Y and
F1, F2 are perverse sheaves on U . Let j!∗F1 and j!∗F2 be the middle extension perverse sheaves
on Y . Then the restriction map

Ext1
Y (j!∗F1, j!∗F2)→ Ext1

U (F1, F2)

is injective.

Proof. Let i : Z = Y − U ↪→ Y be the closed embedding of the complement of U into Y . We have
a long exact sequence

→HomZ(i∗j!∗F1, i
!j!∗F2[1])→HomY (j!∗F1, j!∗F2[1])

j∗−−→HomU (F1, F2[1])→ . (4.20)

By the definition of j!∗, we have i∗j!∗F1 ∈ pD6−1(Z) and i!j!∗F2[1] ∈ pD>1(Z). Hence the first
term in (4.20) vanishes; i.e., j∗ is injective. 2

By Lemma 2.2.4, the perverse sheaves Ki, Li are middle extensions from the open dense
subset Ã♦ of Ã′. By Lemma 4.4.1, in order to prove the commutativity of the diagram (3.6),
it suffices to prove the commutativity of its restriction to Ã♦. From now on, we will change
the indexing scheme of Sp(λ) and Ch(λ) from perverse degrees to the ordinary homological and
cohomological degrees respectively:

Spi(λ) : Hi(Mpar
G /Ã♦)→Hi+1(Mpar

G /Ã♦)[1], (4.21)

Chi(λ) : Hi(Mpar
G∨/Ã

♦)→Hi+1(Mpar
G∨/Ã

♦)[1](1). (4.22)

Here we are using the isomorphisms (4.15) and (4.16).
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Remark 4.4.2. We need the following fact about adjunction. Since p̃ : Ã♦→A♦ is smooth of
relative dimension one, we have a natural isomorphism of functors p̃ ! ∼= p̃ ∗[2](1). For any two
objects F1, F2 ∈Db

c(A♦,Q`), we have

HomÃ♦(p̃ ∗F1, p̃
∗F2) ∼= HomÃ♦(p̃ !F1, p̃

!F2)
∼= HomA♦(p̃!p̃

!F1, F2) = HomA♦(H∗(Ã♦/A♦)⊗F1, F2)
∼= HomA♦(H∗(Ã♦/A♦),HomA♦(F1, F2)).

In other words, any map φ : p̃ ∗F1→ p̃ ∗F2 should induce a map

φ\ : H∗(Ã♦/A♦)→HomA♦(F1, F2),

and vice versa.

Applying the above remark to the maps Spi(λ) in (4.21) and Chi(λ) in (4.22) (noticing that
Hi(Mpar

G /Ã♦)∼= p̃∗Hi(MHit
G /A♦) and Hi(Mpar

G∨/Ã
♦)∼= p̃∗Hi(MHit

G∨/A♦)) the commutativity of
the right square in (3.6) over Ã♦ is equivalent to the commutativity of the following diagram.

Hom
( i∧

(V`(P0/A♦)),
i+1∧

(V`(P0/A♦))[1]
)

��

H∗(Ã♦/A♦)
Spi(λ)\

33hhhhhhhhhhhhhhhhhhh

Chi(λ)\

++VVVVVVVVVVVVVVVVVVV

Hom
( i∧

(V`(P∨,0/A♦)∗(1)),
i+1∧

(V`(P∨,0/A♦)∗(1))[1]
)

(4.23)

Here the vertical arrow is induced from the isomorphism β in (4.17).

4.5 The Springer action by X∗(T )
Above we have put the restriction of Spi(λ) to Ã♦ into the form

Spi(λ)\ : H∗(Ã♦/A♦)→Hom
( i∧

(V`(P0/A♦)),
i+1∧

(V`(P0/A♦))[1]
)
.

In this subsection, we write the map Spi(λ)\ more explicitly.
Since Mpar|Ã♦ = Ã♦ ×AMHit (see § 4.2), H∗(Mpar/Ã♦) = p̃∗H∗(MHit/A♦). The Springer

action on H∗(Mpar/Ã♦) is adjoint to (in the sense of Remark 4.4.2)

[λ]\ : H∗(Ã♦/A♦)→ End(H∗(MHit
G /A♦)). (4.24)

We can rewrite this map in terms of the cap product action of H∗(P/A♦) on H∗(MHit/A♦) as
follows. Recall from [Yun11, beginning of proof of Proposition 3.2.1] that we have a morphism
over A,

sλ : Ã0→P,
for each λ ∈ X∗(T ). Here Ã0 is the locus where the local delta invariant δ(a, x) = 0. As discussed
in § 4.2, Ã♦ ⊂ Ã0. By the construction in [Yun11, § 3.3] and the discussion in § 2.2, the action
of λ on f̃∗Q` is induced from an automorphism of Mpar|Ã♦ , coming from the morphism sλ and
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the P-action on Mpar. We can rewrite this automorphism of Mpar|Ã♦ as a morphism

Mpar
G |Ã♦ = Ã♦ ×A♦MHit

G |A♦
(sλ,id)−−−−−→P|A♦ ×A♦MHit

G |A♦
act−−−→MHit

G |A♦ .

