
/ Austral. Math. Soc. (Series A) 68 (2000), 252-260

ESSENTIAL IDEALS OF INCIDENCE ALGEBRAS

EUGENE SPIEGEL

(Received 19 August 1998; revised 17 August 1999)

Communicated by C. F. Miller

Abstract

It is determined when there exists a minimal essential ideal, or minimal essential left ideal, in the incidence
algebra of a locally finite partially ordered set defined over a commutative ring. When such an ideal
exists, it is described.

1991 Mathematics subject classification (Amer. Math. Soc): primary 16D15, 16D25.

In [2], Green and Van Wyk consider the existence of a minimal essential ideal of
a structural matrix ring, and question when this ideal is the same as the Brown-
McCoy radical of the ring. A structural matrix ring is the incidence algebra of a
finite preordered set. In this note we describe the minimal essential ideal and minimal
essential left ideal of the incidence algebra, / (X, R), when X is a locally finite partially
ordered set and R a commutative ring with identity. Recall that I(X;R) is the set
of all functions / : X x X -*• R with f (x,y) = 0 unless x < y, together with the
operations

if +g)(x,y)=f(x,y) + g(x,y),

fg(x,y)=
x<z<y

(rf)(x,y) = rf(x,y)

for

f , g € l { X , R ) , reR, x,yeX.
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If JC, y e X, with x < y, let exy denote the element of I(X, Y) given by

I I if x = M andy = v;

0 otherwise.

An ideal, A, of a ring T, is called essential, or /arge, if A n B yt {0} for any ideal
B ^ {0}. Similarly, the left ideal A is an essential left ideal if A n B ^ {0} for any
non-zero left ideal B. Of course, T is essential in T, the intersection of two essential
ideals is essential, and any ideal containing an essential ideal is essential. Similar
statements hold for essential left ideals.

Suppose, now, that X is a locally finite partially ordered set and R a commutative
ring with identity. Associate to X the partially ordered set, / (X), ordered by inclusion,
of all non-empty intervals, [x, y], with x, y e X. Further, let Ess(/?) be the partially
ordered set, ordered by inclusion, of all essential ideals of R. If Max(/(X)) is the
collection of all maximal elements of/(X), call a function 0 : Max(/(X)) - • Ess(R),
an essential function. Suppose <j> is an essential function and let

A. = {f e / (X , / ? ) | / ( j c , y ) e </>([*, y])
if [x, y] € Max(/(X)),/ (x, y) = 0 otherwise}.

It is straightforward to verify that A^ is an ideal. Notice that when [JC , y ] € Max(/ (X)),
and K is an ideal of /(X, /?), then exxKeyy is an ideal of /(X, /?), namely,

exxKeyy = {/(JC, y)exy \f e K}.

This follows by the maximality of [x,y]. Indeed, gexy = g(x,x)exy and exyg =
g(y, y)exy, for any g e I(X, R).

We now note some additional ideals of / (X, R). Let n be a positive integer and

Zn(X, R) = \f eI(X,R)\f (x, y) = 0 if \[x, y]\ < «} .

Again it is easy to verify that Zn(X, R) is an ideal of /(X, /?). The following lemma
shows that the ideals that we have defined give rise to essential ideals.

LEMMA 1. Suppose X is a locally finite partially ordered set and R a commutative
ring with identity. Let n be a positive integer and </> an essential function. Then
A,/, + Zn(X, R) is an essential ideal ofl{X, R).

PROOF. Let J = A^ + Zn(X, R). Certainly J is an ideal. We check that it is
essential. Let K be a non-zero ideal of I(X, R). Suppose that 0 ^ / € K and
/ (JC, y) ^ 0. If [x, y] is contained in a maximal interval [M, U], then u < x < y < v
and w = e^f eyv = f (x, y)euv e K. In particular, euuKem = {g{u, v)euv | g e K],
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which is contained in K, is a non-zero ideal of I(X, R). Let C = {g(u, v) | g e K]
and D = [h(u, v) | h € A ,̂}. As C is a non-zero ideal of R, and D = <j>([u, v]) is an
essential ideal of R, we have C D D is a non-zero ideal of /?. Then there is a g e K,
and an /i e A$, with #(M, U) = h{u, v) ^ 0. Hence euugevv — euuhevv e K D J. We
have thus shown that J n K ^ {0} when [x, y] is contained in a maximal interval.
Suppose, now, that [JC, y] is not contained in a maximal interval. Then there is a
sequence of intervals

