SOME CYCLIC INEQUALITIES

by V. J. BASTON (Received 25th January 1973)

In this note we prove some cyclic inequalities which are generalisations of known results. We shall assume throughout that $a_{i+n} = a_i \ge 0$ for all *i*, that no denominator in the statement of a result vanishes and finally that *p*, *m* and *q* are positive integers. We shall also use A(i, m) to denote $\sum_{j=1}^{m} a_{i+j}$ with the convention that A(i, 0) = 0. The most interesting of our results is probably Theorem 2 since, in the special case p = 1, m = 2, r = 0, it gives a lower bound of $\frac{1}{3}n$ for the Shapiro sum $\sum_{i=1}^{n} \frac{a_i}{A(i,2)}$. Although it is by no means best possible, see (2), our method implicitly gives a really simple way of obtaining this lower bound which, incidentally, is an improvement on Rankin's

original result (5).

In (1) Boarder and Daykin established the following results:

$$\inf_{n} \inf_{n} \frac{1}{n} \sum_{i=1}^{n} \frac{a_{i+1} + a_{i+4}}{A(i, 4)} \leq \frac{1}{3}, \tag{1}$$

$$\inf_{n} \inf_{n} \frac{1}{n} \sum_{i=1}^{n} \frac{a_{i+1} + a_{i+2} + a_{i+4}}{A(i, 4)} \leq \frac{1}{2}, \tag{2}$$

$$\inf_{n} \inf_{n} \frac{1}{n} \sum_{i=1}^{n} \frac{a_{i+1} + a_{i+2} + a_{i+4}}{a_{i+1} + a_{i+3} + a_{i+4}} \leq \frac{1}{2}, \tag{3}$$

where the second infs are evaluated over all choices of $a_1, ..., a_n$. It follows from Theorem 1 below that equality holds in all three cases; in the inequality for the upper bound, take p = q = 1, m = 2 for (1) and p = 2, m = 1 = q for (2) and (3).

Theorem 1.

$$\frac{m}{\left[\frac{p+q+m-1}{n}\right]+1} \leq \sum_{i=1}^{n} \frac{A(i+p, m)}{A(i, p+m+q)} \leq \frac{m}{m+\min(p, q)} n$$
where $\left[\frac{p+q+m-1}{n}\right]$ denotes the integral part of $\frac{p+q+m-1}{n}$.
Proof. For the lower bound let $w = \left[\frac{p+q+m-1}{n}\right]$ and $s = \sum_{i=1}^{n} a_i$ then

 $A(i, p+m+q) \leq (w+1)s$ and we have

ł

$$\sum_{i=1}^{n} \frac{A(i+p, m)}{A(i, p+m+q)} \ge \frac{1}{(w+1)s} \sum_{i=1}^{n} A(i+p, m) = \frac{m}{w+1}.$$

Equality clearly holds when p+m+q is a multiple of *n*. By considering, for large x, $a_i = x^i$ when $1 \le i \le n$ the lower bound is also seen to be best possible when p+m+q < n.

We now prove the upper bound result. Let $k = \min(p, q)$. If for $a_1, ..., a_n$ there is an *i* such that A(i, m+k) = 0 then, by omitting an appropriate number of zeros, we can obtain a subsequence $b_1, ..., b_r$ such that

$$\sum_{i=1}^{n} \frac{A(i+p,m)}{A(i,p+m+q)} \leq \sum_{i=1}^{r} \frac{b_{i+p+1}+\ldots+b_{i+p+m}}{b_{i+p-k+1}+\ldots+b_{i+p+m+k}}$$

where $b_{i+r} = b_i$ and $b_{i+1} + ... + b_{i+m+k} > 0$ for all *i*. Hence we need only consider those $a_1, ..., a_n$ for which A(i, m+k) > 0 for all *i*. Furthermore, since

$$\sum_{i=1}^{n} \frac{A(i+p, m)}{A(i, p+m+q)} \leq \sum_{i=1}^{n} \frac{A(i+k, m)}{A(i, m+2k)}$$

it is now sufficient to prove the result for the case when p = q.

Let
$$p+m = em + f$$
 where $0 \le f < m$,
 f_r be the integral part of $\frac{rf}{m}$,
 $u_0 = 1$ and $u_r = \frac{rf}{m} - f_r$ for $r \ge 1$,
 $e_0 = 0$ and $e_r = e - 1 + u_1 - u_r + u_{r-1}$ for $r \ge 1$,
 $v_r = \sum_{s=0}^r e_s$.

We then have $1-u_{r-1}+e_r+u_r = \frac{p+m}{m}$ for $r \ge 1$, e_r is a non-negative integer for $r \ge 0$,

$$1 \leq v_r \leq p$$
 for $1 \leq r < m$ and $v_m = p+1$.

