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1. Introduction

In 1942, Burgers [1] observed that in cylindrical polar coordinates, the steady
Navier-Stokes equation governing viscous incompressible fluid motion can be
reduced to a set of ordinary differential equations if the velocity components
v,, vy and v, are assumed to have a special form. Specifically, if we write

1) o= =T ag = Loty 0= 207(0)

where x = r? and the prime denotes differentiation with respect to x, the equations
governing fand g are

(2) 2vxg"”" +fg' =0

(3) 2vxf””+(4v+f)f”,—ftf” —_ 0

Here, the parameter v is the kinematic viscosity, and is positive. The solution
Burgers considered is

f=A4Ax, A>0

g= B(l _e—Ax/Zv)

which describes a type of vortex motion. The radial velocity v, = — A4r does not
change sign, and the vortex is usually referred to as one-celled. In 1962, Donaldson
and Sullivan [2] considered the numerical solution of equations (2) and (3) with
boundary conditions at r = 0 and r = R, in an attempt to understand the flow
pattern in a vortex tube. In general, oscillatory solution corresponding to multi-
celled vortices were obtained.

Now the special form assumed for the velocity components places severe
restrictions on the functional form of the pressure. It is easily verified from the
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Navier-Stokes equation that d?p/ordz = 0. For this reason, solutions of equations
(2) and (3), satisfying two point boundary conditions, may not necessarily de-
scribed any real fluid flow. However, no approximation has been made in the
derivation of (2) and (3), so that their solutions are exact solutions of the Navier-
Stokes equations. As such they are of some intrinsic interest. In this note, we prove
that the system consisting of equations (2) and (3), together with suitable boundary
conditions at r = 1 and r = oo, admits a solution with two-celled structure, that
is, the function f(x) changes sign.

2. The boundary value problem

Writing 2vf = f, we can scale out the parameter v in equations (2) and (3).
If we then omit the tilde in f, we have

2) xg"+fg' =0

3" X+ QNS =" = 0.
Equation (3’) can be integrated once to give

“) (L) = [ -a

where a? is the integration constant, assumed positive. We impose the following
boundary conditions:

f)=>b<0; f/(1)=0 g(l)=c

(5) :
f(0)y=a>0; g(o)=k

We shall prove that there exists at least one solution to the system (2'), (4),
(5) by a shooting method. This method of proving existence consists of seeking
appropriate initial conditions for f*’(1) and g’(1) so that the solution of the
resulting initial value problem has the correct limiting behaviour as x tends to
infinity. The method has been used by Ho and Wilson [3] and McLeod and
Serrin [4].

Since equation (4) is independent of g, we shall first prove that (4) admits
a solution satisfying the boundary conditions. A solution to (2') will be established
separately.

3. The sets St and S—
We consider equation (4) with the initial values
S =b; f/A)y=0; f’1)=24
where — o0 < f < 0. The solution of this initial value problem will be simply

referred to as f. It is evident that the solution can be continued for all x > 1 as
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long as /' remains uniformly bounded. We define two sets S* and S~ of values of
B as follows:

S*: Be S* if there exists a value x* > 1 such that f'(x*)>a and f' > 0
forl < x < x*.

S7: Be S if there exists a value x~ > 1 such that f'(x") <O and f' < a
forl < x<x".

LeEMMA 1. The sets S* and S~ are disjoint and open.

Proor. That S* and S~ are disjoint follows from their definition. Since
solutions of (4) depend continuously on their initial values, it is clear that S*
and S~ are open sets.

LeMMA 2. Bisin S* if
(6) Bz e’[2a+a?]
andfisinS” if f = 0.

