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SUMMARY

A number of sophisticated modelling approaches are available to investigate potential
associations between antimicrobial use (AMU) and resistance (AMR) in animal health settings.
All have their advantages and disadvantages, making it unclear as to which model is most
appropriate. We used advanced regression modelling to investigate AMU-AMR associations in
faecal non-type-specific Escherichia coli (NTSEC) isolates recovered from 275 pens of feedlot
cattle. Ten modelling strategies were employed to investigate AMU associations with resistance
to chloramphenicol, ampicillin, sulfisoxazole, tetracycline and streptomycin. Goodness-of-fit
statistics did not show a consistent advantage for any one model type. Three AMU-AMR
associations were significant in all models. Recent parenteral tetracycline use increased the odds
of finding tetracycline-resistant NTSEC [odds ratios (OR) 1·1–3·2]; recent parenteral sulfonamide
use increased the odds of finding sulfisoxazole-resistant NTSEC (OR 1·4–2·5); and recent
parenteral macrolide use decreased the odds of recovering ampicillin-resistant NTSEC (OR
0·03–0·2). Other results varied markedly depending on the modelling approach, emphasizing the
importance of exploring and reporting multiple modelling methods based on a balanced
consideration of important factors such as study design, mathematical appropriateness, research
question and target audience.

Key words: Antimicrobial drugs, antimicrobial resistance in agricultural settings, Escherichia coli,
mathematical modelling, surveillance.

INTRODUCTION

Antimicrobial resistance (AMR) is a leading public
health concern, causing significant morbidity and

mortality, and increased healthcare-related costs [1].
Antimicrobial use (AMU) in food animals has been
posited as a driver of AMR by national and
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international governing agencies [2]; however, studies
in this area have produced ambiguous results [3–7].
The significance of AMU in animals on AMR out-
comes in humans is difficult to quantify [8–12].
Despite best efforts to address this knowledge gap,
substantial logistical challenges remain with respect
to designing and conducting commercial field studies
to quantify associations between AMU and AMR in
food animals. Such challenges include uniquely identi-
fying and tracking animals over time, maintaining and
accessing detailed health and antimicrobial drug
(AMD) exposure records for individual animals, and
obtaining biological samples longitudinally from a
sufficient number of these uniquely identified animals.

Even large field studies conducted in commercial
feedlots that have overcome these challenges have pro-
duced inconsistent results [5–7], including differences
in detecting associations between tetracycline use
and resistance in beef cattle feedlots [3, 4], and differ-
ences in the association between tetracycline resistance
and use of chlortetracycline and oxytetracycline in
swine [13]. One reason for such differential results
may stem from differences in laboratory and analyti-
cal methods. Potential bench-side differences include
the use of multiple resistance testing methods that
may produce different results [e.g. disk diffusion
(DD) vs. broth microdilution (BM)] [14], a lack of
host- and agent-specific breakpoints for interpretation
of resistance results, and debate as to which indicator
bacterial species best represent resistance dynamics in
food animals. Analytically, the datasets resulting from
large representative studies of AMU-AMR in com-
mercial settings present several challenges including
accounting for multiple levels of non-independence
(i.e. clustering), accounting for time of sampling, vali-
dating quantification of antimicrobial drug exposures,
accounting for AMU exposures that occurred prior to
feedlot entry, and classifying resistance outcomes
when there are many isolates within a sample, and
one can use multiple testing methods for resistance
characterization.

This report is part of a larger study that aimed to
overcome many of these obstacles with the goal of
developing a longitudinal AMR surveillance system
for use in beef feedlot cattle [15]. The purpose of
this investigation was to estimate resistance prevalence
in isolates of non-type-specific E. coli (NTSEC) recov-
ered from faeces of beef feedlot cattle, to model asso-
ciations between AMU and AMR in these isolates
using various modelling strategies, and to compare
these strategies in order to understand how they may

differentially impact measures of association between
AMU and AMR.

MATERIALS AND METHODS

Study overview

Pens of cattle (N= 300) in four feedlots in Alberta,
Canada were enrolled in the study and composite
pen-floor faecal samples were collected at the begin-
ning of the feeding period, and at least once again dur-
ing the remainder of the feeding period. Samples were
cultured for NTSEC and isolates were susceptibility
tested using BM and DD. Antimicrobial exposures
for all cattle in enrolled pens were tracked throughout
the study period. The prevalence of recovery of AMR
NTSEC was estimated, various methods of multi-
variable logistic regression were used to investigate
associations between AMU and AMR in NTSEC iso-
lates, and model results were compared.

Sample collection

Bacterial isolates were collected as part of a project
intended to develop and evaluate methods for surveil-
lance of AMR in beef feedlot cattle, the details of
which have been reported elsewhere [15]. Sample col-
lection ran from September 2007 to January 2010,
during which time feedlot collaborators enrolled
30% of all arriving pens using a randomization
table. Pens were sampled when filled to capacity,
and at least once again later during the feeding period.
Twenty fresh faecal samples of ∼14 g each were col-
lected in a standard spatial pattern from each pen
floor and then mixed together for 1 min, and 10 g
was removed for further processing. All cattle hand-
ling and sampling procedures were approved by the
Animal Care Committee of Feedlot Health Man-
agement Services Ltd (FHMS) and the Institutional
Animal Care and Use Committee of Colorado State
University.

Susceptibility testing

Faecal samples were cultured for NTSEC, and up to
five isolates from each sample were selected for sus-
ceptibility testing, which was performed using both
automated DD (BioMIC, (Giles Scientific USA))
and BM (Sensititre, Thermo Fisher Scientific, USA,
panel type: CMV1AGNF). The antimicrobial panels
differed between the two test methods, as they were
selected independently for surveillance purposes. An
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automated visual imaging system recorded zone dia-
meter from DD tests, while laboratory personnel
recorded the minimum inhibitory concentration
(MIC) from BM tests. All susceptibility testing was
conducted in accordance with standards established
by the Clinical Laboratory Standards Institute
[16–20]. Details about quality control assessments
and interpretive criteria have been previously de-
scribed in detail [15].

