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In this note we prove some cyclic inequalities which are generalisations of
known results. We shall assume throughout that ai+a = a, ^ 0 for all i,
that no denominator in the statement of a result vanishes and finally that

m

p, m and q are positive integers. We shall also use A(i, m) to denote £ ai+J-
j= i

with the convention that A{i, 0) = 0. The most interesting of our results is
probably Theorem 2 since, in the special case p = 1, m = 2, r = 0, it gives

" a-a lower bound of %n for the Shapiro sum £ '—. Although it is by no
;=i ,4(i,2)

means best possible, see (2), our method implicitly gives a really simple way of
obtaining this lower bound which, incidentally, is an improvement on Rankin's
original result (5).

In (1) Boarder and Daykin established the following results:

h (1)infinf £ !,
n n i = i A(i, 4)

infinf- t fl'+1 + a i + 2 + fli+4^i, (2)
n n i = i A(i, 4)

infinf- t fli+1+ai+2 + a ' + 4 ^ j , (3)

where the second infs are evaluated over all choices of au ..., an. It follows
from Theorem 1 below that equality holds in all three cases; in the inequality
for the upper bound, take p = q = 1, m = 2 for (1) and p = 2, m = \ = q
for (2) and (3).

Theorem 1.
m < V 4̂(' + P, m) < m

p + q + m — 1 . • = I A(i, p + tn + q) m + min(p, q)

L n J
.p + q + m — 1

where -— denotes the integral part of-

L « J
Proof. For the lower bound let w = P + 9 + m-U a n d y t h e n

L n J tti
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A(i, p+m + q) ^ (w+ l)s and we have

V Mi + P, m) . 1 A ... , „ . _ m
(w+l)s , ^ i v " ' w + 1

Equality'clearly holds when p + m+q is a multiple of n. By considering, for
large x, a.t = x1 when 1 g 1 ^ B the lower bound is also seen to be best possible
when p + m+q<n.

We now prove the upper bound result. Let k = min {p, q). If for au ..., an

there is an i such that A{i, m+k) = 0 then, by omitting an appropriate number
of zeros, we can obtain a subsequence bl, ..., br such that

, m) < j ,
1=1 bi+p-k+l + ... +

where bi+r = 6f and bi+l + ... + bi+m+k>0 for all /. Hence we need only
consider those au ..., an for which A(i, m+k)>0 for all j . Furthermore, since

, m) < y A(i + k, m)
y < y

i = 1 A{i, p + m + q) = ; = 1 A(i, m + 2k)
it is now sufficient to prove the result for the case when p = q.

Let p + m = em+f where 0 g /<m,
r/"

/ r be the integral part of —,
m

M0 = 1 and ur = — —/r for r k 1,
m

e0 = 0 and er = e—l + ui — ur + ur_l for r ^ 1,

s = 0

We then have l - M ^ i + e ^ u , = ^ ± ^ for r ^ 1,
m

er is a non-negative integer for r ^ 0,

1 ^ cr ^ p for 1 ̂  r<m and vm = p+l.
Thus

/l(j + p, m)
.4(1, m + 2p)

m

+ m

m

f I (
rh\A(H

er - 1

V

l_ M r _ 1 + e r + M r

-p + l - ^ . i . p + m )

y 1
= 0 A(i + p-j-vr-lt p + m) A{i + p-vr, p + m)
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Using
" n " n

y "i + t _ yi "i + j + t
i = i A(i —j, p + m) i = 1 A(i, p + m)

we have

A A(i + p, m) m A A 1 j n ,
t=iA(i,2p + m) p + m r= i t= i A{i, p + m) I

m A A(i, p + m) m

; = o J p + m i = I A(i, p + m) p + m

For the case p = q we can see that the bound is attained when n = r(p+m)
by considering a1+J(p+m) = 1 fory' = 0, 1, ..., /•—1 and a, = 0 otherwise.

The next theorem is both a generalisation and a sharpening of an inequality
of Diananda (3, Theorem 1).

Theorem 2.
2m . A A(i, p + m + r)

2m — p—r i = i y4(( + p , m)

Proof. By repeated use of the arithmetic-geometric mean inequality we
have, for p + r ^ m,

A y4(i, p + m + r) > ^ ^(i, p + m + r) 2{X(i, m).A(i + p + r,

; i m) i = i A(i + p, m) A(i, m) + A(i + p + r, m)

fft A(i, p + m + r) y
(; = I A{i, m) + A(i + p + r, m)\

r, m-p-r)^-1"1

= 2n\f\
0 = i

1 +
A(i, p + m + r)

i - i

i = i ^4(i, p + m + r)

2n2 2m
m—p—r 2m—p—r

— n

« (by Theorem 1).

m
In generalising an inequality of Zulauf (6), Daykin (4) proved the following

theorem for the special cases m = 1 and q = \.
Theorem 3.

. •A A(i, m)
m ^ 2

i = i A{i, m + q)
Proof.

= n~Q lf

A X(i, m) i A(i, m) _ _ A(i, n) _
i = i A{i, m + q) i = I A(i, n) A(i, ri)

(i, m) ^ A A i4(i + w i , g ) \ ^ n

i I \ ^(j, m + q)) ~
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For the upper bound consider, for large x, at = 0 when 1 g i ^ m — 1 and
a( = xn~i when m ^ i :g n. For the lower bound consider, for large x, at = A:'
when 1 ^ / g «.

I am indebted to the referee for his comments which have been most helpful.
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