Passing to the level of homology, we get

H∗(Ã♦/A♦)⊗A♦ H∗(MHit
G /A♦)

sλ,∗⊗id
−−−−−−→ H∗(P/A♦)⊗A♦ H∗(MHit

G /A♦)
act∗−−−−→ H∗(MHit

G /A♦).

By adjunction, we get

H∗(Ã♦/A♦)
sλ,∗−−−→H∗(P/A♦) ∩−−→ End(H∗(MHit

G /A♦)), (4.25)

where ∩ is (the dual of) the cap product defined in Appendix A.4. By the above discussion,
the map (4.25) is the same as [λ]\ in (4.24). Taking the stable part of sλ,∗, and using the
isomorphism (4.13), we can rewrite (4.25) as

H∗(Ã♦/A♦)
sλ,∗−−−→

∧
(V`(P0/A♦)[1]) ∧−−→ End

(∧
(V`(P0/A♦)[1])

)
.

Here the cap product action becomes the wedge product in
∧

(V`(P0/A♦)[1]).

We decompose the map sλ,∗ into
⊕

i sλ,i, where

sλ,i : H∗(Ã♦/A♦)→
i∧

(V`(P0/A♦)[1]).

Note that

H∗(Ã♦/A♦)
sλ,0−−−→Q`→ End

(∧
(V`(P0/A♦)[1])

)
corresponds to the identity map of p̃ ∗

∧
(V`(P0/A♦)[1])∼= p̃ ∗H∗(Mpar

G /A♦)st under the
adjunction in Remark 4.4.2. Therefore, the action of λ− id on H∗(Mpar

G /Ã♦)st is adjoint to

H∗(Ã♦/A♦)
∑
i>1 sλ,i−−−−−−−→

⊕
i>1

i∧
(V`(P0/A♦)[1]) ∧−−→ End

(∧
(V`(P0/A♦)[1])

)
.

Restricting to the degree −1 part and denoting sλ,1 by Φλ, we conclude that Spi(λ)\ can be
written as

Spi(λ)\ : H∗(Ã♦/A♦) Φλ−−−→ V`(P0/A♦)[1] (4.26)

∧−−→ Hom
( i∧

(V`(P0/A♦)),
i+1∧

(V`(P0/A♦))[1]
)
. (4.27)

Now we need to understand the map Φλ more explicitly. For this, we first describe the
morphism sλ : Ã♦→P in more concrete terms. Consider the composition

Ã♦ sλ−−→P jP−−−→PicT (Ã/A)W →PicT (Ã/A).

The pull-back of the universal T -torsor on Ã ×A PicT (Ã/A) gives a T -torsor QTλ on Ã♦ ×A Ã
via the above map, hence a line bundle Qλ(ξ) on Ã♦ ×A Ã= Ã♦ ×A♦ Ã♦ for each ξ ∈ X∗(T ).
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Lemma 4.5.1. Let Γw = {(x̃, wx̃) | x̃ ∈ Ã♦} ⊂ Ã♦ ×A♦ Ã♦ be the graph of the left w-action,
viewed as a divisor of Ã♦ ×A♦ Ã♦. Then there is a canonical isomorphism

Qλ(ξ)∼=O
(∑
w∈W
〈wλ, ξ〉Γw

)
. (4.28)

Proof. By [Yun11, Beginning of proof of Proposition 3.2.1], the morphism sλ comes from a section
s̃λ : Ã♦→ G̃rJ →GrJ . By the definition of the affine Grassmannian GrJ , we obtain a J-torsor QJλ
on Ã♦ ×X with a canonical trivialization away from the graph Γ of Ã♦→X. By construction,
we have

QTλ = (id×q)∗QJλ
q∗J
× T

where id×q : Ã♦ ×A♦ Ã♦→ Ã♦ ×A♦ (A♦ ×X) = Ã♦ ×X. Therefore, QTλ has a canonical
trivialization τ over Ã♦ ×A♦ Ã♦ − (id×q)−1(Γ) = Ã♦ ×A♦ Ã♦ −

⋃
w∈W Γw.

On the other hand, the section s̃λ over Ãrs is defined by the composition

Ãrs id×{λ}−−−−−−→ Ãrs × X∗(T ) ∼−−→ (G̃r
rs

T )red ↪→ G̃r
rs

T
∼−−→ G̃r

rs

J .