Antimicrobial use data

Feedlot personnel used a chute-side, customized
health information system (iFHMS software,
Feedlot Health Management Services, Canada) to
record all parenteral and in-feed AMD treatments
for all cattle in enrolled pens from the day of arrival
until the day that the last sample was collected
(Table 1). Records were subsequently exported for
analyses, and included individual animal and pen
identification, AMD type, dosage, and route and
date(s) of administration. For analysis, antimicrobial
doses were converted to units of animal defined

daily dose (ADD), a metric that defines the number
of days that a single dose remains in the recipient’s tar-
get tissue(s) based on labelling claims for therapeutic
use in treatment of respiratory disease, and therefore
approximates ‘exposure days’ for one standard treat-
ment [21]. This standardization enables comparison
of AMD exposures across varying sizes of cattle
with varying antimicrobial dosages. To aggregate
AMD exposures at the group (pen) level, each treat-
ment was converted to ADDs, multiplied by both
the number of animals exposed and the duration of
treatment (in days), and then summed by AMD
class (β-lactams, phenicols, quinolones, sulfonamides,
tetracyclines and macrolides). The AMD categories
were further subdivided into the route of administra-
tion as being in-feed or parenteral.

Multivariable modelling to estimate adjusted
prevalence of resistance

Adjusted prevalence of resistance in individual isolates
was estimated from marginal (adjusted) means obtained
from Poisson regression modelling. Estimates were

Table 1. Antimicrobial drugs used in this population

AMD and dosage Primary reason for use Class ADD

Parenteral
Ceftiofur sodium, 1 mg/kg BW BRD treatment Beta lactam 1
Ceftiofur crystalline free acid, 6·6 mg/kg BW BRD treatment Beta lactam 3
Ceftiofur hydrochlorid,e 1·1 mg/kg BW BRD treatment Beta lactam 1
Enrofloxacin, 7·7 mg/kg BW Relapse BRD treatment Quinolone 3
Florfenicol, 40 mg/kg BW BRD treatment Phenicol 3
Florfenicol, 40 mg/kg BW and flunixin meglumine, 2·2 mg/kg BW BRD treatment Phenicol 3
Oxytetracycline

10 mg/kg BW BRD prevention/treatment Tetracycline 1
20 mg/kg BW BRD prevention/treatment Tetracycline 2
30 mg/kg BW BRD prevention/treatment Tetracycline 3

Tilmicosin, 10 mg/kg BW BRD prevention/treatment Macrolide 3
Trimethoprim and sulfadoxine, 16 mg/kg BW BRD treatment Sulfonamide 1
Tulathromycin, 2·5 mg/kg BW BRD prevention/treatment Macrolide 3
Tylosin tartrate, 29 mg Implant site abscess prevention Macrolide 1/275
In-feed
Chlortetracycline

35 mg/kg diet dry matter Liver abscess prevention Tetracycline 1/18*
1 g/head per day Histophilosis prevention/

treatment
Tetracycline 1/6

3 g/head per day Histophilosis prevention/
treatment

Tetracycline 1/2

6 g/head per day Histophilosis prevention/
treatment

Tetracycline 1

Tylosin phosphate, 11 mg/kg diet dry matter Liver abscess prevention Macrolide 1/80*

AMD, Antimicrobial drug; ADD, animal defined daily dose; BW, body weight; BRD, bovine respiratory disease.
* Assuming 9 kg of dry matter intake per individual animal per day.
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stratified by the number of days that cattle had been in
the feedlot when faecal samples were collected: 0–3
days-on-feed (DOF), 4–70, 71–120, 121–180, and
>180 DOF. This enabled us to adjust resistance preva-
lence relative to DOF, and to determine if DOF was a
statistically significant predictor of AMR levels.
Cut-offs for DOF categorization were chosen based
on the likelihood of disease occurrence and therefore
AMU at different phases of the feeding period, as
well as the distribution of collected samples.
Generalized estimating equations (GEE) with an
exchangeable correlation structure were used to control
for clustering of isolates within samples. For isolates
that were susceptibility tested using both BM and DD
(repeated measures), we included only BM results in
order to meet the assumption of independence between
observations. Pen size and feedlot could potentially con-
found resistance prevalence, and thus were included as
fixed effects.

Multivariable modelling to test for associations between
use and resistance

A variety of multivariable modelling techniques were
used to analyse potential associations between AMU
and AMR in NTSEC isolates. The primary outcome
of interest in all models was the antimicrobial

susceptibility status of NTSEC isolates, defined
dichotomously as either resistant or non-resistant,
the latter of which included intermediate and suscepti-
ble classifications. In order to maintain temporal logic
for associations between AMU and AMR, only
AMDs given prior to sample collection were included
in these analyses, and therefore only isolates recovered
from non-arrival samples were interrogated. Resis-
tance status for each of the 19 AMDs included on
the test panels was evaluated in parallel in separate
models.