[x, y] = [x0, y0] C [xu y j C [x2, y2] C • • • ,

with [*,, y,] a proper subset of [xi+i, y,+i], for i = 1, 2, Further,

(x,y)^n+l>n+, e Zn(X,R) c y. But / ( * , y)«x.+1,.+1 = eXn+,Jeyy^ e K,so
that, in this case too, J (1 K is non-zero. The lemma now follows. •

If there is a minimal essential ideal of / (X, R), then the intersection of a collection
of essential ideals is still essential. The following computes the intersection of the
ideals of the previous lemma. We will denote the minimal essential ideal of a ring T,
when it exists, by E(T). Similarly, EL(T) denotes the minimal essential left ideal
of T.

LEMMA 2. Suppose X is a locally finite partially ordered set and R a commutative
ring with identity. Let <p be an essential function. Then

n=l

PROOF. Let/ e O^A^+Z^X, R)) and suppose/ (x,y) / 0. Letm = |[;c,y]|.
Since/ € ( ^ + Zm(X, /?)), we can find g € A0 and h € Zm(X, R) with/ = g + h.
As h(x, y) = 0 we have that g(x, y) = / (x, y). Hence [x, y] is a maximal interval
and/ (x, y) e <j>([x, y]). It follows that/ e A^. U

The next lemma tells us when A^ is essential.

LEMMA 3. Suppose X is a locally finite partially ordered set and R a commutative
ring with identity. Let </> be an essential function. Then A^ is an essential ideal if and
only if each interval ofX is contained in a maximal interval. In particular, if one A^
is essential, they all are.
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PROOF. Assume each interval of X is contained in a maximal interval. Let K bt&
non-zero ideal of / (X, R). To show that A^ is essential we check that K n A^ ^ {0}.
Let / be a non-zero element of K and let x, y e X be such that f(x,y) ^ 0.
Further, let [«, v] be a maximal interval of X which contains [x, v]. Then e^f eyv =
f(x,y)euv € euuKevv = {g(u,v)euv | g € K). Further, euuKevv is an ideal of
I(X,R) contained in K. Let B = {g(u,v) | g € K}. Then B is a non-zero
ideal of R having a non-zero intersection with the essential ideal <f>([u, v]). Since
{0} ^ {reuv | r e (0([u, v]) D B)} c (A^ n A"), we have that A0 is essential.

Conversely, suppose A0 is essential and, looking for a contradiction, there exists
an interval, 70 = [JC0, yo], in X, which is not contained in a maximal interval. Let
AT be the ideal of l(X, R) generated by eXoyo. As A^ is essential, we can find
0 ^ h € K D A0, and thus a maximal interval, [M, V], with /I(H, u) ^ 0. Since K
is generated by {f eXoyog \ f,g e I(X, /?)}, we must have an fu gx e I(X, R) with
(fie*oyo8i)(u' v) # 0. But (/ieWogi)(M, v) = fi(u,xo)gi(yo, v) and, if this is to be
non-zero, [x0, yo] 9 [«, u]. This is a contradiction as it says that [x0, yo] is contained
in a maximal interval. The lemma is then established. •

We now give a criterion for an incidence algebra to have a minimal essential
ideal. For notational convenience, when / e I(X, R) and A is a subset of R, write
Af=[af \aeA}.

THEOREM 1. Let X be a locally finite partially ordered set and R a commutative
ring with identity. Then I(X, R) has a minimal essential ideal, E(I(X, /?)), if and
only if R has a minimal essential ideal, E(R), and each interval ofX is contained in
a maximal interval. IfE(I(X, R)) exists, then

E(I(X, /?)) = (E(R)euv | [u, v] a maximal interval).

PROOF. Suppose E(I(X, /?)) exists. Let <j> be an essential function for X. From
Lemma 1 and Lemma 2, A^ is essential and thus, by Lemma 3, each interval of X is
contained in a maximal interval. We now check that R has a minimal essential ideal.
To do this it is sufficient to show that the intersection of any class of essential ideals
of R is again essential. Let [Kt | i € 7} be a class of essential ideals of R. Here
/ is an index set. Further, let [u, v] be a maximal interval in X, and 0, the essential
function given by </>,([«, v]) = Kt and </>,([*, )*]) = R for any other maximal interval,
[x, y] of X. From Lemma 3, A .̂ is essential in / (X, R), and since E(I (X, R)) exists,
n , e / Afr is essential. But it is easy to see that