Here G̃r
rs

T → Ãrs is the Beilinson–Drinfeld Grassmannian of T -torsors on the family of cameral
curves Ã →A: over (a, x̃) ∈ Ãrs, it classifies a T -torsor on Xa together with a trivialization
of it over Xa − {x̃}. The last isomorphism above is the inverse of the one defined in [Yun11,

Lemma 3.2.5]. We first look at the morphism Ãrs id×{λ}−−−−−−→ Ãrs × X∗(T )→ G̃r
rs

T . This amounts to
giving a T -torsor GTλ on Ãrs ×A♦ Ã♦ with a trivialization outside the diagonal (the graph Γrs

e ).
The associated line bundle Gλ(ξ) with the induced trivialization on Ã♦,rs ×A♦ Ã♦ − Γrs

e has the
form

Gλ(ξ) =O(〈λ, ξ〉Γrs
e ).

Here, we define Γrs
w = Γw ∩ (Ã♦,rs ×A♦ Ã♦).

Next, by the construction of the isomorphism G̃r
rs

T
∼−−→ G̃r

rs

J in [Yun11, Lemma 3.2.5], the
line bundles Qλ(ξ) and Gλ(ξ) are canonically isomorphic over the open subset

Ã♦,rs ×A♦ Ã♦ −
⊔

w∈W,w 6=e
Γrs
w .

In view of the W -invariance of Qλ(ξ), we must have a canonical isomorphism

Qλ(ξ)|Ã♦,rs×A♦Ã♦
∼=O

(∑
w∈W
〈wλ, ξ〉Γrs

w

)
. (4.29)

Moreover, the trivialization of QTλ |Ã♦,rs×A♦Ã♦ on (Ã♦,rs ×A♦ Ã♦ −
⋃
w∈W Γrs

w) given in the

isomorphism (4.29) is the same as the trivialization τ of QTλ on (Ã♦ ×A♦ Ã♦ −
⋃
w∈W Γw) given

by s̃λ (in the beginning of the proof). Therefore, the expression (4.28) holds over(
Ã♦ ×A♦ Ã♦ −

⋃
w∈W

Γw

)
∪ (Ãrs ×A♦ Ã♦) = Ã♦ ×A♦ Ã♦ −

⋃
w∈W

(Γw − Γrs
w).

Since
⋃
w∈W (Γw − Γrs

w) has codimension at least two in the smooth variety Ã♦ ×A♦ Ã♦, the
expression (4.28) must hold on the whole Ã♦ ×A♦ Ã♦. 2
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Lemma 4.5.2. Under the isomorphism (4.5), the degree −1 part of the map Φλ is given by

Φλ,1 : H1(Ã♦/A♦)→ V`(P0/A♦)→ (H1(Ã♦/A♦)⊗Z X∗(T ))W

h 7−→
∑
w∈W

w∗h⊗ wλ.

Proof. This is a statement about a map between local systems, hence it suffices to check it on
the stalks of geometric points. We fix a geometric point a ∈ A♦. For each ξ ∈ X∗(T ), consider
the morphism

Xa
sλ−−→Pa→PicT (Xa)

Iξ−−→Pic(Xa) (4.30)

where Iξ sends a T -torsor to the line bundle associated with the character ξ. Since π0(Pa) is
torsion, the map (4.30) must land in Pic0(Xa). By Lemma 4.5.1, the map (4.30) takes x̃ ∈Xa

to the line bundle O(
∑

w∈W 〈
wλ, ξ〉wx̃) ∈ Pic0(Xa). Therefore, it induces the following map on

homology:

H1(Xa)→H1(Pic0(Xa))∼= H1(Xa)

h 7→
∑
w∈W
〈wλ, ξ〉w∗h.

Here we use the Picard scheme Pic rather than the Picard stack Pic without affecting the Tate
modules. Since ξ ∈ X∗(T ) is arbitrary, this proves the lemma. 2

4.6 The Chern class action by X∗(T∨)
Let λ ∈ X∗(T∨). The Chern class of Q(λ) gives a map

c1(Q(λ)) : Q
`,Ã = p̃∗Q`,A→H∗(P̃/Ã)[2](1) = p̃∗H∗(P/A)[2](1). (4.31)

By adjunction from Remark 4.4.2, this gives a map

c1(Q(λ))\ : H∗(Ã/A)→H∗(P/A)[2](1).

Lemma 4.6.1. Under the natural decomposition (A4), the map c1(Q(λ))\ factors through

Ψλ : H∗(Ã/A)→H1(P/A)st[1](1)⊂H∗(P/A)[2](1). (4.32)

Using the isomorphism (4.6), the degree −1 part of Ψλ|A♦ takes the form

Ψλ,1 : H1(Ã♦/A♦)→ V`(P∨,0/A♦)∗(1) ∼−−→ (H1(Ã♦/A♦)(1)⊗Z X∗(T∨))W
h 7−→ PD(h)⊗ λ (4.33)

where PD is the Poincaré duality isomorphism defined in (4.18).