The primary independent variables of interest were
exposures to AMDs, which were categorized and
summed as described above. Despite the inherently
continuous nature of pen-level AMD data, class-
specific distributions for AMDs were strongly right-
skewed and zero-inflated. We attempted to assess
linearity using quadratic terms for AMD exposures,
as well as by modelling deciles and quintiles of
AMD exposures in order to compare parameter esti-
mates with the logit of the resistance outcome.
However, these models either would not converge or
the Hessian matrix was not positive definite, and line-
arity could not be formally assessed. Therefore, AMD
exposures were modelled as both continuous and cate-
gorical variables and model results were compared
(Table 2). For categorization, parenteral AMD

Table 2. Model specifications for all 10 models used to analyse associations between AMU and AMR in NTSEC
isolates

Model
Modelling
technique

Test results included
in analysis

Clusters accounted
for in analysis

Quantification of
days-on-feed

Quantification of
AMD exposures

A GEE BM Multiple isolates per sample Categorical Continuous
B GEE BM Multiple isolates per sample Continuous Continuous
C GEE/ALR BM & DD Multiple tests per isolate Categorical Continuous

Multiple isolates per sample
D GEE/ALR BM & DD Multiple tests per isolate Continuous Continuous

Multiple isolates per sample
E GEE BM Multiple isolates per sample Continuous Categorical
F GLMM BM Multiple samples per pen Continuous Categorical
G GLMM BM Multiple isolates per sample Continuous Categorical
H GLMM BM & DD Multiple tests per isolate Continuous Categorical

Multiple isolates per sample
Multiple samples per pen

I GLMM BM Multiple isolates per sample Continuous Continuous
J GLMM BM & DD Multiple tests per isolate Continuous Continuous

Multiple isolates per sample
Multiple samples per pen

AMU, Antimicrobial use; AMR, antimicrobial resistance; NTSEC, non-type-specific Escherichia coli; AMD, antimicrobial
drug; GEE, generalized estimating equations; GEE/ALR, generalized estimating equations with alternating logistic regres-
sion; GLMM, generalized linear mixed modelling; BM, broth microdilution; DD, disk diffusion.
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exposures were dichotomized (‘no exposure’ vs. ‘any
exposure’), while in-feed exposures were categorized
into four levels: no exposure, low exposure (<25th per-
centile), medium exposure (25th–89th percentiles) and
high exposure (590th percentile). To investigate the
impact of temporality on the association between
AMD exposures and AMR, we grouped AMD expo-
sures based on the time of sample collection as either
recent or non-recent, i.e. AMDs administered 46
days prior to sample collection and those administered
57 days prior to sample collection.

Two variables were included in all models as poten-
tial confounders: number of animals housed in the pen
from which the composite faecal sample was obtained
(‘pen size’) and DOF. Pen size was modelled as a
five-level ordinal variable due to nonlinearity with
the logit of the outcome (<101, 101–200, 201–300,
301–400, and >400 animals). The DOF variable
exhibited a linear relationship with the logit of the out-
come and was modeled as both a continuous and an
ordinal variable (0–3, 4–70, 71–120, 121–180, and
>180 DOF) for comparison purposes.

Population and study design factors created numer-
ous issues related to data hierarchy, clustering and
repeated measures. Resistance outcomes could be
clustered within feedlot (n = 4 feedlots), within pens
(n= 275 pens), and within samples, as multiple iso-
lates were collected from each sample (n = 564 sam-
ples). In addition, repeated measures were present at
two levels: first, pens were sampled multiple times
throughout the feeding period; and second, a subset
of NTSEC isolates were tested by two different resis-
tance testing methods.

Because there are a number of equally valid model-
ling approaches to analyze such data, we used and
compared a variety of methods. In all model types,
feedlot was included as a categorical fixed effect due
to the small number of feedlots and the fact that
none of the model predictors were considered to be
feedlot-level effects. GEE with alternating logistic
regression (ALR) was used to account for clustering
of isolates within samples as well as repeat susceptibil-
ity testing on some isolates [22]. For these models,
sample identification number was specified as the
repeated subject with an exchangeable correlation
structure and susceptibility testing method was spe-
cified as the subcluster with a 1-nested log odds ratio
structure. When data sparseness did not support
GEE with ALR modelling (i.e. the correlation matrix
was not positive definite or parameter estimates were
unrealistically large), GEE without ALR was used,

and only BM results were analysed to avoid issues
of non-independence. Finally, generalized linear
mixed modelling (GLMM) with random effects and
Laplace estimation [23] was used to control for multi-
ple levels of clustering. When model convergence was
achieved, isolates, samples and pens were specified as
random effects. When convergence could not be
attained on all three levels of clustering, only suscept-
ibility results from BM were used in the analysis and
separate models specifying pens and samples as ran-
dom effects were compared. To facilitate comparison
of model results, subject-specific (SS) parameter esti-
mates from GLMM models were converted to
population-averaged (PA) parameter estimates using
the equation [24]:

βPA ≈ βSS��������������
1+ 0.346σ2h

√ .

The modelling decisions made at the outset of this
analysis, combined with the limitations imposed by
model convergence and stability, yielded 10 permuta-
tions of modelling methods (models A–J) (Table 2).
These included various combinations of model type
(GEE with ALR vs. GEE vs. GLMM), clustering spe-
cification, and methods for quantification of DOF and
AMD exposures (continuous vs. categorical).

The same approach to model development was used
for all 10 modelling methods (A–J). First, univariable
screening models were used to analyse associations
between each class of AMD exposure (n= 8) and
every resistance outcome (n= 19 AMDs for models
using both BM and DD, and n= 15 AMDs for models
using only BM results). The AMD exposures were
split into recent and non-recent exposures as described
above. Each screening model included fixed-effect
variables for feedlot, DOF, and pen size. The AMD
exposure variables with a P value 40·20 for either
recent or non-recent exposures were included in the
initial candidate multivariable model. Backward elim-
ination was used to refine multivariable models using
a critical alpha for retention of 0·05 with recent and
non-recent AMD exposures considered indepen-
dently. Variables exhibiting confounding upon step-
wise removal (defined as >20% change in any
parameter estimate) were added back to the model.
Once all variables met the critical alpha value, con-
founding was reassessed and variables were removed
if confounding was no longer present.

Models for each resistance outcome were assessed
independently using each of the modelling methods
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(A–J), resulting in development of 139 different multi-
variable models (Tables 2 and 3). Model fit was eval-
uated using Akaike’s Information Criterion (AIC) for
GLMM models, and Quasi-Information Criterion
(QIC) for GEE models.

