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Abstract

It is determined when there exists a minimal essential ideal, or minimal essential left ideal, in the incidence
algebra of a locally finite partially ordered set defined over a commutative ring. When such an ideal
exists, it is described.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 16D15, 16D25.

In [2], Green and Van Wyk consider the existence of a minimal essential ideal of
a structural matrix ring, and question when this ideal is the same as the Brown-
McCoy radical of the ring. A structural matrix ring is the incidence algebra of a
finite preordered set. In this note we describe the minimal essential ideal and minimal
essential left ideal of the incidence algebra, I (X, R), when X is a locally finite partially
ordered set and R a commutative ring with identity. Recall that I (X, R) is the set
of all functions f : X x X — R with f (x,y) = O unless x < y, together with the

operations
f +8x y)=Ffxy) +8k,y),
fele,y)= ) f(x. 8@,
(rf)(x,y) = r}z(_;, y)
for

f.g€elI(X,R), reR, x,yeX.
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Ifx,y € X, withx <y, let ¢,, denote the element of I (X, Y) given by

{l ifx=wandy = v;
exy(u,v) = .
0 otherwise.

Anideal, A, of aring T, is called essential, or large, if A N B # {0} for any ideal
B # {0}. Similarly, the left ideal A is an essential left ideal if A N B # {0} for any
non-zero left ideal B. Of course, T is essential in 7, the intersection of two essential
ideals is essential, and any ideal containing an essential ideal is essential. Similar
statements hold for essential left ideals.

Suppose, now, that X is a locally finite partially ordered set and R a commutative
ring with identity. Associate to X the partially ordered set, I (X), ordered by inclusion,
of all non-empty intervals, [x, y], with x, y € X. Further, let Ess(R) be the partially
ordered set, ordered by inclusion, of all essential ideals of R. If Max(I (X)) is the
collection of all maximal elements of I (X), call a function ¢ : Max(7 (X)) — Ess(R),
an essential function. Suppose ¢ is an essential function and let

Ay ={f e I(X,R) | f(x,y) € ¢(x,y]D
if [x, y] € Max(I (X)), f (x, y) = O otherwise}.

Itis straightforward to verify that A, is anideal. Notice that when [x, y] € Max(I (X)),
and K is an ideal of 1 (X, R), then e,, K e,, is an ideal of I (X, R), namely,

exKe,, ={f(x,y)ey | f € K).

This follows by the maximality of [x, y]. Indeed, ge,, = g(x,x)e,, and e,,g =
8(y, y)e., forany g € I(X, R).
We now note some additional ideals of I (X, R). Let n be a positive integer and

Z,X,R)y={f e I(X,R) | f (x,y) =0if [[x, y]| <n}.

Again it is easy to verify that Z,(X, R) is an ideal of I (X, R). The following lemma
shows that the ideals that we have defined give rise to essential ideals.

LEMMA 1. Suppose X is a locally finite partially ordered set and R a commutative
ring with identity. Let n be a positive integer and ¢ an essential function. Then
A, + Z,(X, R) is an essential ideal of I (X, R).

PROOE. Let J = A, + Z,(X, R). Certainly J is an ideal. We check that it is
essential. Let K be a non-zero ideal of (X, R). Suppose that 0 # f € K and
f(x,y) #0. If [x, y] is contained in a maximal interval [u, v],thenu < x <y <wv
and w = e, f ey, = f (x, y)e,, € K. In particular, e,,Ke,, = {g(u, v)e,, | g € K},

https://doi.org/10.1017/51446788700001981 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700001981

254 Eugene Spiegel {31

which is contained in K, is a non-zero ideal of I (X, R). Let C = {g(u,v) | g € K}
and D = {h(u,v) | h € Ay}. As Cis a non-zero ideal of R, and D = ¢(fu, v]) is an
essential ideal of R, we have C N D is a non-zero ideal of R. Then thereisa g € K,
and an h € Ay, with g(u, v) = h(u, v) # 0. Hence e, ge,, = e, he,, € KN J. We
have thus shown that J N K # {0} when [x, y] is contained in a maximal interval.
Suppose, now, that [x, y] is not contained in a maximal interval. Then there is a
sequence of intervals

[x, y] = [x0, yol C [xi, ] Clxz, y21 C -+,

with [x;, y;] a proper subset of [x;1, yi+1), fori = 1,2, .. .. Further,

|[xn+1a yn+l]l >n+1

and f (x, y)ex, . y... € Zo(X, R) € J. But f(x,y)er,, y..i = xS €yy,., € K, 50
that, in this case too, J N K is non-zero. The lemma now follows. O

If there is a minimal essential ideal of 7 (X, R), then the intersection of a collection
of essential ideals is still essential. The following computes the intersection of the
ideals of the previous lemma. We will denote the minimal essential ideal of aring T,
when it exists, by E(T). Similarly, E; (T) denotes the minimal essential left ideal
of T.