Proof. By construction, the line bundle Q(λ) on Ã ×A P is the pull-back of the Poincaré
(universal) line bundle on Ã ×A Pic(Ã/A) using the morphism

jλ : P jP−−−→PicT (Ã/A) Iλ−−→Pic(Ã/A) (4.34)

where Iλ sends a T -torsor to the line bundle induced by the character λ. For any geometric point
a ∈ A, π0(Pic(Xa)) is always a free abelian group while π0(Pa) is finite, and the morphism (4.34)
necessarily factors through the neutral component Pic(Ã/A)0 of Pic(Ã/A). Therefore, c1(Q(λ))\

factors through

H∗(Ã♦/A)→H∗(Pic(Ã♦/A)0/A)[2](1)→H∗(P/A)[2](1).

858

https://doi.org/10.1112/S0010437X11007433 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007433


Langlands duality and global Springer theory

Since Pic(Ã/A)0→A has connected fibers, the last map above has to land in the stable part of
H∗(P/A)[2](1) by Remark A.3.3.

By the definition of the tautological line bundle Q(λ), for each integer N ∈ Z, we have

(idÃ ×[N ])∗Q(λ)∼=Q(Nλ)∼=Q(λ)⊗N .

Therefore, we have a commutative diagram.

H∗(Ã/A)
c1(Q(λ)) //

Nc1(Q(λ))

33
H∗(P/A)[2](1)

[N ]∗ // H∗(P/A)[2](1)

This implies that c1(Q(λ)) factors through the eigensubcomplex of H∗(P/A)st[2](1) with
eigenvalue N under the endomorphism [N ]∗, i.e., H1(P/A)st[1](1) (see Remark A.2.2). This
proves the first half of the lemma.

To prove (4.33), it suffices to fix a geometric point a ∈ A♦ and base change the maps
in (4.34) to the fibers over a. Let LPoin be the universal line bundle on Xa × Pic0(Xa). Then
Q(λ)∼= (id×jλ)∗LPoin.

We first calculate c1(LPoin). For an abelian variety A and the Poincaré line bundle LA on
A× Â, the Chern class c1(LA) ∈H2(A× Â)(1) = ∧2V`(A× Â)∗(1) is dual to the (alternating)
Weil pairing:

eLA(−,−) : V`(A× Â)⊗ V`(A× Â)→Q`(1).
According to [Mum74, p.188], the Weil pairing takes the form eLA(x, x̂; y, ŷ) = (x, ŷ)− (y, x̂),
where (−,−) : V`(A)⊗ V`(Â)→Q`(1) is the canonical Weil pairing.

We apply the above discussion to the self-dual abelian variety Pic0(Xa). The Riemann form
is given by the principal polarization V`(Pic0(Xa))⊗ V`(Pic0(Xa))∼= H1(Xa)⊗H1(Xa)→Q`(1),
which in turn is dual to the cup product on H1(Xa). Therefore,

c1(LPic0(Xa)) =
∑
i

hi ⊗ PD(hi) ∈H1(Xa)⊗H1(Pic0(Xa))(1)∼= H1(Xa)⊗H1(Xa)(1)

where {hi} and {hi} are dual bases of H1(Xa) and H1(Xa). Therefore, c1(Q(λ)) =
(id×jλ)∗c1(LPoin) is the image of

∑
i h

i ⊗ PD(hi)⊗ λ ∈H1(Xa)⊗H1(Xa)(1)⊗Z X∗(T∨) in
H1(Xa)⊗ (H1(Xa)(1)⊗Z X∗(T∨))W ∼= H1(Xa)⊗H1(Pa)st(1). This immediately implies (4.33). 2

Using the Kostant section ε∨ :A→MHit,reg
G∨ , we get a section ε̃∨ : Ã →MHit,reg

G∨ ×A Ã ∼=
Mpar,reg

G∨ ⊂Mpar
G∨ and a morphism

τ̃∨ : P̃∨ = P̃∨ ×Ã Ã
(id,ε̃∨)−−−−−→ P̃∨ ×ÃM

par
G∨

act−−−→Mpar
G∨

which is an isomorphism over Ã♦. By diagram (4.4), we get

τ̃∨∗L(λ) = (id×ε̃∨)∗(Q(λ)�Ã L(λ))∼=Q(λ)�Ã ε̃
∨∗L(λ)

= Q(λ)⊗ g̃∨∗ε̃∨∗L(λ) (4.35)

where g̃∨ : P̃∨→ Ã is the projection.
By Lemma 4.6.1, the Chern class of the line bundle Q(λ) can be written as

c1(Q(λ))\ : H∗(Ã/A)→H1(P∨/A)st[1](1)⊂H∗(P∨/A)[2](1).