P|A0 / = | / eI(X,R) | / ( I I , w)€ p | Kt and/ (x,y) = 0 if [x,y] not maximal).
ie/ ie/

Suppose B = P|ie / Ki is not essential. Then there is a non-zero ideal, C, of R, such
that Cn B = {0}. Let L = [ceuv \ c e Q. Then L is a non-zero ideal of / (X, R) and,
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as f\iel At, is essential, there is a non-zero/ e (L n (D,6/ ^*,))- Simultaneously we
must have / = ceuv, with c e C, and / = beuv, with b e B. This is not possible as
B C\ C = {0}. We conclude that B is essential, and # contains a minimal essential
ideal.

Conversely, suppose that E(R) exists and that each interval of X is contained in a
maximal interval. Let D = (E(R)euv | [u, v] maximal). Note that D = ® E(R)euv,
the sum ranging over all maximal intervals [u, v] in X. We first check that D is
essential. Let AT be a non-zero ideal of I(X, R) and / a non-zero element of K.
Let x, y € X be such that f (x,y) ^ 0 and [u, u] a maximal interval containing
[x, y]. Then e^f eyv — f (x, y)euv and the non-zero ideal euuKevv = {g(u, v)euv \
g € K] c. K. Since £(/?) is essential, E(R) D {g(n, u) | £ € £} ^ {0}, and so
E(R)euv n euuKevv ^ {0}. Hence D is essential.

To complete the proof we need only check that D is the minimal essential ideal
of I(X, R). Let M be an essential ideal of I(X, R), C a non-zero ideal of R, and
[u,v] a maximal interval in X. Then Kc = {ceuv \ c e C] is a non-zero ideal of
I(X, R), and so Kc D euuMevv ^ {0}. As euuMevv = {m(u, v)euv | m e M), then
L = [m(u, v) I m e M} is an ideal of R which has a non-zero intersection with
C. Since C is an arbitrary ideal of R, L is essential. Hence E(R) c L. Therefore,
E(R)euv C M a n d D C M . •

A point, x e X, is isolated if the connected component of x, in its Hasse diagram,
is {x}. The following corollary shows that E(I(X, R)) is often nilpotent.

COROLLARY 1. Let X be a locally finite partially ordered set and R a commutative
ring with identity. IfE(I(X, /?)) exists then

(E(I(X,R))f= 0 (E(R))2exx.
x isolated

In particular, ifX has no isolated points, (E(I(X, R)))2 = (0).

Green and Van Wyk [2] considered when the minimal essential ideal of a structural
matrix ring equals the maximal small ideal. The maximal small ideal is the Brown-
McCoy radical [3], which, in the incidence ring case under discussion, coincides with
the Jacobson radical [5]. If J(T) denotes the Jacobson radical of the ring T, then
J(I(X, R) = [f € I(X, R) | f(x,x) e J(R) for* € X} (see [1]). As we have a
description of both E(I(X, R)) (when it exists) and J(I(X, /?)), the following result
is easily verified. Recall first that a partially ordered set X is of bound n, if the longest
chain of distinct elements of X is n.

THEOREM 2. Let Xbea locally finite partially ordered set and R a commutative ring
with identity. Suppose I(X, R) has a minimal essential ideal. Then E(I(X, /?)) =
J(I(X, /?)) if and only if one of the following holds:
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(i) X is a finite antichain, and E(R) = J(R);
(ii) X has no isolated points, J(R) = {0}, E(R) = R, and X is a finite partially

ordered set of bound 2.

PROOF. Suppose £(/(X, R)) = J(I(X, R)). If/ € £(/(X, /?)), from Theorem 1
it follows that / (M, D) = 0 for all but a finite number of [u, v]. Thus X is a finite
partially ordered set. Assume first that J(R) ^ {0}. Let x e X. Then J(R)exx c
J(I(X, R)) and so, by Theorem 1, [x, x] is a maximal interval and J(R) c E(R).
It then follows that E(R)exx c E(I(X, R)) and E(R) = J(R). Assume, now, that
J(R) = {0}. Then E(R)exx n J(/(X, /?)) = {0} and thus x is not an isolated point.
If y € X is such that x < y then exy e J(I(X, R)) guarantees that [x, y] is a maximal
interval, and that 1 e £(/?). It follows that X is of bound 2 and £(/?) = /?. The
converse of the theorem is straightforward. •

In the following we briefly describe when I(X, R) has a minimal essential left ideal
within the lattice of left ideals of / (X, R). The left ideal A of the ring T is an essential
left ideal if A n B ^ {0} for any non-zero left ideal B of T. If M is a left T-module,
then the submodule N is an essential left submodule of M if N D V ^ {0}, for each
non-zero submodule V of M.