LEMMA 2. Suppose X is a locally finite partially ordered set and R a commutative
ring with identity. Let ¢ be an essential function. Then

(Ao + Z(X, R)) = A,.

n=1

PROOF. Letf € (),_,(As+Z,(X, R)) and suppose f (x, y) # 0. Letm = |[x, y}I.
Since f € (A4 + Z,(X, R)),wecanfindg € A,and h € Z,(X, Ry with f =g+ h.
As h(x,y) = 0 we have that g(x, y) = f (x, y). Hence [x, y] is a maximal interval
and f (x, y) € ¢(Ix, y]). It follows that f € A,. O

The next lemma tells us when A, is essential.

LEMMA 3. Suppose X is a locally finite partially ordered set and R a commutative
ring with identity. Let ¢ be an essential function. Then A, is an essential ideal if and
only if each interval of X is contained in a maximal interval. In particular, if one A,
is essential, they all are.
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PROOF. Assume each interval of X is contained in a maximal interval. Let K be a
non-zero ideal of 1 (X, R). To show that A, is essential we check that K N A4 # {0}.
Let f be a non-zero element of K and let x,y € X be such that f(x,y) # 0.
Further, let [, v] be a maximal interval of X which contains [x, y]. Then e, f ¢,, =
f&x,y)e, € e Ke,, = {g(u,v)e,, | g € K}. Further, ¢,,Ke,, is an ideal of
I(X, R) contained in K. Let B = {g(u,v) | g € K}. Then B is a non-zero
ideal of R having a non-zero intersection with the essential ideal ¢ ([u, v]). Since
{0} # {rew | r € (¢([u, v]) N B)} C (A, N K), we have that A, is essential.

Conversely, suppose A, is essential and, looking for a contradiction, there exists
an interval, Iy = [xo, ¥ol, in X, which is not contained in a maximal interval. Let
K be the ideal of I(X, R) generated by e,,,. As A, is essential, we can find
0 # h € KN A,, and thus a maximal interval, [u, v], with A(u, v) # 0. Since K
is generated by {f e.,,,8 | f, 8 € I(X, R)}, we must have an f,, g, € I(X, R) with
(f1exy,81) (1, v) # 0. But (f1ex,,81) (1, v) = f1(u, x0)81(yo, v) and, if this is to be
non-zero, {xo, ¥o] < [u, v]. This is a contradiction as it says that [xo, y] is contained
in a maximal interval. The lemma is then established. O

We now give a criterion for an incidence algebra to have a minimal essential
ideal. For notational convenience, when f € (X, R) and A is a subset of R, write
Af ={af |a e A}.

THEOREM 1. Let X be a locally finite partially ordered set and R a commutative
ring with identity. Then I (X, R) has a minimal essential ideal, E(I(X, R)), if and
only if R has a minimal essential ideal, E(R), and each interval of X is contained in
a maximal interval. If E(I (X, R)) exists, then

E(I(X, R)) = (E(R)ey, | [u, v] a maximal interval).

PROOF. Suppose E(I(X, R)) exists. Let ¢ be an essential function for X. From
Lemma 1 and Lemma 2, A, is essential and thus, by Lemma 3, each interval of X is
contained in a maximal interval. We now check that R has a minimal essential ideal.
To do this it is sufficient to show that the intersection of any class of essential ideals
of R is again essential. Let {K; | i € I} be a class of essential ideals of R. Here
I is an index set. Further, let [u, v] be a maximal interval in X, and ¢, the essential
function given by ¢, ([u, v]) = K; and ¢;([x, y]) = R for any other maximal interval,
[x, y]of X. From Lemma 3, A, is essential in I (X, R), and since E(I (X, R)) exists,
MNic; Ag: 1s essential. But it is easy to see that

M 4s= [f € I(X, R) | f (u,v) €[ ) K; and f (x, ») =0if [x, y] not maximal}.
iel iel
Suppose B = (), Ki is not essential. Then there is a non-zero ideal, C, of R, such
that CN B = {0}. Let L = {ce,, | ¢ € C}. Then L is a non-zero ideal of I (X, R) and,
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as [);e; Ag, is essential, there is a non-zero f € (L N ([N),; Ay,)). Simultaneously we
must have f = ce,,, with c € C, and f = be,,, with b € B. This is not possible as
B N C = {0}. We conclude that B is essential, and R contains a minimal essential
ideal.