RESULTS

A total of 300 pens were sampled at least once.
Twenty-five pens were excluded from analysis due to
missing exposure or resistance information, resulting
in 275 pens for use in multivariable analyses that ran-
ged in size from 27 to 555 head (median 168). Of these
275 pens, 23% (64/275) were sampled once during the
feeding period, 48% (132/275) twice, and 29% (79/275)
three times, resulting in collection of 564 composite
faecal samples, from which a total of 2911 NTSEC
isolates were cultured. Almost all isolates were tested
using BM (2903/2911), while 41% (1192/2911) were
tested by DD, for a total of 4095 susceptibility test
results for analysis. Of the 564 composite faecal sam-
ples, 40% (226/564) were collected between 0 and 3

DOF, another 39% (214/564) between 4 and 120
DOF, and 22% (124/564) later in the feeding period
(median 152 DOF, range 121–244 DOF).

Prevalence of resistance to most AMDs was too low
for valid estimation of least-square means for adjusted
prevalence estimates (Table 4). Only six of the 19 resis-
tances tested attained crude prevalence >2%, namely
ampicillin, chloramphenicol, streptomycin, sulfisoxa-
zole, tetracycline and florfenciol (Fig. 1). DOF was
significantly associated with resistance levels for all
modelled AMDs except ampicillin (Fig. 1).

Antimicrobial drug use

The most commonly used AMD was in-feed tetracy-
cline, which was administered to all pens of cattle in
this study population; however, because some of the
pens were only sampled at arrival, and not again
later in the feeding period, only 83% of pens were
exposed prior to collection of the ‘last’ sample
(Table 5). Pen-level prevalence of exposure to many
parenterally administered AMD classes was <50%

Table 3. Results of modelling process for all antimicrobial resistance outcomes

Model

Resistance outcome A B C D E F G H I J

Amikacin – – n/n† n/n† – – – n/n† – n/n†
Ampicillin ✓ ✓ – – ✓ ✓ ✓ – ✓ –

Amoxicillin-clavulanate – – – – – – – – – –

Cefoxitin – – n/n† n/n† – – – n/n† – n/n†
Ceftazidine – – n/n† n/n† – – – n/n† – n/n†
Ceftiofur – – – – – – – – – –

Ceftriaxone – – n/n† n/n† – – – n/n† – n/n†
Chloramphenicol ✓ ✓ n/n† n/n† ✓ ✓ ✓ n/n† ✓ n/n†
Ciprofloxacin – – n/n† n/n† – – – n/n† – n/n†
Enrofloxacin – – n/n† n/n† – – – n/n† – n/n†
Florfenicol – – n/n† n/n† – – – n/n† – n/n†
Gentamicin – – n/n† n/n† – – – n/n† – n/n†
Kanamycin – – n/n† n/n† – – – n/n† – n/n†
Nalidixic acid – – n/n† n/n† – – – n/n† – n/n†
Neomycin – – n/n† n/n† – – – n/n† – n/n†
Streptomycin ✓* ✓ ✓* ✓ ✓ ✓ ✓ – ✓ –

Sulfisoxazole ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ –

Tetracycline ✓ ✓ ✓ ✓ ✓ n/n‡ n/n‡ ✓ n/n‡ ✓
Trimethoprim-sulfamethoxazole – – – – – – – – – –

✓Model converged and results are presented.
✓*Model converged, but no results are presented because no antimicrobial drug exposures were statistically significant in final
model.
–Model would not converge.
‡Model not needed because models with random effects at all levels did converge.
†Model not needed because resistance was only tested with one susceptibility test (i.e. no repeated measures on isolates).
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(Table 5), and even in exposed pens, distribution of
AMD exposures had a strong right skew because
most pens contained only one or two exposed animals,
while a handful of pens received pen-wide metaphy-
lactic treatment. Over 96% of all AMD exposures
occurred 57 days prior to sample collection and
were classified as ‘non-recent’. This was consistent
across all AMD classes with the exception of in-feed
macrolides, of which 31·3% of ADDs were classified
as ‘recent’, i.e. administered 46 days with respect to
sample collection. This disparity stems from the
AMD protocols utilized in the four study feedlots.

Results of multivariable modelling

For AMDs with resistance prevalence sufficient to
support multivariable modelling (Table 3) we found
several statistically significant associations between
AMU and AMR. However, most of these associations
were not consistent between different model specifica-
tions. Details of comparisons are given below.

Effect of quantifying AMD exposures as continuous vs.
categorical variables

The quantification of AMD exposures as continuous
or categorical variables exerted the strongest influence
over model results, best illustrated in the results for
chloramphenicol resistance (Table 6). When AMD
exposures were quantified as continuous variables
(models A, B and I), only non-recent parenteral
macrolide exposures were significantly associated
with an increase in the odds of isolating chlor-
amphenicol-resistant NTSEC. However, this asso-
ciation was not seen when modelling the AMD
exposures as categorical variables (models F and G),
and instead there was a positive association with non-
recent in-feed tetracycline and parenteral quinolone
exposures, as well as a negative association with recent
parenteral quinolone exposures. Quantification of
AMD exposures produced a similar effect when mod-
elling streptomycin resistance, as models in which
exposures were treated continuously contained a dif-
ferent significant association than models in which
exposures were treated categorically (Table 7), models
B, D and I vs. E, F and G, respectively.