Thus

$$\frac{A(i+p,m)}{A(i,m+2p)} = \frac{m}{p+m} \sum_{r=1}^{m} a_{i+p+r} \frac{1-u_{r-1}+e_r+u_r}{A(i,2p+m)}$$

$$\leq \frac{m}{+m} \sum_{r=1}^{m} \left\{ \frac{(1-u_{r-1})a_{i+p+r}}{A(i+p+1-v_{r-1},p+m)} + \frac{u_ra_{i+p+r}}{A(i+p-v_r,p+m)} \right\}$$

116

Using

$$\sum_{i=1}^{n} \frac{a_{i+t}}{A(i-j, p+m)} = \sum_{i=1}^{n} \frac{a_{i+j+t}}{A(i, p+m)}$$

we have

$$\sum_{i=1}^{n} \frac{A(i+p,m)}{A(i,2p+m)} \leq \frac{m}{p+m} \sum_{r=1}^{m} \sum_{i=1}^{n} \frac{1}{A(i,p+m)} \left\{ (1-u_{r-1})a_{i+r+v_{r-1}-1} + \sum_{j=0}^{e_{r-1}} a_{i+r+j+v_{r-1}} + u_{r}a_{i+r+v_{r}} \right\} = \frac{m}{p+m} \sum_{i=1}^{n} \frac{A(i,p+m)}{A(i,p+m)} = \frac{m}{p+m} n.$$

For the case p = q we can see that the bound is attained when n = r(p+m) by considering $a_{1+j(p+m)} = 1$ for j = 0, 1, ..., r-1 and $a_i = 0$ otherwise.

The next theorem is both a generalisation and a sharpening of an inequality of Diananda (3, Theorem 1).

Theorem 2.

$$\frac{2m}{2m-p-r} n \leq \sum_{i=1}^{n} \frac{A(i, p+m+r)}{A(i+p, m)} \text{ if } p+r \leq m.$$

Proof. By repeated use of the arithmetic-geometric mean inequality we have, for $p+r \leq m$,

$$\sum_{i=1}^{n} \frac{A(i, p+m+r)}{A(i+p, m)} \ge \sum_{i=1}^{n} \frac{A(i, p+m+r)}{A(i+p, m)} \frac{2\{A(i, m), A(i+p+r, m)\}^{\frac{1}{2}}}{A(i, m)+A(i+p+r, m)}$$
$$\ge 2n \left\{ \prod_{i=1}^{n} \frac{A(i, p+m+r)}{A(i, m)+A(i+p+r, m)} \right\}^{1/n}$$
$$= 2n \left\{ \prod_{i=1}^{n} \left(1 + \frac{A(i+p+r, m-p-r)}{A(i, p+m+r)} \right) \right\}^{-1/n}$$
$$\ge 2n^{2} \left\{ n + \sum_{i=1}^{n} \frac{A(i+p+r, m-p-r)}{A(i, p+m+r)} \right\}^{-1}$$
$$\ge \frac{2n^{2}}{n + \frac{m-p-r}{m}} = \frac{2m}{2m-p-r} n \text{ (by Theorem 1).}$$

In generalising an inequality of Zulauf (6), Daykin (4) proved the following theorem for the special cases m = 1 and q = 1.

Theorem 3.

$$m \leq \sum_{i=1}^{n} \frac{A(i, m)}{A(i, m+q)} \leq n-q \quad \text{if } m+q \leq n.$$

Proof.

$$\sum_{i=1}^{n} \frac{A(i, m)}{A(i, m+q)} \ge \sum_{i=1}^{n} \frac{A(i, m)}{A(i, n)} = m \frac{A(i, n)}{A(i, n)} = m.$$

$$\sum_{i=1}^{n} \frac{A(i, m)}{A(i, m+q)} = \sum_{i=1}^{n} \left(1 - \frac{A(i+m, q)}{A(i, m+q)}\right) \le n-q.$$

V. J. BASTON

For the upper bound consider, for large $x, a_i = 0$ when $1 \le i \le m-1$ and $a_i = x^{n-i}$ when $m \le i \le n$. For the lower bound consider, for large $x, a_i = x^i$ when $1 \le i \le n$.

I am indebted to the referee for his comments which have been most helpful.

REFERENCES

(1) J. C. BOARDER and D. E. DAYKIN, Inequalities for certain cyclic sums II, Proc. Edinburgh Math. Soc. 18 (1973), 209-218.

(2) P. H. DIANANDA, A cyclic inequality and an extension of it II, *Proc. Edinburgh Math. Soc.* 13 (1962), 143-152.

(3) P. H. DIANANDA, Some cyclic and other inequalities, Proc. Cambridge Philos. Soc. 58 (1962), 425-427.

(4) D. E. DAYKIN, Inequalities for functions of a cyclic nature, J. London Math. Soc. 3 (1971), 453-462.

(5) R. A. RANKIN, A cyclic inequality, Proc. Edinburgh Math. Soc. 12 (1961), 139-147.

(6) A. ZULAUF, Note on some inequalities, Math. Gaz. 43 (1959), 42-44.

THE UNIVERSITY SOUTHAMPTON SO9 5NH