Conversely, suppose that E(R) exists and that each interval of X is contained in a
maximal interval. Let D = (E(R)e,, | [u, v] maximal). Note that D = @ E(R)e,,,
the sum ranging over all maximal intervals [u, v] in X. We first check that D is
essential. Let K be a non-zero ideal of (X, R) and f a non-zero element of K.
Let x,y € X be such that f (x,y) # 0 and [u, v] a maximal interval containing
[x, y]l. Then e, fe,, = f(x,y)e. and the non-zero ideal e,,Ke,, = {g(u, v)e., |
g € K} € K. Since E(R) is essential, E(R) N {g(u,v) | g € K} # {0}, and so
E(R)e,, Ne,Ke,, # {0}. Hence D is essential.

To complete the proof we need only check that D is the minimal essential ideal
of (X, R). Let M be an essential ideal of (X, R), C a non-zero ideal of R, and
[u, v] a maximal interval in X. Then K. = {ce,, | ¢ € C} is a non-zero ideal of
I(X,R), and so K¢ Ne, Me,, # {0}. As e,,Me,, = {m(u, v)e,, | m € M}, then
L = {m(u,v) | m € M} is an ideal of R which has a non-zero intersection with
C. Since C is an arbitrary ideal of R, L is essential. Hence E(R) € L. Therefore,
E(R)e,, CMand D C M. O

A point, x € X, is isolated if the connected component of x, in its Hasse diagram,
is {x}. The following corollary shows that E (I (X, R)) is often nilpotent.

COROLLARY 1. Let X be a locally finite partially ordered set and R a commutative
ring with identity. If E(I (X, R)) exists then

(EAX, RN’ = P (ER)) e

x isolated

In particular, if X has no isolated points, (E(I1(X, R)))* = {0}.

Green and Van Wyk [2] considered when the minimal essential ideal of a structural
matrix ring equals the maximal small ideal. The maximal small ideal is the Brown-
McCoy radical [3], which, in the incidence ring case under discussion, coincides with
the Jacobson radical [5]. If J(T) denotes the Jacobson radical of the ring T, then
JUIX,Ry={f e I(X,R)| f(x,x) € J(R)forx € X} (see [1]). As we have a
description of both E(I(X, R)) (when it exists) and J (I (X, R)), the following result
is easily verified. Recall first that a partially ordered set X is of bound #, if the longest
chain of distinct elements of X is n.

THEOREM 2. Let X be alocally finite partially ordered set and R a commutative ring
with identity. Suppose I1(X, R) has a minimal essential ideal. Then E(1(X, R)) =
J(I (X, R)) if and only if one of the following holds:
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() X is a finite antichain, and E(R) = J(R);
(i1) X has no isolated points, J(R) = {0}, E(R) = R, and X is a finite partially
ordered set of bound 2.

PROOF. Suppose E(I(X,R))=J{ (X, R)). f f € E({(X, R)), from Theorem 1
it follows that f (u, v) = O for all but a finite number of [u, v]. Thus X is a finite
partially ordered set. Assume first that J(R) # {0}. Let x € X. Then J(R)e,, C
J(I(X, R)) and so, by Theorem 1, [x, x] is 2 maximal interval and J(R) € E(R).
It then follows that E(R)e,, € E(I(X, R)) and E(R) = J(R). Assume, now, that
J(R) = {0}. Then E(R)e,, N J(I(X, R)) = {0} and thus x is not an isolated point.
If y € X issuch that x < y then e,, € J(I(X, R)) guarantees that [x, y] is a maximal
interval, and that 1 € E(R). It follows that X is of bound 2 and E(R) = R. The

converse of the theorem is straightforward. O

In the following we briefly describe when I (X, R) has a minimal essential left ideal
within the lattice of left ideals of I (X, R). The left ideal A of the ring T is an essential
left ideal if A N B # {0} for any non-zero left ideal B of T. If M is a left T-module,
then the submodule N is an essential left submodule of M if N N V # {0}, for each
non-zero submodule V of M.