Effects of different modelling strategies

While GEE, GEE/ALR and GLMM are all valid
methods for regression modelling of clustered data,
our results show that choice of modelling strategy
can result in substantial differences with respect to
which subset of AMD exposures exhibit significant
association with resistance outcomes, as seen in the
case of ampicillin resistance (Table 8). Models A
and B indicate that recent parenteral exposures to
macrolides, recent in-feed exposures to tetracyclines
and recent in-feed exposures to macrolides were asso-
ciated with decreased odds of recovering ampicillin-
resistant NTSEC, while non-recent exposures to
in-feed tetracycline were associated with increased
odds. However, model I suggests that only the associa-
tion between recent parenteral macrolide exposures
and ampicillin resistance was statistically significant.
The only difference between these models was that
models A and B used GEE for clustered data, while
model I used GLMM.

Effects of clustering

In a few instances, the hierarchical level of non-
independence accounted for in model specifications

Table 4. Crude prevalence of antimicrobial resistance in
NTSEC isolates (for antimicrobials with prevalence
that would not support multivariable modelling of
adjusted prevalence of estimates)*

Resistance phenotype

No. of
resistant
Isolates % (95% CI)||

Amikacin† 0 0·0 (0·0–0·0)
Amoxicillin-clavulanate‡ 10 0·3 (0·1–0·5)
Cefoxitin† 4 0·2 (0·0–0·4)
Ceftazidime§ 1 0·3 (0·0–0·5)
Ceftiofur† 9 0·3 (0·1–0·4)
Ceftriaxone† 3 0·1 (0·0–0·3)
Ciprofloxacin† 0 0·0 (0·0–0·0)
Enrofloxacin§ 2 0·3 (0·0–0·7)
Gentamicin‡ 5 0·2 (0·1–0·4)
Kanamycin† 31 1·1 (0·8–1·5)
Nalidixic acid† 41 1·5 (1·0–1·9)
Neomycin§ 7 0·8 (0·3–1·2)
Trimethoprim-sulfadioxine‡ 73 1·8 (1·4–2·2)

NTSEC, Non-type-specific Escherichia coli; CI, confidence
interval.
* Adjusted prevalence of resistance for other drugs can be
found in Figure 1.
†Tested by broth microdilution only (n= 2903).
‡Tested by broth microdilution and disk diffusion (n=
4095).
§ Tested by disk diffusion only (n= 1192).
|| Adjusted CI for binomial proportions (adding two suc-
cesses and two failures) were estimated as previously
described [25].
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exerted a strong influence on model results, for exam-
ple in the results of models F and G for sulfisoxazole
resistance (Table 9). These models were identical
except that model F included a random effect at the
pen level and model G at the sample level. This
change resulted in vastly different final multivariable
models, with model G showing only one significant
association between AMD exposure and sulfisoxazole
resistance, and model F showing four significant
associations.

Effect of modelling DOF as a categorical vs.
continuous variable

It is often considered best practice to model inherently
continuous data as continuous [26]. However, this
may not be possible due to violation of the assumption
of linearity, or categorization may be preferred in
order to interpret model results in context of real-
world practices [27]. We modelled DOF as both a con-
tinuous and categorical variable and found that this
difference, while less impactful than other modelling
decisions, can substantially change model results
(Table 10). Models A and B for tetracycline resistance
are specified identically except DOF is categorical in

Fig. 1. Adjusted prevalence of resistance in non-type-specific Escherichia coli isolates for six antimicrobial drugs (AMDs)
(adjusted for days-on-feed at sample collection, as well as pen size and feedlot). Clustering of isolates within samples was
controlled for using multivariable generalized estimating equations with a Poisson distribution. * Indicates AMDs for
which there were statistically significant (P< 0·05) differences in resistance prevalence by days-on-feed (DOF).

Table 5. Total pen-level exposure to AMDs, by class

AMD class

No. (%) of pens
exposed prior to
collection of last
composite faecal
sample

Median
(interquartile range)
pen-level ADDs
upon collection of
last composite faecal
sample*

Parenteral
β-lactam

164 (60) 9 (4–17)

Parenteral
quinolone

77 (28) 6 (3–12)

Parenteral
phenicol

55 (20) 3 (3–12)

Parenteral
macrolide

141 (51) 21 (6–57)

Parenteral
sulfonamide

116 (62) 4 (3–9)

Parenteral
tetracycline

153 (56) 46 (8–418)

In-feed
tetracycline

229 (83) 1002 (615–2042)

In-feed
macrolide

96 (35) 17 (9–32)

AMD, Antimicrobial drug; ADD, animal defined daily
dose.
* Among pens receiving at least 1 ADD of AMD prior to
collection of last composite faecal sample.
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Table 6. Comparison of multivariable model results [population-averaged odds ratios (OR) and 95% confidence intervals (CI)] for the outcome of
chloramphenicol resistance

Variable

Models in which AMD exposures were treated as
continuous variables

Exposure category

Models in which AMD exposures were
treated as categorical variables

Model A* Model B* Model I Model F† Model G†

Recent‡ parenteral quinolone exposure –|| –|| –||
Unexposed Ref. Ref.
Exposed 0·16 (0·02–0·52) 0·22 (0·00–0·79)

Non-recent§ parenteral quinolone exposure –|| –|| –||
Unexposed Ref. Ref.
Exposed 2·34 (1·49–6·18) 1·97 (1·17–10·46)

Non-recent§ parenteral macrolide exposure 1·04 (1·02–1·06) 1·03 (1·01–1·06) 1·07 (1·04–1·09) –|| –||
Non-recent§ in-feed tetracycline exposure –|| –|| –||

Unexposed Ref. Ref.
Low 1·18 (0·69–2·67) 1·29 (0·53–4·87)
Medium 2·03 (1·36–9·92) 2·48 (1·04–27·3)
High 3·80 (2·71–50·51) 6·66 (2·95–366)