As before, X denotes a locally finite partially ordered set and R a commutative ring
with identity. Let Min(X) be the collection of all minimal elements of X and Max(X)
the collection of all maximal elements of X. Of course, Min(X) and Max(X) are
antichains of X, and each interval of X is contained in a maximal interval if and only
if Min(X) and Max(X) are each maximal antichains.

Let L = [f € /(X, R) | f(x,y) = Oifx $ Min(X)} and Zn(X, R) the ideal
defined before Lemma 1. It is easy to check that L is a left ideal and, for n a positive
integer, that L + Zn(X, R) is again a left ideal. Suppose K is a non-zero left ideal of
/(X, R), and 0 ^ / e K. Further, suppose / (M, V) ^ 0, for some u, v e X, with u
related to an element, x e Min(X). Then 0 ^ exuf e (K n L). If no such u exists,
by an argument similar to that in Lemma 1, we obtain that / e (Zn(X, R) n K).
This shows that L + Zn(X, R) is an essential left ideal of /(X, R). Further, by
an argument parallel to that in Lemma 2, we obtain that the intersection of the left
ideals L + Zn(X, /?), as n ranges over the positive integers, is L. We summarize our
observations in the following lemma.

LEMMA 4. Suppose X is a locally finite partially ordered set, R a commutative ring
with identity, and n a positive integer. Then L + Zn(X, R) is an essential left ideal of
I(X,R). Further,

n=l
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We now observe when L is an essential left ideal.

LEMMA 5. Suppose X is a locally finite partially ordered set and R a commutative
ring with identity. Then L is an essential left ideal of I(X, R) if and only if Min(X)
is a maximal antichain.

PROOF. Assume Min(X) is a maximal antichain. By the remarks preceding
Lemma 4, if/ is a non-zero element of a non-zero left ideal, K, of I(X, R) and
/ (M, V) ^ 0, then exuf e (K n L), for any minimal element x < u of X. This shows
that L is an essential left ideal.

Conversely, suppose there exists an x0 e X incompatible with all elements of
Min(X). Then it is easy to check that the left ideal generated by eXoXo does not have
any non-zero elements in common with L. •

We need some additional terminology before presenting a criterion for the existence
of a minimal essential left ideal of I(X, R). If M = RM is a left /?-module, the
submodule T of M is essential if T (1N ^ {0}, for any non-zero submodule N of M.
We say that RM has a minimal essential submodule, EL (M), if the intersection of all its
essential submodules is essential. In order that I(X, R) have a minimal essential ideal,
we observed in Theorem 1 that R must have a minimal essential ideal, E(R). This,
of course, is equivalent to saying that R, as a left /?-module, has a minimal essential
submodule, and it is this latter formulation which leads to a necessary condition for
/ (X, R) to have a minimal essential left ideal.

Let K be a cardinal number and let FI* R denote the product of K copies of the
commutative ring R. We consider RTIKR, that is, FI*R regarded as a left R-module. If
RA and RB are left /^-modules then A © B has a minimal essential submodule, if and
only if A and B each do, and EL(A © B) = EL(A) © EL(B). In particular, if Ki < K2

are cardinal numbers then the existence of EL(RYIK2R) guarantees the existence of
EL(R^K] R)- Further, it is easy to check that if EL(RTIKR) exists then R has a minimal
essential ideal, E(R), and

it ©« E(R) C EL(RnKR) C RTIKE(R).

Let x e Min(X) and let KX = \{y e X | x < y}\. We call R Min(X) essential if
EL (R n*, R) exists, for each x e X. We can now describe when / (X, R) has a minimal
essential left ideal.