As before, X denotes a locally finite partially ordered set and R a commutative ring
with identity. Let Min(X) be the collection of all minimal elements of X and Max(X)
the collection of all maximal elements of X. Of course, Min(X) and Max(X) are
antichains of X, and each interval of X is contained in a maximal interval if and only
if Min(X) and Max(X) are each maximal antichains.

letL ={f e IX,R) | f(x,y) = 0ifx & Min(X)} and Z,(X, R) the ideal
defined before Lemma 1. It is easy to check that L is a left ideal and, for n a positive
integer, that L + Z,(X, R) is again a left ideal. Suppose K is a non-zero left ideal of
I(X,R),and 0 # f € K. Further, suppose f (u, v) # 0, for some u, v € X, with u
related to an element, x € Min(X). Then 0 # e,,.f € (K N L). If no such u exists,
by an argument similar to that in Lemma 1, we obtain that f € (Z,(X, R) N K).
This shows that L + Z,(X, R) is an essential left ideal of (X, R). Further, by
an argument parallel to that in Lemma 2, we obtain that the intersection of the left
ideals L + Z,(X, R), as n ranges over the positive integers, is L. We summarize our
observations in the following lemma.

LEMMA 4. Suppose X is a locally finite partially ordered set, R a commutative ring
with identity, and n a positive integer. Then L + Z,(X, R) is an essential left ideal of
I1(X, R). Further,

(L +2z.X, R) =L.
n=1
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We now observe when L is an essential left ideal.

LEMMA 5. Suppose X is a locally finite partially ordered set and R a commutative
ring with identity. Then L is an essential left ideal of (X, R) if and only if Min(X)
is a maximal antichain.

PROOF. Assume Min(X) is a maximal antichain. By the remarks preceding
Lemma 4, if f is a non-zero element of a non-zero left ideal, K, of I(X, R) and
S (u,v) #0, then e,,f € (K N L), for any minimal element x < u of X. This shows
that L is an essential left ideal.

Conversely, suppose there exists an xo € X incompatible with all elements of
Min(X). Then it is easy to check that the left ideal generated by e,,,, does not have
any non-zero elements in common with L. a

We need some additional terminology before presenting a criterion for the existence
of a minimal essential left ideal of I(X, R). If M = zM is a left R-module, the
submodule T of M is essential if T N N # {0}, for any non-zero submodule N of M.
We say that g M has a minimal essential submodule, E; (M), if the intersection of all its
essential submodules is essential. In order that I (X, R) have a minimal essential ideal,
we observed in Theorem 1 that R must have a minimal essential ideal, E(R). This,
of course, is equivalent to saying that R, as a left R-module, has a minimal essential
submodule, and it is this latter formulation which leads to a necessary condition for
I (X, R) to have a minimal essential left ideal.

Let ¥ be a cardinal number and let [T, R denote the product of « copies of the
commutative ring R. We consider gI1, R, that is, I, R regarded as a left R-module. If
rA and z B are left R-modules then A @ B has a minimal essential submodule, if and
only if A and B each do, and E; (A @ B) = E (A) ® E,(B). In particular, if &} < i
are cardinal numbers then the existence of E,(g[l,,R) guarantees the existence of
E; (11, R). Further, it is easy to check that if E, (g1, R) exists then R has a minimal
essential ideal, E(R), and

R O« E(R) C EL(rTIcR) C I E(R).

Letx € Min(X) and let x, = |{y € X | x < y}|. We call R Min(X) essential if
E, (g1, R) exists, foreachx € X. We can now describe when I (X, R) has a minimal
essential left ideal.