AMD, Antimicrobial drug; Ref., reference category.
* OR and 95% CI represent the change in odds of resistance for a median increase in animal defined daily dose for the pertinent exposure.
†OR and 95% CI have been converted from a subject-specific to a population-averaged estimate.
‡Recent exposures are those that occurred 46 days prior to sample collection.
§ Non-recent exposures are those than occurred 57 days prior to sample collection.
|| Variable was not significant in the final multivariable model, and therefore results are not shown.
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Table 7. Comparison of multivariable model results [population-averaged odds ratios (OR) and 95% confidence intervals (CI)] for the outcome of
streptomycin resistance

Variable

Models in which AMD exposures were treated as
continuous variables

Exposure category

Models in which AMD exposures were treated as
categorical variables

Model B* Model D* Model I*† Model E Model F† Model G†

Recent‡ in-feed tetracycline exposure 1·04 (1·02–1·07) 1·03 (1·02–1·07) 1·05 (1·00–1·09) –|| –|| –||
Non-recent§ in-feed tetracycline exposure –|| –|| –|| –|| –||

Unexposed Ref.
Low 1·48 (1·09–2·14)
Medium 1·85 (1·20–3·12)
High 2·46 (1·26–5·45)

Non-recent§ in-feed macrolide exposure –|| –|| –||
Unexposed Ref. Ref. Ref.
Low 1·55 (0·88–2·72) 1·59 (0·99–2·71) 1·47 (0·80–2·87)
Medium 0·66 (0·43–1·02) 0·70 (0·43–1·07) 0·57 (0·32–0·93)
High 2·37 (1·06–5·32) 2·29 (1·12–5·27) 2·17 (0·83–6·30)

AMD, Antimicrobial drug; Ref., reference category.
* OR and 95% CI represent the change in odds of resistance for a median increase in animal defined daily dose for the pertinent exposure.
†OR and 95% CI have been converted from a subject-specific to a population-averaged estimate.
‡Recent exposures are those that occurred 46 days prior to sample collection.
§ Non-recent exposures are those than occurred 57 days prior to sample collection.
|| Predictor was not significant in the final multivariable model, and therefore results are not shown.
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model A and continuous in model B. Model A iden-
tified only one statistically significant association
between AMD exposures and resistance, while
model B identified four (Table 10).

Model comparisons

Despite large variability in models results, three
AMU-AMR relationships were detected in all models.
Recent exposures to parenteral tetracycline and sulfo-
namide were positively associated with odds of isolat-
ing NTSEC resistant to tetracycline and sulfisoxazole,
respectively (Tables 9 and 10), while recent parenteral
macrolide exposures were associated with decreased
odds of ampicillin-resistant NTSEC (Table 8).

The point estimates for odds ratios for tetracycline
resistance with respect to the median increase of recent
parenteral tetracycline exposures ranged from 1·12
to 1·19 for models in which exposures were modeled
as continuous variables, and from to 3·12 to 3·23
for models in which exposures were categorized
(Table 10). Different model types (GEE/ALR, GEE,
or GLMM) produced very similar odds ratios if the
method for quantifying AMD exposures was the
same (models A–D and J, respectively), despite the
fact that only BM test results were used in GEE mod-
els and BM and DD susceptibility test results were
used in GEE/ALR and GLMM models. Similar pat-
terns emerged from model results for the association
between recent parenteral sulfonamide exposure and
resistance to sulfisoxazole (Table 9).

Results differ somewhat for the association between
recent parenteral macrolide exposure and ampicillin
resistance (Table 8). Across all models, recent parent-
eral macrolide administration demonstrated a nega-
tive association with ampicillin resistance, with the
magnitude of this effect strongest in GEE models in
which macrolide exposures were quantified as a con-
tinuous variable (models A, B and I).

Model fit statistics were not useful in identifying an
optimal modelling strategy across all resistance out-
comes, as no single model type consistently exhibited
better goodness-of-fit (Table 11). In GEE models,
model E – in which AMD exposures were categorized –

had the lowest QIC for three of five resistances ana-
lysed, suggesting that categorization improved model
fit. However, in GLMM models, treatment of AMD
exposures as a continuous variable (i.e. model I)
resulted in the lowest AIC for three of five resistances
analysed. Interestingly, model G consistently exhibited
lower AIC than model F, suggesting that all else beingT
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Table 9. Comparison of multivariable model results [population-averaged odds ratios (OR) and 95% confidence intervals (CI)] for the outcome of
sulfisoxazole resistance

Predictor

Models in which AMD exposures were treated as continuous variables
Exposure
category

Models in which AMD exposures were treated as
categorical variables

Model A* Model B* Model C* Model D* Model I*† Model E† Model F† Model G†

Recent‡
parenteral
sulfonamide
exposures

1·45
(1·19–1·76)

1·50
(1·21–1·85)

1·38
(0·59–0·88)

1·44
(1·20–1·73)

1·52
(1·03–2·26)

3

Unexposed Ref. Ref. Ref.
Exposed 2·54 (1·53–4·20) 2·36 (1·18–4·71) 2·31 (1·0–8·3)

Recent‡
parenteral
quinolone
exposures

–|| –|| –|| –|| 1·37
(1·05–1·78)

–|| –|| –||

Non-recent§
parenteral
quinolone
exposures

0·90
(0·81–1·01)

–|| –|| –|| –|| –|| –|| –||

Recent‡ in-feed
tetracycline
exposures

–|| –|| –|| –|| –|| –|| –||
Unexposed Ref. Ref.
Low 0·61 (0·41–0·90) 0·54(0·38–0·77)
Medium 0·59 (0·37–0·94) 0·56 (0·36–0·86)
High 0·75 (0·37–1·51) 0·78 (0·40–1·51)

Recent‡ in-feed
macrolide
exposures

–|| –|| –|| –|| –|| –|| –||
Unexposed Ref.
Low 1·14 (0·61–2·13)
Medium 0·49 (0·26–0·90)
High 0·26 (0·07–0·91)

Non-recent§
in-feed
macrolide
exposures

–|| –|| –|| –|| –|| –||
Unexposed Ref. Ref.
Low 1·63 (0·79–3·37) 1·86 (0·95–3·65)