THEOREM 3. Let X be a locally finite partially ordered set and R a commutative
ring with identity. Then I(X, R) has a minimal essential left ideal, EL(I(X, /?)), if
and only j/Min(X) is a maximal antichain and R is Min(X) essential.
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PROOF. Suppose that / (X, R) has a minimal essential left ideal EL (/ (X, R)). Since
the ideal L, of Lemma 4, is the intersection of essential left ideals, it must be essential.
Lemma 5 then tells us that Min(X) is a maximal antichain. We now check that R is
Min(X) essential. Let x € Min(X), S(x) = [y € X \ x < y] and KX = \S(x)\. It is
sufficient to see that RnKiR has a minimal essential submodule. Let Jx be an index
set of cardinality KX and <px : Jx —> S(x) a bijective mapping. Call / G / (X, R) an
S(x) function if / (M, V) = 0 for u ^ x. If/ is an S(x) function and g G /(X, R),
then, for y G X, gf (x,y) = g(x, x)f (x, y). It follows that the left ideal generated
by / agrees with the left R -module generated by / . For each j G JX, let Rj = R
and T(x) = R Wj€Jx Rj. We regard T(x) as the collection of functions, g, from Jx

to R with g(j) G Rj. If/ is an S(x) function, let ax(f)€ T(x) be the element
defined by ax(/)(/') = /(•*> &(/))• It is easy to see that ax is a bijective R-module
mapping from the /?-submodule of S(x) functions to T(x). Further, if ax(f) = t,
then the cyclic /?-submodule of T(x) generated by t corresponds, under a~l, with
the cyclic /?-submodule generated by / , which, in turn, agrees with the left ideal of
I(X, R) generated by / . Let V = exxEL(I(X, /?)). Then V is the collection of all
S(x) functions in EL(1{X, R). Let ar,(V) = {ax(f) \ f G V}. A straightforward
verification shows that ax( V) is an /?-submodule of T(x). If t\ is a non-zero element
of T(x), then a~l(t) is an S(x) function and thus the left ideal of /(X, R) that it
generates has a non-zero intersection with EL(I(X, R). It follows that there is an
r e R with ra~l (r) a non-zero element in V. Hence 0 ^ rt G ax (V) and otx (V) is an
essential submodule of T(x). We check that it is the minimal essential /?-submodule
of T(x). Suppose U is an essential submodule of T. For y G Min(X), with y ^ x,
let W(y) be the collection of all S(y) functions contained in EL(I(X, R). Further, let
K be the left ideal generated by

U)*'
Notice that the collection of all S(x) functions in K coincides with a'1 (U). We check
that K is an essential left ideal of / (X, R). Then it follows that EL(I (X, R) c K and
so VC^- ' f t / ) . Hence ax (V) c J7 and a* (V) is the minimal essential R-submodule
of T(x).

Let/ be a non-zero function of /(X, /?) and/ (M, U) 9̂  0, for u, v G X. There is
a y G Min(X) with y < u. Suppose, first, that y ^ x. The left ideal generated by
eyuf («i v) has a non-zero intersection with £L(/(X, /?)), and so there is a non-zero
S(y) function, g, common to these two ideals. Since g e W(y), theng G K. Suppose
now that y = x. Then exuf is a non-zero S(x) function and thus ty = ax(exuf) is a
non-zero element of T(x). Since U is an essential module, there is an n G /? with
ry<xx(exuf) a non-zero element of £/. But 0 ^ r i^, , / G ajH^O <= ^ and, thus, in
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either case, the left ideal generated b y / has a non-zero intersection with K. It follows
that K is essential and that R is Min(X) essential.

Conversely, suppose that R is Min(Z) essential and that Min(X) is a maximal
antichain. Let x e Min(X). Let Px be the essential submodule of the product of KX

copies of R regarded as a left R-module. Then a " 1 ^ ) is a left ideal of I(X, R)
consisting of S(x) functions. Let

EL(I(X,R)) =

Using similar methods to the previous part, it is straightforward to check that
EL(/ (X, /?)) is the minimal essential left ideal of / (X, R). D

The following consequence of the previous theorem and its proof gives a description
of the minimal essential left ideal in a special situation.

COROLLARY 2. Suppose R is a commutative ring with identity andX a locally finite
partially ordered set having the property that, for x £ X, \{y £ X \ x < y}\ < oo.
Then I (X, R) has a minimal essential left ideal, EL(I (X, R)), if and only if Min(X)
is a maximal antichain and R has a minimal essential ideal, E(R).

Suppose EL{l{X, R)) exists. For x e Min(X), let

A(x) = {f e I(X,R) \f(x,v) £ E(R),f(u,v) = 0otherwise}.

Then A(x) is a left ideal ofI(X, R) and

EL(I(X,R)) =
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