THEOREM 3. Let X be a locally finite partially ordered set and R a commutative

ring with identity. Then I (X, R) has a minimal essential left ideal, E;(I(X, R)), if
and only if Min(X) is a maximal antichain and R is Min(X) essential.
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PROOF. Suppose that I (X, R) has aminimal essential leftideal E; (I (X, R)). Since
the ideal L, of Lemma 4, is the intersection of essential left ideals, it must be essential.
Lemma 5 then tells us that Min(X) is a maximal antichain. We now check that R is
Min(X) essential. Let x € Min(X), S(x) ={y € X | x < y}and x, = |S(x)|. Itis
sufficient to see that gxI1, R has a minimal essential submodule. Let J, be an index
set of cardinality «, and ¢, : J, = S(x) a bijective mapping. Call f € I(X, R) an
S(x) function if f (u, v) = O for u # x. If f is an S(x) function and g € I(X, R),
then, for y € X, gf (x,y) = g(x, x)f (x, y). It follows that the left ideal generated
by f agrees with the left R-module generated by f. Foreach j € J;,let R; = R
and T(x) = g [] jes, Ri We regard T'(x) as the collection of functions, g, from J,
to R with g(j) € R;. If f is an S(x) function, let a,(f) € T(x) be the element
defined by o, (f )(j) = f (x, ¢.(j)). It is easy to see that a, is a bijective R-module
mapping from the R-submodule of S(x) functions to T(x). Further, if a,(f) = ¢,
then the cyclic R-submodule of T(x) generated by ¢ corresponds, under o', with
the cyclic R-submodule generated by f, which, in turn, agrees with the left ideal of
I(X, R) generated by f. Let V = ¢,,E,(I(X, R)). Then V is the collection of all
S(x) functions in E, (I(X, R). Let o, (V) = {a,(f) | f € V}. A straightforward
verification shows that ¢, (V) is an R-submodule of T(x). If ¢; is a non-zero element
of T(x), then a!(¢) is an S(x) function and thus the left ideal of I(X, R) that it
generates has a non-zero intersection with E; (I (X, R). It follows that there is an
r € R with ra'(t) a non-zero element in V. Hence 0 # rt € a,(V) and o, (V) is an
essential submodule of T(x). We check that it is the minimal essential R-submodule
of T(x). Suppose U is an essential submodule of T. For y € Min(X), with y # x,
let W(y) be the collection of all S(y) functions contained in E, ({ (X, R). Further, let
K be the left ideal generated by

( U W(y)) Ue ).

yE;‘;TX)
Notice that the collection of all S(x) functions in K coincides with a; ! (U). We check
that K is an essential left ideal of I (X, R). Then it follows that E; (I (X, R) C K and
so V C a7 '(U). Hence «, (V) € U and a, (V) is the minimal essential R-submodule
of T(x).

Let f be a non-zero function of I (X, R) and f (u, v) # 0, for u, v € X. There is
ay € Min(X) with y < u. Suppose, first, that y # x. The left ideal generated by
ey.f (u, v) has a non-zero intersection with E, (I (X, R)), and so there is a non-zero
S(y) function, g, common to these two ideals. Since g € W(y), then g € K. Suppose
now that y = x. Then e,,f is a non-zero S(x) function and thus #, = o, (e,,f) is a
non-zero element of T(x). Since U is an essential module, there is an r; € R with
ria, (ex,f) a non-zero element of U. But 0 # rye,,f € o' (U) C K and, thus, in
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either case, the left ideal generated by f has a non-zero intersection with K. It follows
that K is essential and that R is Min(X) essential.

Conversely, suppose that R is Min(X) essential and that Min(X) is a maximal
antichain. Let x € Min(X). Let P, be the essential submodule of the product of «,
copies of R regarded as a left R-module. Then a'(P,) is a left ideal of (X, R)
consisting of S(x) functions. Let

ELIX,R)= P o' (P
xeMin(X)

Using similar methods to the previous part, it is straightforward to check that
E;(I(X, R)) is the minimal essential left ideal of I (X, R). O

The following consequence of the previous theorem and its proof gives a description
of the minimal essential left ideal in a special situation.

COROLLARY 2. Suppose R is a commutative ring with identity and X a locally finite
partially ordered set having the property that, forx € X, |{y € X | x < y}| < o0.
Then I (X, R) has a minimal essential left ideal, E; (I (X, R)), if and only if Min(X)
is a maximal antichain and R has a minimal essential ideal, E(R).

Suppose E (I(X, R)) exists. For x € Min(X), let

Ax)={f €eI(X,R)| f(x,v) € E(R), f (u, v) = 0 otherwise).
Then A(x) is a left ideal of 1 (X, R) and
E.IX.R)= @ Aw).

x€Min(X)
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