Medium 1·04 (0·58–1·87) 1·13 (0·68–1·88)
High 3·79 (1·02–14·02) 3·61 (1·32–9·83)

AMD, Antimicrobial drug; Ref., reference category.
* OR and 95% CI represent the change in odds of resistance for a median increase in animal defined daily dose for the pertinent exposure.
†OR and 95% CI have been converted from a subject-specific to a population-averaged estimate.
‡Recent exposures are those that occurred 46 days prior to sample collection.
§ Non-recent exposures are those than occurred 57 days prior to sample collection.
|| Predictor was not significant in the final multivariable model, and therefore results are not shown.
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Table 10. Comparison of multivariable model results [population-averaged odds ratios (OR) and 95% confidence intervals (CI)] for the outcome of
tetracycline resistance

Models in which AMD exposures were treated as continuous variables
Exposures
category

Models in which AMD exposures
were treated as categorical variables

Predictor Model A* Model B* Model C* Model D* Model J*† Model E† Model H†

Recent‡ parenteral
tetracycline exposures

1·14
(1·01–1·29)

1·19
(1·06–1·35)

1·12
(1·02–1·24)

1·16
(1·05–1·29)

1·14
(1·02–1·27)

Unexposed Ref. Ref.
Exposed 3·12 (1·94–5·02) 3·23 (1·99–5·25)

Non-recent§ parenteral
tetracycline exposures

–|| 1·03
(1·00–1·07)

–|| 1·03
(1·00–1·07)

1·04
(1·00–1·07)

–|| –||

Non-recent§ parenteral
sulfonamide exposures

–|| –|| –|| –|| –|| –||
Unexposed Ref.
Exposed 1·53 (1·12–2·12)

Non-recent§ parenteral
quinolone exposures

–|| 0·86
(0·75–0·99)

0·87
(0·76–1·00)

0·85
(0·74–0·98)

0·83
(0·71–0·97)

–|| –||

Recent‡ parenteral
phenicol exposures

–|| –|| 2·99
(1·34–6·65)

3·55
(1·50–8·38)

–|| –||

Unexposed Ref.
Exposed 2·78 (1·20–6·41)

Non-recent§ parenteral
phenicol exposures

–|| 1·13
(1·00–1·28)

–|| –|| 1·13
(1·00–1·27)

–|| –||

Non-recent in-feed
tetracycline exposures

–|| –|| –|| –|| –|| –||
Unexposed Ref.
Low 1·85 (1·20–2·85)
Medium 1·81 (1·01–3·25)
High 1·48 (0·56–3·91)

AMD, Antimicrobial drug; Ref., reference category.
* OR and 95% CI represent the change in odds of resistance for a median increase in animal defined daily dose for the pertinent exposure.
†OR and 95% CI have been converted from a subject-specific to a population-averaged estimate.
‡Recent exposures are those that occurred 46 days prior to sample collection.
§ Non-recent exposures are those than occurred 57 days prior to sample collection.
|| Predictor was not significant in the final multivariable model, and therefore results are not shown.
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equal, sample-level clustering resulted in better model
fit than pen-level clustering. Surprisingly, models H
and J had a higher AIC than models F, G and I; the
former models specified random effects at the pen, sam-
ple and isolate levels, while the latter models specified
random effects at only one level. This finding could
stem from decreased model parsimony due to inclusion
of additional random effects, as marginal AIC statistics
do not account for random effects and therefore their
inclusion can decrease goodness-of-fit [28].

DISCUSSION

These results highlight the inherent complexity in
modelling AMU-AMR associations from real-world
data. Despite this complexity, we have uncovered sev-
eral important relationships between AMU and AMR
outcomes in faecal NTSEC. The direction and magni-
tude of these relationships remained consistent despite
changes in modelling technique, suggesting that they
are likely true drivers of NTSEC resistance in this
study population. Specifically, use of parenteral tetra-
cyclines and sulfonamides increased the odds of reco-
vering NTSEC resistant to tetracyclines and
sulfisoxazoles, respectively, while use of parenteral
macrolides decreased the odds of recovering ampicil-
lin-resistant NTSEC. Importantly, these three rela-
tionships apply only to AMD given within 1 week
prior to sample collection, suggesting that shifts in
the most predominant resistance phenotypes are
short-lived (i.e. reverts back to less resistant popula-
tions), or that other changes to the microbiota even-
tually ‘crowd out’ these resistant populations. In
addition, the shortest withdrawal times for injectable

tetracyclines, sulfonamides and macrolides are cur-
rently 18, 5 and 18 days, respectively. In addition,
most AMDs are given early in the feeding period.
Given these factors and the short-lived relationship
observed in this study between exposures to these
AMDs and AMR, it is questionable whether or not
such use plays a significant role in dissemination of
resistance through the food chain.

The three associations described above are consis-
tent and easily interpretable; the rest of our results,
however, highlight the crucial role that modelling
decisions play in model results, the most obvious
example being quantification of AMD exposures. In
some instances, categorization of exposures produced
models with wholly different subsets of significant pre-
dictors when compared to models in which exposures
were not categorized. Given the highly skewed distri-
bution of AMD exposures across pens, we believe
that categorization is the more legitimate method for
modelling AMU data. We attempted to evaluate line-
arity both by adding the quadratic term for AMD
exposures and by modelling AMD exposures as quin-
tiles and graphing resulting parameter estimates
against the logit of the outcome. Unfortunately,
these models either would not converge or lacked of
a positive definite Hessian matrix, and therefore we
were unable to formally evaluate linearity. Ideally,
goodness-of-fit statistics would provide generalizable
guidelines for model selection. However, our results
show that the ‘best fit’ model depends greatly on the
resistance outcome being modeled (Table 11).