The line bundle ε̃∨∗L(λ) on Ã also induces a map

c1(ε̃∨∗L(λ))\ : H∗(Ã/A)→Q`[2](1)∼= H0(P∨/A)st[2](1)⊂H∗(P∨/A)[2](1).
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Putting these results together, using (4.35), we can write the Chern class of τ̃∨∗L(λ) as

c1(τ̃∨∗L(λ))\ = c1(ε̃∨∗L(λ))\ ⊕ c1(Q(λ))\ : (4.36)
H∗(Ã/A)→H0(P∨/A)st[2](1)⊕H1(P∨/A)st[1](1).

4.6.2 Proof of Lemma 3.2.3.

Proof. Since both Li and Li+2 are middle extensions from Ã♦, it is enough to check this statement
over Ã♦. Using the adjunction in Remark 4.4.2 and the isomorphism (4.12), we can write the
action of c1(L(λ)) as

c1(L(λ))\ : H∗(Ã♦/A♦)→H∗(MHit
G∨/A♦)[2](1) ∪−−→ End(H∗(MHit

G∨/A♦))[2](1) (4.37)

where ∪ is the cup product on H∗(MHit
G∨/A♦). Using the trivialization τ∨ : P∨|A♦

∼−−→MHit
G∨ |A♦

to identify H∗(MHit
G∨/A♦) with H∗(P∨/A♦), and using (4.36), the effect of c1(τ̃∨∗L(λ))\ on the

stable part is

H∗(Ã♦/A♦)
c1(ε̃∨∗L(λ))\⊕c1(Q(λ))\−−−−−−−−−−−−−−−−→ H0(P∨/A♦)st[2](1)⊕H1(P∨/A♦)st[1](1)

∪−−→ End(H∗(P∨/A♦)st)[2](1). (4.38)

Since the image of c1(ε̃∨∗L(λ))\ ⊕ c1(Q(λ))\ only involves cohomology sheaves in degree less than
or equal to 1, using Remark 4.4.2 backwards, we see that ∪c1(L(λ))st sends pτ6iL♦ to pτ6i+1L♦.
This proves the lemma. 2

Since we will be concentrating on the degree-one part of c1(L(λ)), we can ignore the
contribution of c1(ε̃∨∗L(λ)) in (4.38). Using (4.38) and (A7), we can finally write Chi(λ)\ as

Chi(λ)\ : H∗(Ã♦/A♦) Ψλ−−−→ V`(P∨,0/A♦)∗(1)[1]

∧−−→ Hom
( i∧

(V`(P∨,0/A♦)∗(1)),
i+1∧

(V`(P∨,0/A♦)∗(1))[1]
)
. (4.39)

4.7 Proof of Theorem 3.2.4
In this subsection we finish the proof of Theorem 3.2.4. By the reduction at the end of § 4.3
(see (4.23)), the expression (4.26) for Spi(λ)\ and the expression (4.39) for Chi(λ)\, it remains
to prove the commutativity of the following diagram.

V`(P0/A♦)[1]

β[1]

��

H∗(Ã♦/A♦)

Φλ
55lllllllllllll

Ψλ ))RRRRRRRRRRRRR

V`(P∨,0/A♦)∗[1](1)

Both maps Φλ and Ψλ necessarily factor through τ>−1H∗(Ã♦/A♦). We computed Φλ,1 in
Lemma 4.5.2 and Ψλ,1 in Lemma 4.6.1. Comparing the two results with the way we defined the
isomorphism β in (4.19), we conclude that, for all λ ∈ X∗(T ) = X∗(T∨),

β ◦ Φλ,1 = Ψλ,1.
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Therefore, the difference β ◦ Φλ −Ψλ must factor through a map

∆λ : H0(Ã♦/A♦)∼= Q`→ V`(P∨,0/A♦)∗[1](1).

All we need to show is ∆λ = 0.

Lemma 4.7.1. The maps Φλ and Ψλ are additive in λ.

Proof. For Ψλ, since Q(λ+ µ)∼=Q(λ)⊗Q(µ), we have

c1(Q(λ+ µ)) = c1(Q(λ)) + c1(Q(µ)),

which implies the additivity of Ψλ.
For Φλ, recall that it comes from the morphism sλ : Ã♦→P. These morphisms are additive

in λ (using the multiplication of P).

Ã♦
(sλ,sµ)//

sλ+µ

88P ×A P
mult // P

Therefore, the induced maps on homology satisfy the following commutative diagram.