ProoF. Clearly f < Oisin S™. Since

f"(1) = —a*~(1+b)B,
it is clear that
f7"(1) = —a* if =0

so that /' < 0 for some x > 1. Hence f = 0 is also in S™.
Let J = (1, x*), where (x*—1) < 1, be the maximal open interval in which
0 < f' < a. Clearly, for x € J, we have

7 blogx <fx§ dt < a(x—1)—(a—b)log x.
1

Let E(x) = f" exp [T flt dt], and F = " E(x). Equation (4) can be written as
(®) (xF) = (f*—a*)E(x).
Using (7), and that a—b > 0, by assumption, we have

(xF) > —a’e”

and
xF > p—a’e"(x—1) > f—a’e"

from which we obtain after some simplication

f'>axel
and hence

[ > a(x—1).
From the definition of J, it is clear that there exists an x* > x* at which
Sf'(x*) > a. Hence Be S*.
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4. The complement of ST and S

Since S* and S~ are disjoint non-empty open sets, their complement is also
non-empty. Clearly the complement is the union of three sets 4, B and C defined
as follows:

A: Be A if there exists x o such that f'(x,) =aand 0 < f’ for 1 < x < x.
B: B € B if there exists xp such that f'(xg) = 0O and f’ < afor1 < x < xp.

C: B € C if the solution of the initial value problem can be continued for all
x> 1withd <f' <a.

We want to show that B = S~ and 4 = S* n D where D is defined as
D: feDiffedandf"(x,) = 0.

It is clear that B = S~. Conversely, suppose fe B. If f"'(xp) < 0, then
BeS™. If f"(xp) > 0, again e S~ for we must have x~ < xp. If f""(x5) = 0,
then it follows from (4) that f'"'(x5) = —a?*/xp and so f € S~. Hence we have
B = S as claimed.

In a similar manner, we note that if /''(x,) 2 0, then e S*. If however
f""(x,) =0, that is, f € D, then it follows from (3) and (4) that f®(x,) = O for
n = 2, so that if D is non-empty, a solution of the boundary value problem is
obtained. If D is empty, then clearly C is non-empty. We proceed as follows:

LemMA 3. If Be C, then lim f’ = a.
PRrOOF. Let G = xf"'E, then equation (3’) can be written as
xG"—fG'=2f'G = 0.

Since f* > 0 if B e C, it is evident that G cannot have a positive maximum. Hence
G is ultimately zero or of one sign, and so f’ is ultimately zero or of one sign.
That /' is bounded implies that lim /'’ = Q and lim f’ exists.

Suppose lim /' = 0, then since § > 0, f’ must have a local maximum at which
f""" < 0. Since ' cannot have a local minimum for 0 < f’ < a, f*"’ must change
from negative to positive through a zero at which /" < 0. This is however im-
possible since it follows from (3') that at the zero of /'’

xf =f'f"<0.
Hence, lim /" # 0.
From the above, we readily establish lim f/x = f’(c0), and that lim (/' —a?)
exists. Suppose lim " # a, then from (8), we have

% f T (f2—a?)E(t)dt

limff"" = lim 20
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Using L’Hopital’s rule, we readily obtain
limff” = lim (f'*—a®).

If lim (f"2—a®) # 0, then since |f| < const. x, we have |f”’| = const./x for all
sufficiently large x. Thus /"’ is not integrable, contradicting the boundedness of
f’. Hence, we must have lim ' = a.

Since we have already shown that C is non-empty, it follows that equation
(4) with the prescribed boundary conditions has at least one solution.

5. The g equation

Equation (2) can be integrated to give

9 g =c+ f
©) g'(1) 20"
Clearly, with the solution for f just determined, the integral in (9) converges for
x tending to infinity. Writing 7 = lim j’l‘ dt/E(t), we have

k =c+g (1)L

Hence if we choose g'(1) = k—c/I, equation (3) with the prescribed boundary
condition will have a solution.
We have proved:

THEOREM. The boundary value problem (2'), (4) and (5) has a solution.

REMARK. We have obtained a bound for f"’(1),0 < f”(1) < e*(2a+a?)
in the course of the proof.
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