The issue of quantification applied to confounders
as well as variables of primary interest. Our analysis
accounted for DOF as a known confounder of the

Table 11. Comparison of final multivariable model goodness-of-fit statistics

Model
Goodness-of-fit
statistic

Modelling
technique Tetracycline Streptomycin Sulfisoxazole Ampicillin Chloramphenicol

A QIC GEE 3323 –* 2960 1318 1217
B QIC GEE 3334 2951 2975 1313 1221
C QIC GEE/ALR 4794 4261 4214 –* –*
D QIC GEE/ALR 4781 –* 4215 –* –*
E QIC GEE 3298 2941 2970 1329 1203
F AIC GLMM –* 2889 2896 1277 1118
G AIC GLMM –* 2840 2801 1227 1055
H AIC GLMM 4145 –* –* –* –*
I AIC GLMM –* 2846 2798 1222 1054
J AIC GLMM 4160 –* –* –* –*

QIC, Quasi-Akaike’s Information Criterion; AIC Akaike’s Information Criterion.
* Final multivariable model results not available due to lack of model convergence.
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AMU-AMR relationship [4]. The question is how to
best account for DOF, i.e. as a categorical or contin-
uous variable, and does this make a difference? Our
results uncovered instances in which even this see-
mingly minor decision produced differential model
results with respect to the set of significant predictors
in the final model (Table 10, models A and B).

Clustering of subjects and samples occurs frequently
in agriculture production settings [29] and modelers can
choose from several techniques to account for this.
Ideally, these techniques would result in similar model
results; however, we have shown this is not always the
case. GLMM may produce a final model with a wholly
different subset of significant predictors than GEE, as
seen in the final model results for tetracycline resistance
in which AMDs were categorized (Table 10). While this
is not surprising, it is an important finding given that
model selection is often based on necessity rather than
choice, for instance when data are sparse and mixed
models do not converge. Furthermore, choice of model-
ling technique can be based on subjective criteria such
as researcher preference.

The role of timing of AMD exposures in driving or
mitigating resistance is made clear in these results, and
in some cases, there is a strong dichotomy in this
regard. Recent parenteral quinolone exposures
decrease the odds of recovering chloramphenicol-
resistant NTSEC, while non-recent parenteral quino-
lone exposures strongly increase these odds
(Table 6). Multiple factors could be driving this
finding, including co-selection of resistance genes on
plasmids. The interlinked nature of AMR outcomes
has been previously observed [30], and future analyses
may wish to account for this with multivariate model-
ling approaches. Alternatively, this finding could be
explained by microbial population dynamics in
which the short-term alteration of the microbiome
caused by exposure to quinolone creates a long-term
niche for chloramphenicol-resistant NTSEC bacterial
subpopulations, perhaps due to the presence of unre-
lated traits. Other studies have found similar interac-
tions between timing of antimicrobial exposure and
development of resistance [31], and together these
results highlight the importance of accounting for tim-
ing in models of AMU/AMR. We divided AMD
exposures at 7 days relative to sampling; however,
other schemes may be just as legitimate and should
be based on treatment protocols employed in the
study and/or target population.

The veterinary community has long recognized the
difficulties of researching AMU/AMR in production

settings. The analysis presented here is founded on a
unique database in which many of these difficulties
were overcome, including linkage of pen-level AMD
exposures with susceptibility test results from pooled
faecal samples. The pooling of faeces from the pen
floor may have introduced sampling bias, particularly
for AMDs used in low frequency, when faeces from
exposed individuals were less likely to be randomly
included in the 25 individual faecal samples that
were pooled. However, the enrolment of 300 pens
and the collection of multiple pooled samples per
pen mitigated this potential bias, as well as provided
sufficient power to uncover associations that may
have remained hidden in smaller studies. In addition,
the longitudinal sampling design allowed exploration
of resistance changes over time. Despite these
advancements, the complex nature of AMU and
AMR renders interpretation of results challenging.

The findings presented here add another layer of
complexity by demonstrating that modelling decisions
greatly impact model results, especially with respect to
the set of significant predictors in the final model.
Which results are we to believe? For example, some
AMU-AMR associations were seen across all model
types, while others were present in <25% of models
assessed. Does this mean that the latter associations
have less real-world applicability? Hill’s criteria of
causation state that consistency of results across differ-
ent studies, times, circumstances and populations
strengthens the evidence for a causal relationship
[32], suggesting that those AMU-AMR associations
identified in all models are likely causally linked. In
addition, Hill’s criterion of plausibility is readily
apparent in the associations between sulfonamide
exposures and sulfisoxazole resistance and tetracycline
use and tetracycline resistance, lending more weight to
the causal nature of these relationships. The negative
association between macrolide use and ampicillin
resistance is less directly understood, and further
research is needed to understand microbiome-wide
population genetic dynamics that may be influencing
this relationship.

Importantly, however, most model results were not
consistent, and the question then becomes how to
determine which inconsistently identified AMU-
AMR associations to consider valid. From a technical
perspective, the most valid model is that which most
appropriately handles the data structure and provides
best data fit. However, there is often a gap between
theory and application, and choice of modelling tech-
nique is not always dictated solely by mathematical
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appropriateness. Often, factors such as study design,
the ability of the model to converge given sparse
data, the need for a population-averaged estimate,
and even researcher preference will weigh heavily in
the decision [33]. Therefore, while perhaps unsurpris-
ing, the finding that modelling technique can substan-
tially change the set of significant predictors in the
final model is disconcerting, particularly when the
results have potential ramifications for public health
and policy decisions, such as the case with AMU
and AMR in livestock production. It is therefore our
opinion that stakeholders in the AMU-AMR debate
deserve to see results of all legitimate models, and
that decisions about which model results to act on
should be based on a careful assessment of the relative
risk, the consistency and the plausibility of each
AMU-AMR relationship being analysed.
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