H∗(Ã♦/A♦)
sλ,∗⊗sµ,∗ //

sλ+µ,∗

33H∗(P/A♦)⊗H∗(P/A♦)
Pontryagin // H∗(P/A♦)

Taking the degree −1 stable parts, we get the commutative diagram

V`(P0/A♦)[1]⊗Q` ⊕Q` ⊗ V`(P0/A♦)[1]

∧

��

H∗(Ã♦/A♦)
Φλ⊗p̃!+p̃!⊗Φµ

33hhhhhhhhhhhhhhhhhhh

Φλ+µ

++VVVVVVVVVVVVVVVVVVV

V`(P0/A♦)[1]

(4.40)

where p̃! : H∗(Ã♦/A♦)→H∗(A♦/A♦) = Q` is the push-forward along p̃ : Ã♦→A♦. The
diagram (4.40) implies that Φλ+µ = Φλ + Φµ. 2

Using Lemma 4.7.1, and observing that the right-hand side of ∆λ is torsion-free, we see that
in order to show ∆λ = 0 for all λ ∈ X∗(T ), it suffices to show it for a Q-basis of X∗(T )Q. Hence
we can reduce the problem to the following lemma.

Lemma 4.7.2. For each coroot α∨ ∈ Φ∨, the map ∆α∨ = 0.

Proof. Let tα be the wall corresponding to the simple root α in t. The Killing form t
∼−−→ t∨

identifies tα with t∨α∨ . Let Ã♦α ⊂ Ã♦ be the preimage of tα,D under the evaluation morphism
Ã♦→ tD. Since Ã♦→ tD is smooth by the proof of [Yun11, Lemma 2.2.3], Ã♦α is a smooth
variety. Moreover, the morphism Ã♦α →A♦ is finite and surjective. Therefore, the natural
map H0(Ã♦α /A♦)→H0(Ã♦/A♦) = Q` has a section; i.e., H0(Ã♦/A♦) is a direct summand of
H0(Ã♦α /A♦). Therefore, in order to show that ∆α∨ = 0, it suffices to show that the composition

H0(Ã♦α /A♦)→H0(Ã♦/A♦)
∆α∨−−−−→ V`(P∨,0/A♦)∗[1](1) (4.41)
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is zero. This composition is given by the difference of the restrictions of β ◦ Φα∨ and Ψα∨ on
H∗(Ã♦α /A♦). In view of the definitions of β ◦ Φα∨ and Ψα∨ , the vanishing of (4.41) follows from
the next two lemmas. 2

Lemma 4.7.3. The map induced by sα∨ (see (2.3))

sα∨,∗ : H∗(Ã♦α /A♦)→H∗(P/A♦) (4.42)

factors through the direct summand H0(P/A♦)⊂H∗(P/A♦) defined by the canonical
decomposition in Lemma A.2.1.

Proof. We first claim that the morphism

Ã♦α
sα∨−−−→P jP−−−→PicT (Ã♦/A♦)W (4.43)

is trivial (i.e., factors through the identity section). In other words, the line bundles Qα∨(ξ) are
canonically trivialized on Ã♦α ×A Ã for all ξ ∈ X∗(T ). By Lemma 4.5.1, we have

Qα∨(ξ)|Ã♦α×AÃ
∼=O

(∑
w∈W
〈wα∨, ξ〉Γw(Ã♦α )

)
where Γw(Ã♦α ) = Γw ∩ (Ã♦α ×A Ã). Since the reflection rα defined by α fixes Ã♦α , we have
Γw(Ã♦α ) = Γwrα(Ã♦α ). Therefore, we have an equality of divisors:∑

w∈W
〈wα∨, ξ〉Γw(Ã♦α ) =

∑
w∈W/〈rα〉

〈wα∨ + wrαα∨, ξ〉Γw(Ã♦α )

=
∑

w∈W/〈rα〉

〈wα∨ − w
α∨, ξ〉Γw(Ã♦α ) = 0.

Here
∑

w∈W/〈rα〉 means summing over the representatives of the cosets W/〈rα〉. Hence Qα∨(ξ)

is canonically trivialized over Ã♦α ×A Ã; i.e., the map (4.43) is zero.
Let K = ker(jP). Then the morphism sα∨ factors through Ã♦α →K. Hence sα∨,∗ factors

through
H∗(Ã♦α /A♦)→H∗(K/A♦)→H∗(P/A♦).

By Lemma 4.1.2, K is finite over A♦, and therefore H∗(K/A♦) = H0(K/A♦). Since the
decomposition in Lemma A.2.1 is functorial for group stacks, the homomorphism K→P induces

H∗(K/A♦) = H0(K/A♦)→H0(P/A♦)⊂H∗(P/A♦).

This proves the lemma. 2

Lemma 4.7.4. The map

c1(Q(α∨))\ : H∗(Ã♦α /A♦)→H∗(P∨/A♦)[2](1) (4.44)

is zero.

Proof. It suffices to show that c1(Q(α∨)) = 0, or, even stronger, the tautological line bundle
Q(α∨) is trivial on Ãα ×A P∨. However, this follows from the description of P∨ given in [DG02,
§ 16.3], as we recalled in the proof of Lemma 4.1.2. Therefore, the map (4.44) is also zero. 2

Tracing the above reductions backwards, we have already completed the proof of
Theorem 3.2.4.
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helpful discussions.

Appendix A. Generalities on the Pontryagin and the cap product

In this appendix, we recall the formalism of cap product by the homology sheaf of a commutative
smooth group scheme, partly following [Ngo10, § 7.4].

A.1 The group stack and its Tate module

Let P ] be a commutative smooth group scheme of finite type over a scheme S. Let P = [P ]/F ]
where F is a finite étale group scheme over S which acts trivially on P ]. Let P 0 = [P ],0/F ] be
the neutral component of P .

Let ` be an invertible prime in S. For each n ∈ Z>1, the `n-torsion P ],0[`n] is a sheaf of
Z/`nZ-modules on S for the étale topology. The projective system {P ],0[`n]}n gives a Z`-sheaf
on S, which is called the Tate module of P ],0 (or of P 0) over S

T`(P 0/S) := lim←−
n

P ],0[`n].

The Q`-Tate module V`(P 0/S) is the same object T`(P 0/S), viewed as an object in Db
c(S,Q`).

The stalk of V`(P 0/S) at a geometric point s ∈ S is the usual Q`-Tate module of the group
scheme P ],0s .

A.2 The Pontryagin product on homology

Let g : P → S be the structure map and let H∗(P/S) := g!g
!Q`,S be the homology complex of P

on S.

Lemma A.2.1. There is a canonical decomposition in Db
c(S,Q`):

H∗(P/S)∼=
⊕
i>0

Hi(P/S)[i]. (A1)

Proof. This follows from Lieberman’s trick [Kle68, 2A11]. Take any N ∈ Z which is coprime to
the cardinalities of π0(Ps) for all s ∈ S (such an N exists because there are only finitely many
isomorphism types of π0(Ps)). The Nth power map [N ] : P → P induces an endomorphism [N ]∗
on H∗(P/S). Let Hi be the direct summand of H∗(P/S) on which the eigenvalues of [N ]∗ have
norm N i for any embedding Q` ↪→ C. It is easy to see that Hi is independent of the choice of
such N . By construction we have ⊕

i>0

Hi ⊂H∗(P/S). (A2)

It remains to check that each Hi is a sheaf in degree −i, and that this inclusion is an equality. For
each geometric point s ∈ S, we have Hi(Ps) = Q`[π0(Ps)]⊗Hi(P 0

s ) = Q`[π0(Ps)]⊗
∧i(V`(P 0

s )).
Since N is prime to #π0(Ps), [N ]∗ induces an automorphism of π0(Ps); moreover, [N ]∗ acts on
V`(P 0

s ) by N . Therefore, the eigenvalues of [N ]∗ on Hi(Ps) are N i times roots of unity. From
this, we conclude that the stalk Hi,s is equal to Hi(Ps)[i]. Therefore, (A2) is an equality and it
gives the desired decomposition. 2
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The multiplication map mult : P ×S P → P induces a map on homology complexes, which is
called the Pontryagin product,

H∗(P/S)⊗H∗(P/S)∼= H∗(P ×S P/S) mult∗−−−−−→H∗(P/S),

which, in turn, induces a Pontryagin product on the homology sheaves Hi(P/S). Since
the multiplication map is compatible with the Nth power map in the obvious sense, the
decomposition (A1) intertwines the Pontryagin product on the homology complex (left-hand
side) and the Pontryagin product on the homology sheaves (right-hand side).

We have the following facts about the homology sheaves of P/S.

– There is a canonical isomorphism H0(P/S)∼= Q`[π0(P/S)]. Recall from [Ngo06, Proposition
6.2] that there is a sheaf of abelian groups π0(P/S) on S for the étale topology whose fiber
at s ∈ S is the finite group of connected components of Ps. Therefore, the group algebra
Q`[π0(P/S)] is a Q`-sheaf of algebras on S whose fiber at s ∈ S is the 0th homology of Ps.
This algebra structure is the same as the one induced from the Pontryagin product.

– If Ps is connected for some geometric point s ∈ S, the stalk of H1(P/S) at s is the Q`-
Tate module V`(Ps) = T`(Ps)⊗Z` Q` of Ps. Moreover, the Pontryagin product induces an
isomorphism

i∧
V`(Ps) =

i∧
H1(Ps)∼= Hi(Ps). (A3)

Remark A.2.2. If we work with cohomology rather than homology, the Nth power map also
gives a natural decomposition

H∗(P/S)∼=
⊕
i

Hi(P/S)[−i]. (A4)

This decomposition intertwines the cup product on the cohomology complex and the cup product
on the cohomology sheaves.

A.3 The stable part

The Pontryagin product gives an action of H0(P/S) = Q`[π0(P/S)] on H∗(P/S) and H∗(P/S).

Definition A.3.1. The stable part of H∗(P/S) (respectively H∗(P/S)) is the maximal direct
summand on which the action of π0(P/S) is trivial. We denote the stable parts by H∗(P/S)st

and H∗(P/S)st. They have decompositions

H∗(P/S)st =
⊕
i

Hi(P/S)st[i]; H∗(P/S)st =
⊕
i

Hi(P/S)st[−i]

induced from (A1) and (A4).

Remark A.3.2. To make sense of the invariants of a sheaf under the action of another sheaf of
finite abelian groups, we refer to [Ngo06, Proposition 8.3].

Remark A.3.3. The stable part construction is functorial with respect to pull-back. Suppose
we have a homomorphism φ : P →Q of smooth commutative group stacks over S. The pull-
back φ∗ : H∗(Q/S)→H∗(P/S) is π0(P/S)-equivariant (where π0(P/S) acts on H∗(Q/S) via
φ∗ : π0(P/S)→ π0(Q/S)). Therefore, φ∗ sends H∗(Q/S)st to H∗(P/S)st. However, φ∗ does not
send H∗(P/S)st to H∗(Q/S)st.
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It is clear that the stable part H∗(P/S)st (respectively H∗(P/S)st) inherits a Pontryagin
product (respectively a cup product) from that of H∗(P/S) (respectively H∗(P/S)).

Lemma A.3.4. (i) The embedding P 0 ⊂ P and the Pontryagin product gives a natural
isomorphism of Q`[π0(P/S)]-algebra objects in Db

c(S,Q`):

Q`[π0(P/S)]⊗H∗(P 0/S) ∼−−→H∗(P/S). (A5)

The natural embedding P 0 ⊂ P followed by the projection onto the stable part gives a natural
isomorphism of algebra objects in Db

c(S,Q`):∧
(V`(P 0/S)[1])∼= H∗(P 0/S)→H∗(P/S)�H∗(P/S)st. (A6)

(ii) Similar statements hold for H∗(P/S). In particular, we have an isomorphism of algebra
objects (under the cup product and the exterior product)

H∗(P/S)st
∼= H∗(P 0/S)∼=

∧
(V`(P 0/S)∗[−1]). (A7)

Proof. We give the proof for part (i). To check (A5) and (A6) are isomorphisms, it suffices
to check on the stalks. Fix a geometric point s ∈ S. Since all connected components of Ps are
isomorphic to P 0

s , we have a π0(Ps)-equivariant isomorphism

H∗(Ps)∼= H∗(P 0
s )⊗Q`[π0(Ps)] (A8)

on which π0(Ps) acts via the regular representation on Q`[π0(Ps)]. This proves (A5). Using (A8),
the natural embedding P 0

s ⊂ Ps followed by the projection onto the stable part

H∗(P 0
s ) ↪→H∗(Ps)�H∗(Ps)st (A9)

becomes the tensor product of the identity map on H∗(P 0
s ) with the map

Q` · e ↪→Q`[π0(Ps)]�Q`[π0(Ps)]π0(Ps) (A10)

where e ∈ π0(Ps) is the identity element, and the second map is the projector onto the invariants.
Since the composition of the maps in (A10) is an isomorphism, so is the composition of the maps
in (A9). To obtain the first isomorphism in (A6), we need only to apply the isomorphism (A3)
to the Picard stack P 0/S. 2

A.4 The cap product
Suppose P acts on a Deligne–Mumford stackM over S, with the action and projection morphisms

P ×S M
act //

proj
// M.

Suppose F is a P -equivariant complex on M , then in particular we are given an isomorphism

φ : act! F ∼−−→ proj! F .

Therefore, we have a map

act! proj! F act! φ
−1

−−−−−−→ act! act! F ad.−−−→F . (A11)

Let f :M → S be the structure map. Using Künneth formula (P is smooth over S), we get

H∗(P/S)⊗ f!F = g!DP/S ⊗ f!F ∼= (g × f)! proj! F = f! act! proj! F . (A12)
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Applying f! to the map (A11) and combining it with the isomorphism (A12), we get the cap
product

∩ : H∗(P/S)⊗ f!F → f!F (A13)

such that f!F becomes a module over the algebra H∗(P/S) under the Pontryagin product. Using
the decomposition (A1) we get the actions⋂

i

: Hi(P/S)⊗ f!F → f!F [−i],

m⋂
i

: Hi(P/S)⊗Rmf!F →Rm−if!F .

When i= 0, the cap product
⋂

0 gives an action of Q`[π0(P/S)] on f!F . By the isomorphism (A5),
to understand the cap product, we need only to understand

⋂
0 and

⋂
1.
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Ngo06 B.-C. Ngô, Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006), 399–453.
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